
QUERY PROCESSING AND OPTIMIZATION IN

INFORMATION-INTEGRATION SYSTEMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Chen Li

August 2001

c Copyright by Chen Li 2001

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Je�rey D. Ullman
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Foto N. Afrati

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and quality, as a disser-

tation for the degree of Doctor of Philosophy.

Gio Wiederhold

Approved for the University Committee on Graduate Studies:

iii

Abstract

The advent of the Internet provides us the access to many autonomous and heterogeneous

information sources. The purpose of information integration is to support seamless access

to these data sources. To deal with source heterogeneity, many systems use a mediation

architecture, in which a mediator processes user queries by accessing source data. There

are two approaches to information integration: the source-centric approach (taken by the

TSIMMIS system at Stanford), and the query-centric approach (taken by many systems,

such as the Information Manifold at AT&T). My thesis focuses on e�cient query processing

in both approaches. In the �rst approach, I work on how to process queries e�ciently

when sources have limited capabilities of answering queries. In the second approach, I

develop query-optimization techniques, such as how to use mediator caching to improve

query performance, and how to generate e�cient rewritings of queries using views. Most of

my thesis work is developed in the TSIMMIS project at Stanford University.

iv

Acknowledgments

I would like to thank my advisor, Je� Ullman. He gave me a lot of freedom to choose the

research problems that interested me, and he was also always willing to discuss my ideas.

Not only did Je� advise me how to do research, he also taught me how to solve problems in

my life. Hector Garcia-Molina advised me on many research topics throughout my Stanford

years. Jennifer Widom provided me an excellent model for organization, planning, and

balancing work with the rest of life. Gio Wiederhold provided much help not only on my

research on information integration, but also on my other interests in image databases. Foto

Afrati kindly served on my oral committee and read my dissertation. Our collaborations

have always been productive and enjoyable.

I dedicate this work to my wife, Yu Zhao. I thank her for her love, courage, and

support. She always stands by me, keeping me balanced and focused. I am also indebted

to my parents, Songtao Li and Jinfeng Wang, for their constant love. Thanks are also due

to my brother, Nianqing Li, for sharing thoughts about life.

I thank my co-authors: Foto Afrati, Mayank Bawa, Edward Chang, Hector Garcia-

Molina, Yannis Papakonstantinou, Je� Ullman, Murty Valiveti, Vasilis Vassalos, and Ra-

mana Yerneni, for their ideas, encouragement, collaborations, and for teaching me how to

do good research.

The Stanford Database Group provided a great environment for research and play. The

Social Committee organized many wonderful events. I will miss the delicious DB-lunch

food every Friday, and the fruitful discussions in many project meetings. Marianne Siroker

and Sarah Weden were always available in making sure all business was done without much

e�ort on my part. I enjoyed the time with my o�cemates, Arvind Arasu, Mayank Bawa,

Kevin Chang, Neil Daswani, Prasenjit Mitra, and Jun Yang. We had a lot of fun.

I thank all the TSIMMIS researchers: Sudarshan Chawathe, Hector Garcia-Molina,

Joachim Hammer, Svetlozar Nestorov, Yannis Papakonstantinou, Dallan Quass, Anand

v

Rajaraman, Michael Rys, Murty Valiveti, Vasilis Vassalos, Je� Ullman, Jennifer Widom,

Ramana Yerneni, for all their time and e�ort on the TSIMMIS base. TSIMMIS is a product

of everyone's hard work.

This research was partially supported by the Stanford Graduate Fellowship and the

National Science Foundation under grant #IRI-9631952, and by equipment grants from

IBM Corporation.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Information integration . 1

1.2 Two Approaches to Information Integration 2

1.2.1 The Query-Centric Approach . 3

1.2.2 The Source-Centric Approach . 4

1.3 Limited Source Capabilities . 5

1.4 Research Issues . 6

1.4.1 Query Processing in the Presence of Source Limited Capabilities . . 6

1.4.2 Using Mediator Caching to Improve Performance 7

1.4.3 Generating E�cient Plans for Queries Using Views 8

1.5 Thesis Organization . 9

2 Preliminaries 11

2.1 Queries . 11

2.1.1 Conjunctive Queries . 11

2.1.2 Datalog Queries . 13

2.2 Describing Relation Restrictions . 13

2.3 Supplementary Relations . 14

2.4 Open-World Assumption and Closed-World Assumption 15

2.5 Answering Queries Using Views . 16

2.6 Technical Problems . 18

vii

3 Optimizing Queries with Source Restrictions 20

3.1 Introduction . 21

3.2 Preliminaries . 23

3.2.1 The Plan Space . 24

3.2.2 The Formal Cost Model . 26

3.2.3 Subgoal Sequences and Physical Plans 29

3.2.4 Problem Statement . 29

3.3 The CHAIN Algorithm . 30

3.3.1 Feasible-Plan Generation . 30

3.3.2 Optimality of Plans Generated by CHAIN 32

3.4 The PARTITION Algorithm . 34

3.4.1 PARTITION . 34

3.4.2 Feasible-Plan Generation . 37

3.4.3 Variations of PARTITION . 39

3.5 Performance Analysis . 41

3.5.1 Simulation Parameters . 41

3.5.2 Experimental Results . 41

3.6 Other Cost Models . 42

3.7 Conclusions and Related Work . 44

4 Answering Queries with Useful Bindings 47

4.1 Introduction . 48

4.2 Preliminaries . 50

4.2.1 Source Views . 51

4.2.2 Connection Queries . 52

4.2.3 The Answer to a Query . 53

4.3 A Query-Planning Framework . 53

4.3.1 Constructing the Program �(Q;V) 53

4.3.2 Binding Assumptions . 55

4.3.3 Evaluating the Program �(Q;V) . 56

4.4 Accessing O�-connection Views . 58

4.4.1 Forward-closure . 59

4.4.2 Independent Connections . 60

viii

4.5 Finding Relevant Source Views of a Connection 61

4.5.1 Queryable Source Views . 63

4.5.2 Kernel, BF-chain, and Backward-closure 63

4.5.3 Finding Relevant Source Views of a Connection 67

4.5.4 The Algorithm FIND REL . 70

4.5.5 Constructing an E�cient Program 71

4.6 Testing Containment Between Connections 72

4.6.1 Connection Containment . 73

4.6.2 Connection Containment Is Decidable 75

4.6.3 Connection Boundedness . 77

4.6.4 Testing Connection Boundedness . 78

4.6.5 Comparison with the Approach in [MLF00] 81

4.7 Discussion . 82

4.7.1 Other Possibilities for Obtaining bindings 82

4.7.2 Computing a Partial Answer . 82

4.7.3 Extending Results to Conjunctive Queries 83

4.8 Conclusions and Related Work . 83

5 Computing Complete Answers to Queries 85

5.1 Introduction . 86

5.2 Preliminaries . 88

5.3 Stability of Conjunctive Queries . 89

5.3.1 Feasible Conjunctive Queries . 89

5.3.2 Minimal Equivalents of CQ's . 90

5.3.3 Algorithm: CQstable . 93

5.3.4 Algorithm: CQstable* . 93

5.3.5 Complexity of Testing Stability of CQ's 95

5.4 Nonstable Conjunctive Queries . 96

5.4.1 Dynamic Cases . 96

5.4.2 The Decision Tree . 99

5.4.3 Pessimistic Planning and Optimistic Planning 101

5.5 Stability of Unions of Conjunctive Queries 102

5.5.1 Algorithm: UCQstable . 103

ix

5.5.2 Algorithm: UCQstable* . 104

5.6 Stability of Conjunctive Queries with Comparisons 106

5.6.1 Answerable Subquery of a CQAC . 107

5.6.2 Algorithm: CQAC1stable . 108

5.6.3 Algorithm: CQACstable . 111

5.7 Stability of Datalog Queries . 115

5.7.1 Rule/goal Graphs . 116

5.7.2 Feasible Rule/goal Graphs . 117

5.7.3 What If a Feasible RGG Does not Exist 118

5.8 Conclusions and Related Work . 120

6 Using Mediator Caching to Improve Performance 122

6.1 Introduction . 123

6.2 Comparing Query-Answering Power of View Sets 126

6.2.1 p-containment . 126

6.2.2 v-containment . 127

6.2.3 Comparison Between p-containment and v-containment 128

6.2.4 Minimizing View Set without Losing Power 129

6.3 Testing p-containment Relative to a Query Set 130

6.3.1 Relative p-containment . 130

6.3.2 Parameterized Queries . 131

6.3.3 Complete Answerability of Parameterized Queries 133

6.3.4 Partial Answerability of Parameterized Queries 135

6.3.5 Testing p-containment Relative to Finite Parameterized Queries . . 137

6.4 MCR-containment . 137

6.5 Minimizing View Sets of General Queries 138

6.5.1 Testing General p-containment . 138

6.5.2 Minimizing View Sets Using General Equipotence 139

6.6 Conclusions and Related Work . 139

7 Generating E�cient Plans for Queries Using Views 142

7.1 Introduction . 143

7.2 E�ciency of Rewritings . 145

7.3 Cost Model M1: Number of View Subgoals 147

x

7.3.1 Minimizing View Subgoals in a Rewriting 148

7.3.2 Structure of Rewriting Space . 148

7.3.3 A Space Including Globally-Minimal Rewritings 151

7.4 An Algorithm for Finding Globally-Minimal Rewritings 153

7.4.1 Tuple-Core: Query Subgoals Covered by a View Tuple 153

7.4.2 Using Tuple-Cores to Cover Query Subgoals 158

7.4.3 Comparison with the MiniCon Algorithm 160

7.5 Cost Model M2: Counting Sizes of Relations 161

7.5.1 A Search Space for Optimal Rewritings under M2 162

7.5.2 Concise Representation of Minimal Rewritings 163

7.5.3 Generalization of Cost Model M2 . 164

7.6 Cost Model M3: Dropping Nonrelevant Attributes 164

7.6.1 Dropping Attributes Using Supplementary-Relation Approach 164

7.6.2 A Heuristic to Drop Attributes . 166

7.7 Experimental Results . 167

7.7.1 Star Queries . 167

7.7.2 Chain Queries . 169

7.8 Conclusions and Related Work . 170

8 Conclusions and Future Work 173

8.1 Summary of Thesis Results . 173

8.1.1 Query Processing in the Presence of Binding Patterns 173

8.1.2 Mediator Caching . 174

8.1.3 Using Views to Generate E�cient Plans for Queries 175

8.2 Future Work . 175

8.2.1 Compute Maximal Answers to General Queries 175

8.2.2 Finer-Granularity Mediator Caching 176

8.2.3 Generating E�cient Plans Using Views for General Queries 176

8.2.4 Extraction from Web Pages . 177

8.2.5 Dealing with Source Heterogeneity 177

Bibliography 178

xi

List of Tables

3.1 Proof of Lemma 3.3.4: three data sources. 32

3.2 Proof of Lemma 3.4.4: four data sources. 39

4.1 Four sources of musical CDs. 50

4.2 Evaluating the program in Figure 4.2. 57

4.3 Evaluation results. 57

6.1 Di�erent containments between two sets of conjunctive views: V and W . . . 125

7.1 Three cost models. 146

7.2 Tuple-cores for the three view tuples in example 7.4.1. 158

xii

List of Figures

1.1 Mediation architecture. 2

1.2 A Web search form of IMDB.COM. 5

2.1 Closed-world assumption (CWA) and open-world assumption (OWA). . . . 16

3.1 Three physical plans to answer a query. 22

3.2 Constructing a query and database from a graph. 27

3.3 Algorithm CHAIN. 31

3.4 Proof for Lemma 3.3.5. 33

3.5 Algorithm PARTITION. 35

3.6 Average cost. 42

3.7 Optimality of each algorithm. 43

4.1 The hypergraph representation. 50

4.2 The datalog program �(Q;V) in Example 4.2.1. 54

4.3 Source views in Example 4.4.1. 58

4.4 The datalog program �(Q;V) in Example 4.4.1. 59

4.5 The source views in Example 4.5.1. 62

4.6 Multiple kernels of a connection. 64

4.7 A backward-closure. 65

4.8 Proof of Lemma 4.5.4. 66

4.9 The backward-closure of a kernel of a queryable connection. 68

4.10 Populating the relations on the BF-chain in Figure 4.9. 69

4.11 The algorithm FIND REL. 70

4.12 The optimized datalog program in Example 4.4.1. 72

4.13 The hypergraph representation of four movie sources. 73

xiii

4.14 The datalog program �(Q;V) for the query in Example 4.6.1. 74

4.15 The program �(QT1 ;V) for the connection T1 in Example 4.6.1. 74

4.16 The source descriptions in Example 4.6.2. 77

4.17 The program �(QT ;V) in Example 4.6.2. 78

4.18 BF-graph for Example 4.6.1. 79

4.19 BF-graph for Example 4.6.2. 79

4.20 Testing the boundedness of a connection. 81

5.1 Proof of Lemma 5.3.2. 91

5.2 Proof of Lemma 5.3.3. 92

5.3 Algorithm: CQstable. 93

5.4 Algorithm: CQstable*. 94

5.5 Proof of Theorem 5.3.3. 95

5.6 The decision tree of computing the complete answer to a CQ. 100

5.7 Algorithm: UCQstable. 104

5.8 Algorithm: UCQstable*. 105

5.9 Algorithm: CQAC1stable. 109

5.10 Proof of the correctness of the algorithm CQAC1stable. 109

5.11 Proof of Theorem 5.6.3, \If" part. 112

5.12 Proof of Theorem 5.6.3, \Only If" part. 112

5.13 Algorithm: CQACstable. 113

5.14 Two RGG's for the query goal reachablebf 116

6.1 Diagram for the two views in Example 6.2.2. 129

6.2 Proof of Theorem 6.3.1. 134

6.3 The algorithm CheckF for a family F of queries. 139

7.1 Relationship of rewritings of a query. 149

7.2 Partial order of locally-minimal rewritings of a query. 151

7.3 Proof of Lemma 7.4.2. 155

7.4 Uniqueness of tuple-core of a view tuple. 156

7.5 The algorithm Corecover. 160

7.6 Base relations. 165

7.7 Time for Corecover to generate all GMRs for star queries. 168

xiv

7.8 Number of equivalence classes for star queries. 169

7.9 Time of generating all GMRs of chain queries. 170

7.10 Number of equivalence classes for chain queries. 171

xv

Chapter 1

Introduction

1.1 Information integration

The purpose of information integration (a.k.a. data integration, information mediation) is to

support seamless access to autonomous, heterogeneous information sources. These sources

can be legacy databases, corporate databases connected by intranets, and data sources on

the World Wide Web. Users can access these data sources as if they were accessing one

large database.

Information integration has recently received considerable attention because of its rele-

vance to many data-management applications. In particular, the advent of the Internet pro-

vides us with a huge amount of information stored in many sources on the Web. Information

integration provides uniform interfaces for users to access these data sources. For instance,

comparison-shopping companies collect merchandise information from online stores, such as

prices, manufacturers, and availabilities. They provide Web interfaces for users to submit

queries to �nd merchandise information, thus users can �nd best deals without going to

individual underlying sources. For another example, in supply-chain management, many

suppliers have products that buyers are interested in. By building an intermediate layer

among them, suppliers and buyers can share the product information easily. Furthermore,

many biological discovery groups are challenged with a plethora of public, private, inter-

company, intra-company, current, and legacy data sources. The Human Genome Project

(http://www.ornl.gov/hgmis/) is an example. Biological data is often stored in multiple

sites and databases. Biological discovery is being slowed by an inability to access the data,

1

CHAPTER 1. INTRODUCTION 2

and a rigidity in the handling and manipulation of the data. Information integration pro-

vides these groups the ability to access, manipulate, and understand the increasingly vast

amounts of data.

Source nSource 2Source 1

Queries Answers

Wrapper Wrapper Wrapper

Mediator

...

Figure 1.1: Mediation architecture.

Data sources in information integration can be quite heterogeneous, i.e., di�erent sources

can use di�erent data models, schemas, and query interfaces. To deal with this heterogene-

ity, many systems use a mediation architecture [Wie92], as shown in Figure 1.1. In the

architecture, a wrapper is built on the top of each source. The purpose of the wrapper is to

translate the source data model to a universal data model shared by the wrappers, so that

the mediator can exchange data with the sources. Another functionality of the wrapper is

to do local query processing to retrieve data from the source. For example, a wrapper on a

Web source can �ll in a Web search form, send an HTTP request to the source, and parse

data in the returned HTML page to extract useful values. On the top of all the wrappers,

a mediator can accept user queries and answer the queries by accessing the relevant sources

to retrieve the necessary data.

1.2 Two Approaches to Information Integration

There are two approaches to information integration: the query-centric approach and the

source-centric approach [Dus97, Ull97]. Both approaches have been widely used by many

systems.

CHAPTER 1. INTRODUCTION 3

1.2.1 The Query-Centric Approach

In the query-centric approach, the mediator exports views de�ned on the source data. After

a user poses a query on the synthesized views, the mediator expands the query to a plan

that involves source data. The TSIMMIS project [C+94] takes this approach. The following

is an example.

EXAMPLE 1.2.1 Consider a mediator on the top of the following three movie sources.

� R(Star, Title). A tuple R(s,t) means that star s starred in movie t.

� S(Title, Studio). A tuple S(t,d) means that movie t was produced by studio d.

� T(Title, Year). A tuple T(t,y) means that movie t was made in year y.

The mediator synthesizes the following view:

CREATE VIEW Movie

SELECT Star, Title, Studio, Year

FROM R, S, T

WHERE R.Title = S.Title AND S.Title = T.Title;

Suppose a user wants to �nd all the movies produced by Warner Brothers in 1999, and

starred by Keanu Reeves. She can pose the corresponding query Q0 on the view:

SELECT Title

FROM Movie

WHERE Star = 'Reeves' AND Studio = 'Warner' AND Year = '1999';

For simplicity, we use abbreviations for the constants. Using the view de�nition, the medi-

ator expands query Q0 to the corresponding query Q on the source relations:

SELECT Title

FROM R, S, T

WHERE R.Title = S.Title AND S.Title = T.Title

AND R.Star = 'Reeves' AND S.Studio = 'Warner' AND T.Year = '1999';

2

CHAPTER 1. INTRODUCTION 4

1.2.2 The Source-Centric Approach

In the source-centric approach, there is a collection of global predicates on which user queries

are formulated. Each data source is associated with one or more views, which are also

de�ned in terms of these global predicates. The following is an example.

Assume we have a source that has information about car dealers. It has the following

view that includes car dealers in the city Palo Alto:

CREATE VIEW PA_Dealer

SELECT Name, Make

FROM Dealer

WHERE City = 'Palo Alto';

in which Dealer(name,city,make) is a global predicate (a.k.a. world relation) that can be

used to formulate queries and source views. If a query asks for dealers in Palo Alto that

sell Toyota cars, the following is the query:

SELECT Name

FROM Dealer

WHERE City = 'Palo Alto' AND Make = 'Toyota';

We can answer the query by using the source view as follows:

SELECT Name

FROM PA_Dealer

WHERE Make = 'Toyota';

In general, after a user poses a query, the mediator decides how to use the source views

to answer the query. This process is also known as answering queries using views [LMSS95].

Systems that take this source-centric approach include the Information Manifold [LRO96],

and Infomaster [GKD97].

CHAPTER 1. INTRODUCTION 5

1.3 Limited Source Capabilities

Source relations in information integration often have limited query interfaces. These

sources do not allow us to retrieve all their data \for free." Instead, they have limita-

tions on access patterns to their data; that is, one must provide values for certain attributes

of a relation in order to retrieve its tuples. For example, if we view the source IMDB.COM

as a relation that provides movie information. This source publishes several Web search

forms, using which users can submit movie queries. Figure 1.2 is an example. Using this

form, a user must provide either a movie title, a cast name, or a character name, then the

source returns movies that satisfy the conditions. Without providing a value, we cannot

retrieve information from the source. There are many reasons for this kind of restrictions,

such as convenience for users to retrieve information, and concerns of security, privacy, and

performance. In some cases, legacy databases or structured �les may also have limited

interfaces, leading to similar restrictions.

Figure 1.2: A Web search form of IMDB.COM.

Source restrictions make it challenging for the mediator to process and optimize queries.

CHAPTER 1. INTRODUCTION 6

In particular, the mediator should consider the source capabilities while generating a feasible

and e�cient plan to answer a query, which accesses the source relations using legal patterns

to compute answers e�ciently.

1.4 Research Issues

This thesis focuses on e�cient query processing in information integration. We consider

problems that arise in systems that take the query-centric approach and the source-centric

approach.

1.4.1 Query Processing in the Presence of Source Limited Capabilities

The �rst part of this thesis focuses on query optimization in the query-centric approach to

information integration, especially when sources have limited capabilities. The following

are areas of investigation.

Computing Answers to Queries E�ciently

Given a query on source relations with restrictions, we want to know whether there exists a

plan that computes the answers to the query by accessing the relations using legal patterns

[LYV+98]. In particular, we should generate a feasible plan that respects the limitations of

the relation interfaces, and the existence of such a plan closely depends on the capabilities

of the relations. In addition, there might be di�erent plans to compute the same answers

to a query, while these plans have quite di�erent e�ciency. Thus we want to generate not

only a feasible plan, but also a plan that is e�cient. We study this problem in Chapter 3.

Computing Maximal Partial Answers to Queries

In some cases, we might not be able to compute all the answers to a query due to the source

restrictions. If the user is interested in a partial answer, we can compute a maximal partial

answer by retrieving as much information as possible from the relations. In this case, we

can answer the query by borrowing bindings for certain domains from other relations that

are not used in the query.

EXAMPLE 1.4.1 Assume a source R requires a movie title to return its movie informa-

tion, such as studio names and star names. Suppose a user wants to �nd movies made by

CHAPTER 1. INTRODUCTION 7

Universal Studios. We cannot retrieve movie information from R directly due to its restric-

tion. However, if there is a Web source that provides movie titles for free, then we can use

these movies to access the relation R to retrieve some movies, and return those made by

Universal Studios. Essentially we can compute a partial answer to the query by borrowing

movie titles from the second relation. 2

In Chapter 4 we study how to compute a maximal answer to a query by using information

from other relations. We solve several optimization problems to trim useless sources. The

�rst problem is how to decide which relations should be accessed to compute the maximal

answer. As the number of relations increases, and their restrictions become complicated, it

is unclear how to decide which relations can really help us answer a query. We develop an

e�cient algorithm for �nding all the useful relations that need to be accessed to compute the

maximal answer to a query. Another optimization problem is to test query containment in

the presence of source restrictions, i.e., whether the maximal answer to a query is contained

in that to another query. We show that this problem is decidable by using some existing

results in [CGKV88], and develop a polynomial-time algorithm for testing the containment

in certain cases.

Computing Complete Answers to Queries

Often we cannot retrieve all tuples from relations due to their limited query capabilities.

In particular, after some queries are sent to sources, there can always be some tuples in the

relations that are not retrieved, since we cannot provide the necessary values to retrieve

them. In Chapter 5, we answer the following question: given a query on relations with

restrictions, is there a plan that accesses the relations with legal patterns, such that this

plan computes all the answers that satisfy the query conditions? Since we cannot retrieve

all tuples from the relations, we need to do reasoning about whether the answers computed

by a plan are all the answers or not. We study this problem for several classes of queries,

and give the corresponding algorithms and decidability results.

1.4.2 Using Mediator Caching to Improve Performance

In information integration, each source access is expensive due to network tra�c and delay,

dynamic source availability, and possible source charges. To reduce the number of source

accesses, we can cache the results of previous queries at the mediator, and use the cached

CHAPTER 1. INTRODUCTION 8

data to answer future queries without accessing the sources. In addition, since the mediator

has only limited resources to store data, it might not be possible to cache the results of

all queries. Thus we need to decide what query results should be kept in the cache. In

Chapter 6 we study how to decide what query results should be cached at the mediator in

order to answer as many future queries as possible.

1.4.3 Generating E�cient Plans for Queries Using Views

In the source-centric approach to information integration, for each user query, the mediator

needs to decide how to compute the answers to the query using the source views [LMSS95].

Several algorithms have been developed on how to answer queries using views, such as the

Bucket algorithm [GM99a, LRO96], the Inverse-Rule algorithm [DG97, Qia96, AGK99], the

MiniCon algorithm [PL00], and the Shared-Variable-Bucket algorithm [Mit01]. However,

most of these algorithms focus on how to generate a plan for a query, while their generated

plans might not be e�cient. The following is an example.

EXAMPLE 1.4.2 Consider the following two global predicates:

� Car(Make,Dealer);

� Loc(Dealer,City).

A source view is de�ned on the predicates:

CREATE VIEW V

SELECT Make, Dealer, City

FROM Car, Loc

WHERE Car.Dealer = Loc.Dealer;

The following query Q:

SELECT Make, City

FROM Car, Loc

WHERE Car.Dealer = 'Anderson' AND Loc.Dealer = 'Anderson';

asks for car makes and cities of dealer anderson. We can use the following plan P1 to

answer Q using V :

CHAPTER 1. INTRODUCTION 9

SELECT Make, City

FROM V

WHERE Dealer = 'Anderson';

However, existing algorithms (such as the Bucket algorithm and the MiniCon algorithm)

generate the following plan P2 instead:

SELECT V1.Make, V2.City

FROM V AS V1, V AS V2

WHERE V1.Dealer = 'Anderson' AND V2.Dealer = 'Anderson';

Clearly P2 is more e�cient than P1, since P2 needs one access to view v, while P1 needs

two accesses and a join operation. 2

These algorithms generate plan P1 instead of P2 because they take the open-world as-

sumption about the views. (See Section 2.4 for the de�nitions of the open-world assumption

and the closed-world assumption.) In Chapter 7 we study the problem of generating e�-

cient, equivalent rewritings using views to compute the answers to a query by taking the

closed-world assumption.

1.5 Thesis Organization

The rest of the thesis is organized in seven chapters. Chapter 2 introduces the notation

used throughout the thesis. Chapter 3 to Chapter 6 cover query-optimization problems

in systems that take the source-centric approach to information integration. Chapter 3

discusses how to optimize large-join queries when sources have limited access patterns. As

we have seen in Example 1.2.1, we want to generate feasible plans that can answer a query

e�ciently. We study the complexity of this problem under several cost models, and give

e�cient algorithms for �nding good plans.

In Chapter 4 we study how to compute a maximal answer to a query by borrowing

information from other relations. We solve two optimization problems. The �rst one is how

to decide which relations can be used to answer a query. The second one is to test query

containment. Using these optimization techniques, we can trim useless source accesses to

compute the maximal answer to a query.

CHAPTER 1. INTRODUCTION 10

In Chapter 5, we answer the following question: given a query on relations with restric-

tions, is there a plan that computes the complete answers to the query by accessing the

relations with legal patterns? The complete answers to a query are all the answers that sat-

isfy the query conditions. If the relations did not have restrictions, we can easily compute

the complete answers by retrieving all the tuples from relations. However, since we can

only retrieve some tuples, we need to decide whether the answers computed by a plan are

the complete answers or not. We study this problem for several classes of queries, such as

conjunctive queries, conjunctive queries with arithmetic comparisons, unions of conjunctive

queries, and datalog queries. We give algorithms and decidability results for these classes.

Chapter 6 discusses how to use mediator caching to improve query performance. In

particular, we study what query results should be cached at the mediator in order to answer

as many future queries as possible. We show that traditional query containment [CM77]

is not a good basis for deciding whether or not a query result should be kept. Instead, we

introduce a concept called equipotence that describes the fact that two sets of views have

the same power to answer queries. We use this concept to discuss how to minimize a set of

query results without losing its query-answering power.

Chapter 7 studies the following problem that exists in systems that take the query-

centric approach to information integration: how to generate e�cient plans for a query

using source data? In particular, in what space should we search for optimal rewritings?

How do we �nd optimal rewritings e�ciently? How does an optimizer generate an e�cient

physical plan from a logical plan by considering the view de�nitions? In this chapter we

solve these problems by considering several cost models. We de�ne search spaces for �nding

optimal rewritings, and develop e�cient algorithms for �nding optimal rewritings in each

search space. In Chapter 8 we summarize the results in the thesis and discuss future work

on data integration.

Some of the material in this thesis appears in conference and journal papers [YLUGM99,

LC00, LC01b, LBU01, ALU01, LC01a]. At the end of each chapter, we conclude the chapter

and discuss related work.

Chapter 2

Preliminaries

In this chapter we introduce the notation used throughout the thesis.

2.1 Queries

2.1.1 Conjunctive Queries

We consider a variety of queries. In particular, we focus on conjunctive queries, a.k.a.

select-project-join (SPJ) queries. A conjunctive query (\CQ" for short) is denoted by a

rule:

h(�X) :- g1(�X1); : : : ; gn(�Xn)

In the query, h(�X) is called the head, and it represents the results of the query. The body

is a set of subgoals g1(�X1); : : : ; gn(�Xn). Each subgoal gi(�Xi) includes a relation gi, and a

tuple of arguments �Xi corresponding to the relation schema. Each argument can be either

a variable or a constant. The variables �X are called distinguished variables. The query is

safe if every distinguished variable appears in the body. For instance, given two relations

r(A1; A2) and s(B1; B2; B3), the following is a safe conjunctive query:

ans(X;Z) :- r(X; Y); s(Y; Z; 1)

in which X , Y , and Z are variables, and 1 is a constant. The query corresponds to the

following SPJ query:

�A1;B2
(�A2=B1;B3=1(r(A1; A2) ./ s(B1; B2; B3)))

11

CHAPTER 2. PRELIMINARIES 12

Given a conjunctive query Q on a database D, the answers to Q, denoted ANS(Q;D),1

are the set of heads of Q that are obtained when we:

� Substitute constants for variables in the body of Q in all possible ways;

� Require all subgoals to become true.

For instance, given a database D = fr(2; 3); s(3; 4; 1); s(3; 5; 1)g, the answers to the

query above include two tuples, ans(2; 4) and ans(2; 5), corresponding to the following

substitutions:

1. X ! 2; Y ! 3; Z ! 4;

2. X ! 2; Y ! 3; Z ! 5.

De�nition 2.1.1 (query containment and equivalence) A query Q1 is contained in a

query Q2, denoted Q1 v Q2, if for any database D, the set of answers to Q1 is a subset

of the answers to Q2, i.e., ANS(Q1; D) � ANS(Q2; D). The two queries are equivalent,

denoted Q1 � Q2, if Q1 v Q2 and Q2 v Q1. 2

Chandra and Merlin [CM77] showed that for two conjunctive queries Q1 and Q2, Q1 v

Q2 if and only if there is a containment mapping from Q2 toQ1, such that the mapping maps

a constant to the same constant, and maps a variable to either a variable or a constant.

Under this mapping, the head of Q2 becomes the head of Q1, and each subgoal of Q2

becomes some subgoal in Q1. For instance, consider the following two queries:

Q1: ans(X;Z) :- r(X; Y); s(Y; Z); t(Z; a)

Q2: ans(X;Z) :- r(X; Y); s(W;Z); t(Z;U)

in which a is a constant. Q1 v Q2, since the following is a containment mapping from Q2

to Q1:

X ! X; Y ! Y;W ! Y; Z ! Z; U ! a

In addition, Q2 6v Q1, since there is no containment mapping from Q1 to Q2. In particular,

we cannot map variable Y to Y and W at the same time.

Besides conjunctive queries, in this thesis we also study unions of conjunctive queries,

conjunctive queries with arithmetic comparisons, and datalog queries.

1We also use ANS(Q;D) to denote the answers to a general query Q on a database D.

CHAPTER 2. PRELIMINARIES 13

2.1.2 Datalog Queries

A datalog query is a Horn-clause program without function symbols. A datalog query on a

database D is composed of a set of rules, and each rule has the form:

h(�X) :- g1(�X1); : : : ; gn(�Xn)

Each gi in the body is a predicate on a relation. A predicate whose relation is stored

in the database D is called an extensional database (EDB) relation, while one de�ned by

the rules is called an intensional database (IDB) relation. A particular IDB predicate, ans,

is designated as a goal predicate, and the answers to the query are all facts about the goal

predicate that can be deduced from the EDB relations.

For instance, suppose we have a database with one relation flight. A tuple flight(F; T)

means that there is a nonstop ight from airport F to airport T . The following is a datalog

query:

r1: reachable(X; Y) :- flight(X; Y)

r2: reachable(X; Y) :- flight(X;Z); reachable(Z;Y)

The query has two rules, r1 and r2. It has an EDB predicate flight, and an IDB

predicate reachable. Each tuple hx0; y0i in reachable means that airport y0 is reachable

from airport x0, possibly via several intermediate ights. As shown by the query above, a

datalog query can be recursive. A conjunctive query can be viewed as a single-rule datalog

query.

2.2 Describing Relation Restrictions

We consider relation capabilities described as bf adornment patterns that distinguish bound

(b) and free (f) argument positions [Ull89]. We use binding patterns to describe limited access

patterns of relations. Each relation is associated with a set of bf binding patterns. Each

binding pattern represents a form of possible queries that are acceptable by the relation. An

attribute adorned b requires that a query to this relation using this binding pattern must

provide a constant for this attribute. An attribute adorned f does not require a constant. For

instance, a relation R(A;B;C) with the binding patterns fRbff(A;B;C); Rffb(A;B;C)g

requires that every query to the relation must either supply a value for the �rst argument,

or supply a value for the third argument.

CHAPTER 2. PRELIMINARIES 14

Note that if an attribute is adorned f in a binding pattern, it may still be bound to a

value in a query. Consequently some binding patterns are more general than others, in the

sense that every query that is acceptable by one pattern is also acceptable by another. For

example, binding pattern b� is more general than bbf. A source query on a relation must

satisfy one of the binding patterns supported by the source. Satisfying a pattern means

that the query should provide values for a superset of the attributes that are required to be

bound.

2.3 Supplementary Relations

Given a sequence of n subgoals G1; G2; : : : ; Gn in a conjunctive query, we consider the

corresponding sequence of n supplementary relations S1; : : : ; Sn [BR87].2 The arguments

of each supplementary relation Gj correspond to those variables that appear in the �rst j

subgoals, and they are relevant after these j subgoals have been solved. A variable is relevant

if it appears either in the head or in the (j + 1)st or a subsequent subgoal. S1 includes

the tuples that satisfy the �rst subgoal G1. For j = 2; : : : ; n, relation Sj is computed by

taking Gj�1 ./ Gj , then dropping the irrelevant arguments. The answer to the query is the

supplementary relation Sn.

For instance, suppose we have three relations, r(A1; A2; A3), s(B1; B2), and t(C1; C2).

Consider the following query:

ans(X;W) :- r(1; X; Y); s(Y; Z); t(Z;W)

For the sequence of the subgoals as written in the query, the supplementary relations are:

S1(X; Y) :- �A2;A3
(�A1=1r(A1; A2; A3))

S2(X;Z) :- �X;Z(S1(X; Y) ./ s(Y; Z))

S3(X;W) :- �X;W (S2(X;Z) ./ t(Z;W))

For example, S2 does not include variable Y , since Y is not used in the later subgoal t(Z;W)

or the head. As we will see in Section 3.2, when relations have binding restrictions, there

could be di�erent ways to compute supplementary relations.

2Here we do not consider the supplementary relation S0 as de�ned in [BR87].

CHAPTER 2. PRELIMINARIES 15

2.4 Open-World Assumption and Closed-World Assumption

Given a set of relations, we can use views to de�ne more relations. For instance, assume we

have two relations r(Star;Movie) and s(Movie; Studio). The following view:

v(Star;Movie; Studio) :- r(Star;Movie); s(Movie; Studio)

de�nes the relation v that includes all the tuples in the natural join of the two relations.

Using views we can hide some data from some users, make certain queries easier or more

natural to express, and write queries modularly.

We often use V = fV1; : : : ; Vng to denote a set of views. Given a view set V on predicates

p1; : : : ; pm and an instance I of V , there are two assumptions about the database D of

predicates p1; : : : ; pm. Under the closed-world assumption (\CWA" for short), instance I

stores all the tuples that satisfy the view de�nitions in V , i.e., I = ANS(V; D). However,

under the open-world assumption (\OWA" for short), instance I might only store some of

the tuples that satisfy the view de�nitions V , i.e., I � ANS(V; D). The following example

illustrates the di�erence between the two assumptions.

EXAMPLE 2.4.1 Consider the following two views:

v1(M;D) :- car(M;D)

v2(M;D) :- car(M;D)

The two views have the same de�nition. As illustrated in Figure 2.1(a), under CWA, we

are sure that v1 and v2 both have all the tuples in the car relation. Thus these two views

must have the same set of tuples. This assumption is true in many cases, e.g., these views

and the car table exist in the same database.

Under OWA, however, car is a global predicate used to formulate the two views. Each

of the two views only has some car tuples, so it is possible for the two views to have di�erent

sets of tuples, as shown in Figure 2.1(b). This case could happen when these two views are

from two di�erent Web sources that have car information, thus they could have di�erent

tuples. 2

As we will see later in the thesis, under di�erent assumptions about views, we might

have di�erent solutions to the same problem.

CHAPTER 2. PRELIMINARIES 16

(a) CWA

V1 = V2 = V1 V2

All car tuples.

(b) OWA

All car tuples.

Figure 2.1: Closed-world assumption (CWA) and open-world assumption (OWA).

2.5 Answering Queries Using Views

In many applications, we often have a set of views, and we want to answer a user query

using the results of these views. This problem is called \answering queries using views"

[LMSS95].

EXAMPLE 2.5.1 Suppose we have two relations car(Make;Dealer) and loc(Dealer; City)

that store information about cars, their dealers, and located cities. Assume we have a view:

V : v(M;D;C) :- car(M;D); loc(D;C)

which is a natural join of the two relations. For a following query

Q : q(D;C) :- car(toyota;D); loc(D;C)

that asks for the Toyota dealers and their cities, we can use the following rewriting

P : q(D;C) :- v(toyota;D; C)

to answer the query. 2

Now let us de�ne some concepts about answering queries using views.

De�nition 2.5.1 (expansion of a query using views) The expansion of a query P on

a set of views V , denoted by P exp, is obtained from P by replacing all the views in P with

their corresponding base relations. Existentially quanti�ed variables in a view are replaced

by fresh variables in P exp. 2

CHAPTER 2. PRELIMINARIES 17

De�nition 2.5.2 (rewritings and equivalent rewritings) Given a query Q and a view

set V , a query P is a rewriting of query Q using V if P uses only the views in V , and

P exp v Q. P is an equivalent rewriting of Q using V if P exp and Q are equivalent, i.e.,

P exp � Q. We say a query Q is answerable by V if there exists an equivalent rewriting of

Q using V . 2

In Example 2.5.1, P is an equivalent rewriting of the query Q using view V , because

the expansion of P :

P exp : q(D;C) :- car(toyota;D); loc(D;C)

is equivalent to Q, i.e., P exp � Q.

Several algorithms have been developed for answering queries using views, such as the

bucket algorithm [LRO96, GM99a], the inverse-rule algorithm [Qia96, DG97], and the al-

gorithms in [Mit01, PL00]. Most of these algorithms take the open-world assumption.

[LMSS95, AD98] study the complexity of answering queries using views. In particular, it

has been shown that the problem of rewriting a query using views is NP-hard. In Chapter 7

we will give an e�cient algorithm for �nding equivalent rewritings of a query using views

under the closed-world assumption.

De�nition 2.5.3 (maximally-contained rewritings) P is amaximally-contained rewrit-

ing of a query Q using a set of views V if the following hold: (1) P is a union of conjunctive

queries using only the views in V ; (2) For any database, the answer computed by P is a

subset of the answer to Q; and (3) No other unions of conjunctive queries that satisfy the

two conditions above can properly contain P . 2

Intuitively, a maximally-contained rewriting (\MCR" for short) is a plan that uses only

the views in V and computes the maximal answer to the query Q. If Q has two MCR's, by

de�nition, they must be equivalent. Clearly if there is an equivalent rewriting P of Q using

V , then P is also an MCR of Q.

EXAMPLE 2.5.2 Given two relations car(Make;Dealer) and loc(Dealer; City), con-

sider query Q and view V :

Q: q(M;D;C) :- car(M;D); loc(D;C)

V : v(M;D) :- car(M;D); loc(D; sf)

CHAPTER 2. PRELIMINARIES 18

The following rewriting

q(M;D; sf) :- v(M;D)

is an MCR of the query Q using the view V . That is, we can give the user the information

about car dealers in San Francisco (sf) as an answer to the query, but not anything more.

2

2.6 Technical Problems

After introducing the notation, now we summarize the technical problems discussed in the

following chapters.

1. Chapter 3 discusses how to optimize conjunctive queries on relations that have binding

patterns. We consider di�erent cost models, and propose e�cient algorithms for

�nding good plans.

2. In Chapter 4 we study how to compute a maximal answer to a conjunctive query on

relations with binding patterns. The main idea of the approach is to borrow bindings

from other relations not mentioned in a query. We solve optimization problems to

minimize the number of relation accesses.

3. In Chapter 5, we study the following problem: given a query on relations with binding

patterns, is there a plan that computes the answers to the query by accessing the

relations using legal patterns? We study this problem for several classes of queries,

including conjunctive queries, conjunctive queries with arithmetic comparisons, unions

of conjunctive queries, and datalog queries. We give algorithms and decidability

results for these classes.

4. Chapter 6 discusses how to use mediator caching to improve query performance. In

particular, we study what query results should be cached at the mediator in order to

answer as many future queries as possible. We take the closed-world assumption in

this chapter.

5. Chapter 7 studies the following problem: how to use views to generate e�cient plans

for a conjunctive query? We take the closed-world assumption in this chapter, while

previous algorithms on this problem take the open-world assumption.

CHAPTER 2. PRELIMINARIES 19

Chapter 3 to Chapter 6 focus on query-optimization problems in systems that take the

source-centric approach to information integration. Chapter 7 studies problems in systems

that take the query-centric approach.

Chapter 3

Optimizing Queries with Source

Restrictions

In the query-centric approach to information integration, mediators de�ne integrated views

based on the data provided by sources. A user query posed on synthesized views at the

mediator is translated into source queries and postprocessing operations on the source query

results. Often these translated queries need to involve many di�erent source relations. In

addition, these sources can have limited capabilities to answer queries.

In this chapter we study the problem of �nding feasible and e�cient query plans for

conjunctive queries when sources have binding patterns. We use a simple cost model that

focuses on the major costs in mediation systems, those involved with sending queries to

sources and getting answers back. Under this metric, we develop two algorithms for source

query sequencing { one based on a simple greedy strategy and another based on a partition-

ing scheme. The �rst algorithm produces optimal plans in many scenarios, and we show

a linear bound on its worst-case performance when it misses optimal plans. The second

algorithm generates optimal plans in more scenarios, while having no bound on the margin

by which it misses the optimal plans. We also report on the results of the experiments that

study the performance of the two algorithms.1

1The material in this chapter was developed jointly with Ramana Yerneni.

20

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 21

Chapter Organization

Section 3.1 gives an example to motivate the problem. In Section 3.2, we introduce the cost

model and our notation. We present an e�cient algorithm named CHAIN in Section 3.3,

and prove its n-competitiveness (i.e., bounded optimality). In Section 3.4, we describe our

second algorithm, called PARTITION, and discuss its ability to �nd optimal feasible plans.

The results of our performance analysis of the two algorithms are reported in Section 3.5.

Finally, we discuss in Section 3.6 how the main results under this cost model can be extended

to other cost models. In Section 3.7, we conclude the chapter and discuss related work.

3.1 Introduction

The following example shows that when sources have limited access patterns, the mediator

should consider these restrictions to generate feasible and e�cient plans.

EXAMPLE 3.1.1 Assume the three movie sources in Example 1.2.1 have the following

limited access patterns:

Source Relation Bind Patterns

r(Star, Title) bf, fb

s(Title, Studio) bf

t(Title, Year) bf

For instance, the binding patterns of relation r say that queries sent to the relation must

either provide a star or a movie title. The query Q on the three relations can be rewritten

to the following conjunctive form:

Q : q(T) :- r(reeves; T); s(T; warner); t(T; 1999)

The mediator needs to join the results of the three source queries on the Title attribute

to answer the query. There are many physical plans for this query with various join orders

and join methods, while some of these plans are feasible and others are not. For example,

Figure 3.1 shows three possible physical plans:

� Plan P1: Send query r(reeves, T) to r; send query s(T, warner) to s; and send

query t(T, 1999) to t. Join the movie results of the three source queries on the

Title attribute, and return the titles to the user.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 22

� Plan P2: First get the titles of movies starred by Reeves from source r. For each

returned title ti, send a query to s to get its studio and check if it is \warner." If so,

send a query to t to get the year of movie ti. If the year is 1999, return ti to the user.

� Plan P3: This plan is similar to P2, except that we reverse the s and t queries. That

is, after getting Reeves movie titles from relation r, for each title we get its year from

t. If the year is 1999, we send a query to s to get its studio. If the studio is \warner,"

we return this title to the user.

Warner in 1999
Reeves movies byReeves movies

by Warner

Reeves movies
in 1999

Warner in 1999
Reeves movies by

(a) Plan P1

Star='Reeves' Studio='Warner' Year='1999'

(b) Plan P2

Star='Reeves'

Reeves movies

(c) Plan P3

Star='Reeves'

Reeves movies

Title

s(Title, Studio) t(Star, Year)r(Star, Title)

r(Star, Title) s(Title, Studio) t(Star, Year) r(Star, Title) t(Star, Year)s(Title, Studio)

Figure 3.1: Three physical plans to answer a query.

Given the binding patterns of the relations, plan P1 is not feasible, because the queries

to sources s and t do not provide a necessary binding for the Title attribute. The other

two plans are feasible, since all their queries to the sources provide the necessary bindings.

If the studio value \warner" is more selective than the year value \1999," then plan P2 may

need fewer source queries than P3. If we want to minimize the execution time, we could

even send queries to relations s and t in parallel after getting Reeves movies from relation

r. 2

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 23

In general, after a user poses a query over integrated views provided by the mediator,

the query is translated into queries over the source views to arrive at logical query plans.

The logical plans deal only with the content descriptions of the sources. That is, they tell

the mediator which sources provide the relevant data and what postprocessing operations

need to be performed on the data. The logical plans are later translated into physical plans

that specify details such as the order in which the sources are contacted and the exact

queries to be sent. Our goal in this chapter is to develop algorithms that will translate a

mediator logical plan into an e�cient and feasible (does not exceed the source capabilities)

physical plan. As illustrated by Example 3.1.1, we need to solve the following problems:

1. Given a logical plan and the description of the source capabilities, �nd feasible physical

plans for the logical plan. The central problem is to determine the evaluation order

for the subgoals in the logical plan, so that attributes are appropriately bound.

2. Among all the feasible physical plans, pick a most e�cient one.

In this chapter, we focus on logical plans that are conjunctive queries. We �rst consider

a simple cost model that focuses on the major costs in mediator query processing: the

number of source accesses. Under this cost model, we develop two algorithms that can

�nd good feasible plans rapidly. The �rst algorithm, called \CHAIN," runs in O(n2) time,

where n is the number of subgoals in the logical plan. We also provide a linear bound on the

margin by which this algorithm can miss the optimal plans. Our second algorithm, called

\PARTITION," can guarantee optimal plans in more scenarios than CHAIN, although there

is no bounded optimality for its plans. Both our algorithms are guaranteed to �nd a feasible

plan, if the query has a feasible plan. Furthermore, we show through experiments that our

algorithms have excellent running-time pro�les in a variety of scenarios, and very often �nd

optimal or near-optimal plans. We also discuss how to extend the results under this simple

cost model to more general cost models, e.g., those that consider di�erent costs of di�erent

sources and the size of data transferred on the network.

3.2 Preliminaries

In this section we formalize the problem of optimizing conjunctive queries when sources have

limited access patterns. We also discuss the simple cost model used in our optimization

algorithms.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 24

User queries to a mediator are conjunctive queries on integrated views provided by the

mediator. Each integrated view is de�ned as a conjunctive query over the source relations.

The user query is translated into a logical plan, which is a conjunctive query on the source

relations. For instance, query Q0 in Example 1.2.1 over the Movie view was translated into

the conjunctive query Q over the source relations.

Given a sequence of n subgoals G1; G2; : : : ; Gn in a conjunctive query Q, we consider

the corresponding sequence of n supplementary relations S1; : : : ; Sn. Because the relations

have restrictions, there are two ways to compute Sj by evaluating Sj�1 ./ Gj :

1. Use the bound arguments in Gj to send a query to the source of Gj by binding a

subset of its attributes; perform the join of the result of this source query with Sj�1

at the mediator, and project out irrelevant arguments to obtain Sj .

2. For j � 2, use the tuples in Sj�1 to send a set of queries to the source relation of

Gj by binding a subset of its attributes; take the union of the results of these source

queries; perform the join of this union relation with Sj�1 and project out irrelevant

arguments to obtain Sj .

We call the �rst kind of source query a block query and the second kind a parameterized

query. Obviously, answering Gj through the �rst method takes a single source query,

while the second method can take many source queries. The main reason why we need to

consider parameterized queries is that it may not be possible to answer some subgoals in

the logical plan through block queries. That is, the access templates for the corresponding

source relations may require bindings of variables that are not available in the logical plan.

In order to answer these subgoals, we must use parameterized queries by executing other

subgoals �rst, and collecting bindings for the required parameters of Gj .

3.2.1 The Plan Space

A plan for a query (logical plan) is feasible if all its source queries are answerable by the

sources. We consider the space of linear plans, each of which follows a feasible sequence of

all the subgoals in the query.

De�nition 3.2.1 (feasible sequence of subgoals) Some subgoals g1(�X1); : : : ; gk(�Xk) in

a query form a feasible sequence if for each subgoal gi(�Xi) in the sequence, given the variables

that are bound by the previous subgoals, subgoal gi(�Xi) is answerable; that is, there is a

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 25

binding pattern pij of the relation gi, such that for each argument X in subgoal gi(�Xi) that

is adorned as b in pij , either X is a constant, or X appears in a previous subgoal. A query

is feasible if it has a feasible sequence of all its subgoals. 2

The feasibility of a query can be checked by a greedy algorithm, called Inationary.

That is, initialize a set �a of answerable subgoals to be empty. With the variables bound

by the subgoals in �a, whenever a subgoal becomes answerable by its relation, add this

subgoal to �a. Iterate by adding more subgoals to �a. The query is feasible if and only if

all the subgoals in the query become answerable.

For a feasible sequence of all the subgoals, we decide on the choice of queries for each

subgoal (among the set of block queries and parameterized queries available for the subgoal).

Note that the number of feasible physical plans for a given logical plan can be exponential

in the number of subgoals in the logical plan.

The space of plans we consider is similar to the space of left-deep-tree executions of a

join query [SAC+79]. We assume that a bushy-tree execution only provides bindings from

the left. As stated in the following lemma, we do not miss feasible plans by not considering

bushy-tree executions.

Lemma 3.2.1 We do not miss feasible plans by considering only left-deep-tree executions

of the subgoals. 2

Proof: Given any feasible execution of the logical plan based on a bushy tree of sub-

goals, we construct another feasible execution based on a left-deep tree of subgoals. The

constructed left-deep tree will have the same leaf order as the given bushy tree.

Consider a feasible plan P based on the bushy tree of subgoals. We will derive a feasible

plan P 0 from the left-deep tree constructed above. If a subgoal is answered by a block

query in P , it is also answered by a block query in P 0. If it is answered by parameterized

queries in P , it can also be answered by parameterized queries in P 0, because the left-deep-

tree execution keeps the cumulative bindings of all the variables of all the subgoals to the

left of the subgoal under consideration. This observation is similar to the bound-is-easier

assumption in [UV88]. Thus, we conclude that if a bushy tree of subgoals has a feasible

plan, we are guaranteed to �nd a feasible plan by considering only left-deep-tree executions.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 26

3.2.2 The Formal Cost Model

In many applications, the cost of query processing in mediation systems is dominated by the

cost of interacting with the sources. Hence, we focus on the costs associated with issuing

queries to sources. Our results are �rst stated using a very simple cost model where we

count the total number of source queries in a plan. Our cost model is de�ned as follows:

1. The cost of a subgoal in a feasible plan is the number of source queries needed to

answer the subgoal.

2. The cost of a feasible plan is the sum of the costs of all the subgoals in the plan.

We illustrate our cost model by the following example. Consider plan P1 in Example

3.1.1. Since we need to send only one query to r to answer the subgoal r(reeves, Title),

the cost of this subgoal is 1. Suppose there are 5 movies in which reeves starred. For

each movie title t0, we send relation s a parameterized query s(t0, Year) to get its year

information. Thus, the cost of the second subgoal is 5. If 2 of these 5 movies were produced

by Warner Brothers, we need to send 2 parameterized queries to relation t. Thus the cost

of the third subgoal is 2, and the total cost of the plan Cost(P1) = 1 + 5 + 2 = 8.

In this chapter we �rst develop the main results under this simple cost model. In

Section 3.6, we will show how to extend these results to more complex cost models. In spite

of the simplicity of the cost model, the optimization problem we are dealing with is quite

hard.

Theorem 3.2.1 The problem of �nding a feasible plan with the minimum number of source

queries is NP-hard. 2

Proof: We reduce the vertex-cover problem [GJ79] to our problem. The vertex-cover

problem is to �nd a vertex cover of minimum size in a given graph. Since this problem is

NP-complete, our problem is NP-hard.

Given a graph G with n vertices V1; : : : ; Vn, we construct a database and a logical plan

as follows. Corresponding to each vertex Vi we de�ne a relation Ri. For all 1 � i � j � n,

if Vi and Vj are connected by an edge in G, then Ri and Rj include the attribute Aij . In

addition, we de�ne a special attribute X and two special relations R0 and Rn+1. Thus

we have a total of m + 1 attributes, where m is the number of edges in G. The special

attribute X is in the schema of all the relations. The special relation Rn+1 also has all

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 27

the Aij attributes. That is, R0 has only one attribute, and Rn+1 has m + 1 attributes.

Each relation has a tuple with a value of 1 for each attribute. In addition, all relations

except Rn+1 include a second tuple with a value of 2 for all their attributes. Each relation

has a single access template: R0 has no binding requirements, R1 through Rn require the

attribute X to be bound, and Rn+1 requires all of the attributes to be bound. Finally, the

logical plan consists of all the n+ 2 relations, with no variables bound.

For instance, Figure 3.2(a) shows a graph, and Figure 3.2(b) shows the corresponding

query, relation restrictions, and the database.

R
bff
1

1 1 1

2 2 2

V1

V2 V4

V3

ans(X;A12; A23; A13; A24) : �R0(X); R1(X;A12; A13); R2(X;A12; A23; A24);

R3(X;A13; A23); R4(X;A24); R5(X;A12; A13; A23; A24)

R
bfff
2

1 1 1 1

2 2 2 2

1 1 1

2 2 2

R
bff
3

R
bf
4

1 1

2 2

Rbbbbb
5

1

Rb
0

Restrictions and database:

(a) (b)

2

1 1 1 1 1

Figure 3.2: Constructing a query and database from a graph.

It is obvious that the above construction of the database and the logical plan takes time

that is polynomial in the size of G. Now, we show that G has a vertex cover of size k if and

only if the logical plan has a feasible physical plan that requires (n+ k+ 3) source queries.

Suppose G has a vertex cover of size k. Without loss of generality, let it be fV1; : : : ; Vkg.

Consider the physical plan P that �rst answers the subgoal R0 with a block query, then

answers R1; : : : ; Rk; Rn+1; Rk+1; : : : ; Rn using parameterized queries. P is a feasible plan

because R0 has no binding requirements, R1; : : : ; Rk need X to be bound and X is available

from R0, and R1; : : : ; Rk will bind all the variables (since fV1; : : : ; Vkg is a vertex cover).

Subgoal R0 in P is answered by a single source query, R1; : : : ; Rk and Rn+1 are answered

by two source queries each, and Rk+1; : : : ; Rn are answered by one source query each. Thus

the number of source queries for this plan is n+ k+ 3. We see that if G has a vertex cover

of size k, we have a feasible plan with (n + k + 3) source queries.

Suppose there is a feasible plan P 0 with f source queries. The �rst subgoal in P 0 must

be R0, and it must be answered by a block query (because the logical plan does not bind any

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 28

variables). All the other subgoals must be answered by parameterized queries. Consider

the set of subgoals in P 0 that are answered before Rn+1 is answered. Let j be the size of

this set of subgoals (excluding R0). Since Rn+1 needs all attributes to be bound, the union

of the schemas of these j subgoals must be the entire attribute set. That is, the vertices

corresponding to these j subgoals form a vertex cover in G. In P 0, each of these j subgoals

takes two source queries, along with Rn+1, while the rest of (n� j) subgoals in R1; : : : ; Rn

take one source query each. That is, f = 1+ 2 � j + 2+ (n� j). Thus we can �nd a vertex

cover for G of size f � n� 3.

Hence, G has a vertex cover of size k if and only if there is a feasible plan with (n+k+3)

source queries. That is, we have reduced the problem of �nding the minimum vertex cover

in a graph to our problem of �nding a feasible plan with minimum source queries.

Recall that the space of plans we consider does not include bushy-tree executions of the

subgoals. It turns out that under this cost model, we can safely restrict our attention to

plans based on left-deep-tree executions of the subgoals without missing an optimal plan.

Theorem 3.2.2 We do not miss an optimal plan by not considering the executions of the

logical plan based on bushy trees of subgoals. 2

Proof: The proof is similar to that of Lemma 3.2.1. Once again, given any physical plan

based on a bushy tree of subgoals, we can construct an physical plan based on a left-deep

tree of subgoals (with the same leaf order) that is at least as good.

If a subgoal is answered by a block query in the bushy-tree plan, it will also be answered

by a block query in the left-deep-tree plan. This subgoal will have the same cost (of

1) in both plans. If a subgoal is answered by parameterized queries in the bushy-tree

plan, it is also answered by parameterized queries in the left-deep-tree plan. Note that by

using cumulative supplementary relations in the left-deep-tree plan, we can only reduce the

number of distinct values for the parameters (to the queries) of the subgoal. Thus, the cost

of the subgoal in the left-deep-tree plan can be at most equal to that in the bushy-tree plan.

The plan based on the constructed left-deep tree is at least as cheap as the plan based on

the bushy tree. Hence, by considering only left-deep trees of subgoals, we do not miss an

optimal plan.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 29

3.2.3 Subgoal Sequences and Physical Plans

We extend the notion of cost and feasibility of physical plans to sequences of subgoals in

the logical plan. For each sequence of subgoals, we associate a set of physical plans with it

by making the choices of source queries (block queries and parameterized queries) for the

subgoals. The cost of a given sequence of subgoals is the cost of the cheapest physical plan

associated with the sequence. The cost of a subgoal in a sequence is the cost of the subgoal

in the best physical plan for the sequence. Sequences of subgoals satisfy some interesting

properties stated by the following lemmas.

Lemma 3.2.2 Given a sequence of subgoals, one can ascertain its feasibility in O(n) time,

where n is the number of subgoals. 2

Lemma 3.2.3 Given a sequence of subgoals, one can �nd its cost in O(n) time, where n

is the number of subgoals.2 2

Lemma 3.2.4 Given a sequence of subgoals, one can �nd a best physical plan for the se-

quence in O(n) time, where n is the number of subgoals. 2

Lemma 3.2.5 Postponing the processing of an answerable subgoal in a sequence can not

make it unanswerable. 2

Lemma 3.2.6 Postponing the processing of an answerable subgoal in a sequence can not

increase its cost. 2

3.2.4 Problem Statement

The problem we are addressing in this chapter is how to �nd e�cient, feasible physical

plans for given logical plans. As noted above, given a sequence of subgoals, one can easily

compute a best physical plan for that sequence. Because it is easy to go from a sequence of

subgoals to its best plan, we sometimes refer to our problem as �nding the best sequence

of subgoals. In particular, the algorithms of Section 3.3 and Section 3.4 actually �nd the

best sequence of subgoals and then translate it into a best physical plan.

2We assume that �nding the cost of a subgoal following a partial sequence takes O(1) time.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 30

3.3 The CHAIN Algorithm

In this section, we present an algorithm, called \CHAIN," for �nding an optimal feasible

query plan. This algorithm uses a greedy strategy to build a single sequence of subgoals

that is feasible and e�cient. We �rst describe the algorithm formally, then analyze its

complexity and its ability to generate e�cient, feasible plans.

As shown in Figure 3.3, CHAIN �nds a physical plan as follows. Initially it �nds all

subgoals that are answerable with the initial bindings in the logical plan, and picks the one

with the least cost. It computes the additional variables that are now bound due to the

chosen subgoal. It repeats the process of �nding answerable subgoals, picking the cheapest

among them, and updating the set of bound variables, until no more subgoals are left or

some subgoals are left, but none of them is answerable. If there are subgoals left over,

CHAIN declares that there is no feasible plan. Otherwise it outputs its constructed plan.

3.3.1 Feasible-Plan Generation

Lemma 3.3.1 If a logical plan has feasible physical plans, CHAIN will not fail to generate

a feasible plan. 2

Proof: If CHAIN fails to generate a feasible plan, there are some left-over subgoals in

the logical plan for which the initial bindings along with the variables of the other subgoals

are not su�cient. This case can only be possible if there is no feasible physical plan for

the logical plan. Otherwise, consider the �rst subgoal in a feasible physical plan that is

one of the left-over subgoals in CHAIN. Since all the subgoals preceding this subgoal in

the feasible plan are accumulated in the sequence built by CHAIN (before it gave up), this

subgoal will also be deemed answerable by CHAIN. Thus it cannot be one of the left-over

subgoals. Hence, it is not possible for the feasible physical plan to exist.

Lemma 3.3.2 CHAIN runs in O(n2) time where n is the number of subgoals in the logical

plan. 2

Proof: There can be at most n iterations in CHAIN, and in each iteration it adds a

subgoal to the constructed plan. Each iteration takes O(n) time as it examines at most n

subgoals to �nd the next cheapest answerable subgoal. Thus, CHAIN takes a total of O(n2)

time.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 31

The CHAIN Algorithm
Input: A logical plan (conjunctive query) on relations with binding patterns.
Output: A feasible physical plan.

� Initialize:
S fC1; C2; : : : ; Cng /*set of subgoals in the logical plan*/

B set of bound arguments in the logical plan

L � /* start with an empty sequence */

� Construct the sequence of subgoals:
while (S 6= �) do
M infinity;

N null;

for each subgoal Ci in S do /* �nd the cheapest subgoal */
if (Ci is answerable with B) then
c CostL(Ci); /* get the cost of this subgoal in sequence L */

if (c < M) then
M c;

N Ci;

if (N = null) /* If no next answerable subgoal, declare no feasible plan*/
return(�);

L L+N ; /* Add next subgoal to plan */

S S � fNg;

B B [f arguments of Ng;

� Return the feasible physical plan:
construct Plan(L) from sequence L;

return Plan(L);

Figure 3.3: Algorithm CHAIN.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 32

3.3.2 Optimality of Plans Generated by CHAIN

Lemma 3.3.3 If the result of the query is nonempty, and the number of subgoals in the

logical plan is less than 3, CHAIN is guaranteed to �nd the optimal plan. 2

Proof: If there is only one subgoal, CHAIN will obviously �nd the optimal plan consisting

of the only subgoal. If there are two subgoals, we have two cases: (i) both can be executed

using block queries, (ii) only one of them can be executed using a block query, and the other

one needs parameterized queries. In the �rst case, the cost of the plan chosen by CHAIN

is 2, which is the cost of the optimal plan. In the second case, there is only one feasible

sequence of subgoals. Thus CHAIN will end up with the optimal plan.

Lemma 3.3.4 CHAIN can miss the optimal plan if the number of subgoals in the logical

plan is greater than 2. 2

rbff (A;B;D) sbf (B;E) tbf (D;F)

(1, 1, 1) (1, 1) (4, 1)
(1, 2, 2) (2, 1) (5, 1)
(1, 3, 3) (3, 1) (6, 1)
(1, 1, 4) (4, 1) (7, 1)

Table 3.1: Proof of Lemma 3.3.4: three data sources.

Proof: We construct a logical plan with three subgoals and a database instance that

result in CHAIN generating a suboptimal plan. Consider a logical plan

ans(F) :- r(1; B;D); s(B;E); t(D;F)

and the database instance shown in Table 3.1. For this logical plan and database, CHAIN

will generate the plan: r ! s ! t, with a total cost of 1 + 3 + 4 = 8. We observe that a

cheaper feasible plan is: r! t! s, with a total cost of 1 + 4 + 1 = 6.

It is not di�cult to �nd situations in which CHAIN misses the optimal plans. However,

surprisingly, there is a linear upper bound on how far its plan can be from the optimal

plans. In fact, we prove a stronger result in Lemma 3.3.5.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 33

Lemma 3.3.5 Suppose P c is the plan generated by CHAIN for a logical plan with n sub-

goals; P o is an optimal plan, and Emax is the cost of the most expensive subgoal in P o.

Then,

Cost(P c) � n� Emax

2

P
c
:

P
o
: � � � � � �

� � �

� � �

C1; � � � ; Cm1

Cm1
Cm2

Cm1+1; � � � ; Cm2
� � � ; Cmk=n

Cmk=n

Figure 3.4: Proof for Lemma 3.3.5.

Proof: Suppose the sequence of subgoals in P c is C1; C2; : : : ; Cn. As shown in Figure 3.4,

let the �rst subgoal in P o be Cm1
. Let G1 be the pre�x of P c, such that G1 = C1; : : : ; Cm1

.

When CHAIN chooses C1, the subgoal Cm1
is also answerable. Thus the cost of C1 in

P c is less than or equal to the cost of Cm1
in P o. After processing C1 in P c, the subgoal

Cm1
remains answerable (see Lemma 3.2.5) and its cost cannot increase (see Lemma 3.2.6).

Thus if CHAIN has chosen another subgoal C2 instead of Cm1
, once again we can conclude

that the cost of C2 in P c is not greater than the cost of Cm1
in P o. Finally, at the end of

G1, when Cm1
is processed in P c, we note that the cost of Cm1

in P c is no more than the

cost of Cm1
in P o. Therefore, the cost of each subgoal of G1 is less than or equal to the

cost of Cm1
in P o.

We call Cm1
the �rst pivot in P o. We de�ne the next pivot Cm2

in P o as follows. Cm2
is

the �rst subgoal after Cm1
in P o such that Cm2

is not in G1. Now, we can de�ne the next

subsequence G2 of P
c such that the last subgoal of G2 is Cm2

. The cost of each subgoal in

G2 is less than or equal to the cost of Cm2
.

We continue �nding the rest of the pivots Cm3
; : : : ; Cmk

in P o and the corresponding

subsequences G3; : : : ; Gk in P c. Based on the above argument, we have:

8Ci 2 Gj : (cost of Ci in P c) � (cost of Cmj
in P o)

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 34

Therefore

Cost(P c) =
kX

j=1

X
Ci2Gj

(cost of Ci in P c) �
kX

j=1

jGj j � (cost of Cmj
in P o) � n� Emax

where Emax is the cost of the most expensive subgoal in P o.

From Lemma 3.3.5, by observing thatEmax � cost of P o, we have the following theorem.

Theorem 3.3.1 CHAIN is n-competitive. That is, the plan generated by CHAIN can be

at most n times as expensive as the optimal plans, where n is the number of subgoals. 2

The cost of the plan generated by CHAIN can be arbitrarily close to the cost of the

optimal plan multiplied by the number of subgoals. In this sense, the linear bound on

optimality for CHAIN is tight. However, in many situations CHAIN yields optimal plans

or plans whose cost is very close to that of the optimal plan. In Section 3.5, we study the

quality of plans generated by CHAIN in a wide range of scenarios.

3.4 The PARTITION Algorithm

We present another algorithm called PARTITION for �nding e�cient, feasible plans. PAR-

TITION takes a very di�erent approach to the plan-generation problem. It is guaranteed to

generate optimal plans in more scenarios than CHAIN, but has a worse running time. We

�rst formally present the PARTITION algorithm and discuss its ability to generate plans.

We then describe two variations of PARTITION that speci�cally target the generation of

optimal plans and the e�ciency of the plan-generation process, respectively.

3.4.1 PARTITION

PARTITION organizes the subgoals into clusters based on the capabilities of the sources.

Then it performs local optimization within each cluster, and builds the feasible plan by

merging the subplans from all the clusters.

As shown in Figure 3.5, PARTITION has two phases. The �rst phase organizes the set

of subgoals in the logical plan into a list of clusters. The property satis�ed by the clusters is

as follows. All the subgoals in the �rst cluster are answerable by block queries; all the sub-

goals in each subsequent cluster are answerable by parameterized queries that use attribute

bindings from the subgoals of the earlier clusters. In the second phase, PARTITION �nds

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 35

The PARTITION Algorithm
Input: A logical plan (conjunctive query) on relations with binding patterns.
Output: A feasible physical plan.

� Initialize:
S fC1; C2; : : : ; Cng /* set of subgoals in the logical plan */

B set of bound arguments in the logical plan

	 � /* start with the empty list of clusters */

� Phase 1: Construct the list of clusters.
while (S 6= �) do
� null;

for each subgoal Ci in S do
if (Ci is answerable with B) then
� � [fCig;

S S � fCig

if (� = null) then /* If no next cluster, declare no feasible plan */
return(�);

	 	 + �; /* Add new cluster to the list of clusters */

B B [f arguments in subgoals of �g;

� Phase 2: Construct the sequence of subgoals.
L � /* start with an empty sequence */

for each cluster � in 	 do
L0 the best subsequence of subgoals in �;

L L jj L0;

� Return the feasible plan:
return(Plan(L)); /* construct plan from sequence L */

Figure 3.5: Algorithm PARTITION.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 36

the best subplan for each cluster of subgoals. It then combines all these subplans to arrive

at the best feasible plan for the user query.

Let us describe the algorithm in more detail. Let 	 and S denote the list of clusters and

the set of subgoals respectively. Initially, 	 is empty and S contains all the subgoals in the

logical plan. S will become smaller as more subgoals are removed from it. Let � denote the

new cluster that would be generated in each round by adding more feasible subgoals. Let B

denote the cumulative set of bound variables in the process of �nding clusters. Initially, B

contains the set of variables that are bound in the logical plan. Using B, PARTITION �nds

the set of subgoals that are answerable and collects them into �. When all the subgoals

that are answerable at this stage have been added to �, this cluster is added to 	, and the

bound variables of these subgoals are added to B. Given the new B, some new subgoals

will become feasible in the second round, and they are put into the second cluster. This

process is repeated until one of two cases happens:

1. No subgoals are left (S is empty), and we end up with a complete list of clusters.

2. Some subgoals are left in S, and no more new clusters can be formed.

In case 2, PARTITION declares that there is no feasible sequence for this logical plan.

In case 1, PARTITION will perform its second phase to generate the best feasible plan.

For each cluster of subgoals, the algorithm performs local optimization by trying all the

possible permutations of these subgoals. Then it will combine all the local subplans and

create the global plan for the query.

EXAMPLE 3.4.1 Consider a logical plan with four subgoals:

ans(B) :- r(A;B); s(A;D); t(B;E); u(D;B)

No argument in the query has been bound. Suppose we have the following relation restric-

tions:

rff(A;B); sbf(A;D); tbf(B;E); ubf(D;B)

Since each subgoal has a di�erent predicate, we refer to the subgoals by the predicate names.

Let us consider the �rst phase of PARTITION. Initially, only the subgoal r is answerable.3

Therefore, the �rst cluster contains only this subgoal r. After r is answered, variables A and

3For simplicity, we use the corresponding relation name to represent a subgoal.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 37

B are bound. Then subgoals s and t will both become feasible, and they are put into the

second cluster. After s and t are answered, variables D and E are also bound, and subgoal

u becomes feasible. It is the only subgoal in the third cluster. So the clusters generated by

PARTITION are: frg, fs; tg, and fug.

In the second phase, PARTITION considers the two feasible subsequences in �2, and

picks the one with the lower cost, say s ! t. The plan output by PARTITION would be

r! s! t ! u. Essentially, PARTITION considers two possible sequences: r ! s! t! u

and r ! t! s! u. 2

3.4.2 Feasible-Plan Generation

Lemma 3.4.1 If feasible physical plans exist for a given logical plan, PARTITION is guar-

anteed to �nd a feasible plan. 2

Proof: If PARTITION fails to �nd a feasible plan, there must be some subgoals in the

logical plan that are not answerable with respect to the set of variables that are initially

bound or that occur in the other subgoals. If there is a feasible physical plan, it is not

possible to have such unanswerable subgoals in the logical plan. Hence, PARTITION will

not fail to �nd a feasible plan when feasible plans exist.

Lemma 3.4.2 If the number of clusters generated is less than 3, and the result of the query

is not empty, then PARTITION will �nd the optimal plan. 2

Proof: We proceed by a simple case analysis. There are two cases to consider. The �rst

case is when there is only one cluster �1. PARTITION �nds the best sequence among all

the permutations of the subgoals in �1. The second case is when there are two clusters �1

and �2. Let P be an optimal feasible plan. We will show how we can transform P into a

plan in the plan space of PARTITION that is at least as good as P . Let Ci be a subgoal in

�1. There are two possibilities:

1. Ci is answered in P using a block query;

2. Ci is answered in P using parameterized queries.

If Ci is answered by a block query, we make no change to P . Otherwise, we modify P as

follows. As the result of the query is not empty, the cost of subgoal Ci (using parameterized

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 38

queries) in P must be at least 1. Since Ci is in the �rst cluster, it can be answered by using

a block query. So we can modify P by replacing the parameterized queries for Ci with the

block query for Ci. Since the cost of a block query can be at most 1, this modi�cation cannot

increase the cost of the plan. For all subgoals in �1, we repeat the above transformation

until we get a plan P 0, in which all the subgoals in �1 are answered by using block queries.

We apply a second transformation to P 0 with respect to the subgoals in �1. Since all

these subgoals are answered by block queries in P 0, we can move them to the beginning of P 0

to arrive at a new plan P 00. Moving these subgoals ahead of the other subgoals will preserve

the feasibility of the plan (see Lemma 3.2.5). It is also true that this transformation cannot

increase the cost of the plan, because it does not change the cost of these subgoals, and it

cannot increase the cost of the other subgoals in the sequence (see Lemma 3.2.6). Hence,

P 00 cannot be more expensive than P 0.

After the two-step transformation, we get a plan P 00 that is as good as the optimal plan.

Note that P 00 is in the plan space of PARTITION. So the plan generated by PARTITION

cannot be worse than P 00. Thus, the plan found by PARTITION must be as good as the

optimal plan.

Lemma 3.4.3 If the number of subgoals in the logical plan does not exceed 3, and the result

of the query is not empty, then PARTITION will always �nd the optimal plan. 2

Proof: If the number of subgoals in the logical plan does not exceed 3, the number of

clusters generated is at most 3. In Lemma 3.4.2, we proved that if the number of clusters

is 1 or 2, PARTITION �nds an optimal plan. Now, we show that in the case where there

are three clusters with 1 subgoal each, PARTITION will �nd the optimal plan. Let the

clusters generated be �1 = fC1g, �2 = fC2g, �3 = fC3g. Then the only feasible sequence

of subgoals is (C1; C2; C3), which is what PARTITION will output.

It is not true that PARTITION can generate an optimal plan in all cases. One can

construct logical plans with as few as 4 subgoals that lead the algorithm to generate sub-

optimal plans. We also note that PARTITION can miss the optimal plan by a margin that

is unbounded by the query parameters.

Lemma 3.4.4 For any k > 0, there exists a logical plan and a database for which PARTI-

TION generates a plan that is at least k times as expensive as the optimal plan. 2

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 39

Proof: Consider Example 3.4.1. Suppose the tables of the four sources are as shown in

Table 3.2. PARTITION essentially considers two plans: r ! s ! t ! u; r ! t ! s ! u.

In the �rst sequence: cost(r) = 1, cost(s) = 1, cost(t) = 10000, and cost(u) = 1. So the

cost of the �rst plan is 10003. For the second sequence: cost(r) = 1, cost(t) = 10000,

cost(s) = 1, and cost(u) = 1. So the cost of the second plan is 10003. PARTITION picks

one of these two plans as the �nal physical plan with a cost of 10003.

Notice that after subgoal s has been answered, subgoal u becomes feasible. By answering

u before t, all the tuples whose B value is not 2 will be �ltered, so they do not need to be

parameterized to answer subgoal T . Then we can de�ne the following plan: r! s! u! t,

in which cost(r) = 1, cost(s) = 1, cost(u) = 1, and cost(t) = 1, for a total cost of 4. But

PARTITION misses this plan. Thus, the ratio of the cost of the PARTITION plan to the

optimal cost is at least 10003=4. We can make this ratio arbitrarily large by having the

appropriate number of tuples in r. Thus, PARTITION can generate plans that are k times

as expensive as optimal plans, for any k > 0.

rff(A;B) sbf (A;D) tbf (B;E) ubf (D;B)

(1, 1) (1, 1) (1, 1) (1, 2)
(1, 2)
(1, 3)
. . .

(1, 10000)

Table 3.2: Proof of Lemma 3.4.4: four data sources.

Lemma 3.4.5 The PARTITION algorithm runs in O(n2+(k1!+k2!+: : :+kp!)), where n is

the number of subgoals in the logical plan, p is the number of clusters found by PARTITION,

and ki is the number of subgoals in the ith cluster.4 2

3.4.3 Variations of PARTITION

We have seen that the PARTITION algorithm can miss the optimal plan in many scenarios,

and in the worst case it has a running time that is exponential in the number of subgoals

in the logical plan. In a way, it attempts to strike a balance between running time and

the ability to �nd optimal plans. A naive algorithm that enumerates all sequences of

4If the query result in nonempty, PARTITION can consider just one sequence (instead of k1!) for the
�rst cluster.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 40

subgoals will always �nd the optimal plan, but it may take much longer than PARTITION.

PARTITION tries to cut down on the running time, and gives up the ability to �nd optimal

plans to a certain extent. Here, we consider two variations of PARTITION that highlight

this trade-o�.

We call the �rst variation FILTER, which is based on the observation of Lemma 3.4.2.

FILTER is guaranteed to �nd the optimal plan (as long as the query result is nonempty),

but its running time is much worse than PARTITION. Yet, it is more e�cient than the

naive algorithm that enumerates all plans.

FILTER also has two phases like PARTITION. In its �rst phase, it mimics PARTITION

to arrive at the clusters �1;�2; : : : ;�p. At the end of the �rst phase, it keeps the �rst cluster

as is, and collapses all the other clusters into a new second cluster �0. That is, it ends up

with �1 and �0. The second phase of FILTER is identical to that of PARTITION.

Lemma 3.4.6 If the user query has nonempty result, FILTER will generate the optimal

plan. 2

Proof: We can prove this lemma in the same way we proved Lemma 3.4.2.

Lemma 3.4.7 The running time of FILTER is O(n2 + (k1! + (n� k1)!). 2

The second variation of PARTITION is called SCAN. This variation focuses on e�cient

plan generation. The main idea here is to simplify the second phase of PARTITION so that

it can run e�ciently. The penalty is that SCAN may not generate optimal plans in many

cases where PARTITION does.

SCAN also has two phases of processing. The �rst phase is identical to that of PARTI-

TION. In the second phase, SCAN picks an order for each cluster without searching over

all the possible orders. So the second phase runs in O(n) time. Note that since it does not

search over the space of subsequences for each cluster, SCAN tends to generate plans that

are inferior to those of PARTITION.

Lemma 3.4.8 SCAN runs in O(n2) time, where n is the number of subgoals in the logical

plan. 2

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 41

3.5 Performance Analysis

In this section, we address the following questions regarding the performance of CHAIN and

PARTITION: How often do they �nd optimal plans? When they miss the optimal plans,

what is the expected margin by which they miss? We attempt to answer these questions

by way of performance analysis of the algorithms in a simulated environment.

3.5.1 Simulation Parameters

In our experiments, we had a test bed of 15 sources, which participated in integrated views

on which queries could be posed. The source size distribution was 30% small, 60% medium,

and 10% large. Each source in our test bed had two access templates, each requiring that

a di�erent attribute be bound.

We employed randomly generated queries that created logical plans over a subset of the

15 sources in the test bed. We varied the subset size from 1 to 10. For each query, we

computed the plans generated by CHAIN and PARTITION. We also exhaustively searched

for the optimal plan for the query. The cost of the three plans was computed based on the

model in Section 3.2.

3.5.2 Experimental Results

For each number of subgoals in a logical plan n, we generated 1000 user queries, and studied

the performance of the algorithms on these queries. Figure 3.6 plots the number of query

subgoals (on the horizontal axis) versus the average margin by which generated plans miss

the optimal plan (on the vertical axis). Both CHAIN and PARTITION found near-optimal

plans in the entire range of inputs (a total of 1000 randomly generated queries) and, on the

average, missed the optimal plan by less than 10%.

Figure 3.6 also shows that as n increased, the average cost of the plan did not necessarily

increase. Even though this result is a bit surprising, we realize that it is because more

subgoals in a logical plan means more chances to choose some subgoals that have low cost,

and thereby decrease the cost of other expensive subgoals.

We also conducted experiments that measured the fraction of the queries for which the

algorithms found optimal plans, and the maximum margin by which the algorithms missed

the optimal plans. The results of these experiments are shown in Figure 3.7. Figure 3.7(a)

shows how often CHAIN and PARTITION found optimal plans. Over the entire set of 1000

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 42

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

D
iff

er
en

ce
 fr

om
 O

pt
im

al
 P

la
n

(%
)

Number of Subgoals (n)

CHAIN
PARTITION

Figure 3.6: Average cost.

queries with n ranging from 1 to 10, CHAIN found the optimal plans more than 80% of the

time, while PARTITION found the optimal plans more than 95% of the time. This result is

surprising because we had proved in Section 3.3 that logical plans with as few as 3 subgoals

can lead CHAIN to miss the optimal plans, and logical plans with as few as 4 subgoals can

lead PARTITION to suboptimal plans.

Figure 3.7(b) shows the largest margin by which CHAIN and PARTITION miss the

optimal plans. In the worst case, over the 1000 queries, CHAIN generated a plan that was

1.95 times as expensive as the optimal plan; the worst-case miss for PARTITION was a

plan that was 1.5 times as expensive as the optimal plan. Once again, these results are

surprising in that our theoretical results predicted that CHAIN can generate plans that

cost as much as 10 times the optimal plan. We also proved that PARTITION can miss the

optimal plan by an unbounded margin.

In summary, our experiments show that the PARTITION algorithm has excellent prac-

tical performance, even though it gives very few theoretical guarantees. The CHAIN algo-

rithm also has very good performance, well beyond the theoretical guarantees we proved in

Section 3.3. Finally, comparing the two algorithms, we observe that PARTITION consis-

tently outperforms CHAIN in �nding near-optimal plans.

3.6 Other Cost Models

So far, we discussed algorithms that minimize the number of source queries. Now, we

consider more complex cost models where di�erent source queries can have di�erent costs.

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 43

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
n

of
 N

on
op

tim
al

 P
la

ns
 (%

)

Number of Subgoals (n)

CHAIN
PARTITION

(a) Fraction of non-optimal plan.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

M
ax

((C
-C

o)
/C

o)

Number of Subgoals (n)

PARTITION
CHAIN

(b) Worst-case miss.

Figure 3.7: Optimality of each algorithm.

First, we consider a simple extension (called M1) where the cost of a query to source Si is

ei. That is, queries to di�erent sources cost di�erent amounts. Note that in M1, we still do

not charge for the amount of data transferred. All of our results presented so far hold in

this new model.

Theorem 3.6.1 In the cost modelM1, Theorem 3.3.1 holds. That is, the CHAIN algorithm

is n-competitive, where n is the number of subgoals. 2

Theorem 3.6.2 In the cost model M1, Lemma 3.4.2 holds. That is, the PARTITION

algorithm will �nd an optimal plan, if there are at most two clusters and the user query has

a nonempty result. 2

Next, we consider a more complex cost model (called M2) where the data-transfer costs

are factored in. That is, the cost of a query to source Si is ei + fi � (size of query result).

Note that this cost model is strictly more general than M1.

Theorem 3.6.3 In the cost modelM2, Theorem 3.3.1 holds. That is, the CHAIN algorithm

is n-competitive, where n is the number of subgoals. 2

Theorem 3.6.4 In the cost model M2, Lemma 3.4.2 does not hold. That is, the PAR-

TITION algorithm cannot guarantee an optimal plan, even when there are at most two

clusters. 2

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 44

When considering more complex cost models, we note that the problem of �nding an

optimal feasible plan remains NP-hard. It is also clear that both CHAIN and PARTITION

guarantee the generation of feasible plans (if they exist), irrespective of the cost model

being considered. The only issue at hand is the ability of these algorithms to generate

near-optimal plans.

We observe that the n-competitiveness of CHAIN holds in any cost model with the

following property: the cost of a subgoal in a plan does not increase by postponing its

processing to a later time in the plan. BothM1 andM2 have this property, so CHAIN is n-

competitive in those models. We also note that the PARTITION algorithm with two clusters

will always �nd the optimal plan (assuming the query has nonempty result) if block queries

cannot cost more than the corresponding parameterized queries. This property holds, for

instance, in model M1, and not in model M2.

When one considers cost models other than those discussed here, the properties noted

above may hold in those models. Consequently CHAIN and PARTITION may yield very

good results. Even when the properties do not hold, the strategies employed by the two

algorithms may act as good heuristics and help them generate e�cient plans. For instance,

in the cost model M2, PARTITION cannot guarantee the generation of optimal plans even

when there are only two clusters. In our simulation experiments we studied the performance

of PARTITION in this cost model, and found that it continues to �nd plans that are very

close to optimal plans.

3.7 Conclusions and Related Work

In this chapter, we considered the problem of optimizing large-join queries in information

integration when sources have limited access patterns. We employed a cost model that

counts the number of source accesses in a plan. Under this cost model, we showed that

the problem of �nding an optimal feasible plan is NP-hard. We developed two algorithms

that guarantee the generation of feasible plans (when they exist). The �rst one, named

CHAIN, uses a greedy approach to generate plans. It runs in polynomial time, and has a

linear bound on the worst case margin by which it misses optimal plans. Another algorithm,

called PARTITION, groups the subgoals into clusters, and constructs a plan by combining

local plans in these clusters. Our experimental results showed that these algorithms generate

optimal plans in many cases, and in other cases their generated plans have small distance

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 45

from the optimal plans. We also discussed how to extend the results under this cost model

to other more complex models.

Related Work

The problem of ordering subgoals to �nd the best feasible sequence can be viewed as the

well known join-order problem. More precisely, we can assign in�nite cost to infeasible

sequences and then �nd the best join order. The join-order problem has been extensively

studied in the literature, and many solutions have been proposed. Some solutions perform

a rather exhaustive enumeration of plans, and hence do not scale well [AHY83, BGW+81,

CM95, ES80, HKWY97, LYV+98, OL90, PGH96, PGLK97, SAC+79, VM96]. In particular,

we are interested in Web scenarios with many sources and subgoals, so these schemes are

too expensive. Some other solutions reduce the search space through techniques such as

simulated annealing, random probes, or other heuristics [GLPK94, IK90, IW87, Mor88,

PS82, SMK97, Swa89, SG88]. While these approaches may generate e�cient plans in some

cases, they do not have any performance guarantees in terms of the quality of generated

plans, i.e., their generated plans can be arbitrarily far from the optimal ones. Many of

these techniques may even fail to generate a feasible plan, while the user query does have a

feasible plan.

Other solutions [IK84, KBZ86, SM97] use speci�c cost models and clever techniques

that exploit them to produce optimal join orders e�ciently. While these solutions are very

good for the join-order problem where those cost models are appropriate, they are hard

to adopt in our context because of two di�culties. The �rst is that it is not clear how to

model the feasibility of mediator query plans in their frameworks. A direct application of

their algorithms to the problem we are studying may end up generating infeasible plans,

even though a feasible plan might exist. The second di�culty is that when we use cost

models that emphasize the main costs in mediation systems, the optimality guarantees of

their algorithms may not hold.

Another related work is [FLMS99], which also considers query optimization when rela-

tions have limited access patterns. There are two main di�erences between our work and

theirs. First, we consider speci�c cost models that are realistic in Web scenarios. Thus we

can develop several algorithms with good properties. For instance, CHAIN runs in poly-

nomial time and has a linear bound on the worst-case margin by which it misses optimal

CHAPTER 3. OPTIMIZING QUERIES WITH SOURCE RESTRICTIONS 46

plans. [FLMS99] considers general cost models, and its algorithms are exponential. Second,

[FLMS99] shows that busy-tree plans are necessary to generate optimal plans in some sce-

narios, e.g., when some query results are cached. In our work, since we do not consider these

scenarios, we proved that left-deep-tree plans can guarantee to include a feasible optimal

plan.

Chapter 4

Answering Queries with Useful

Bindings

Since sources in information integration can have diverse and limited query capabilities, in

order to obtain maximum information from these restrictive sources to answer a query, one

can access sources that are not speci�ed in the query (i.e., o�-query sources). For instance,

suppose a relation R requires a movie title to return movie information. If there are other

relations that provide movie titles for free, we can access these relations to obtain movie

titles, and then use them to retrieve movie information from relation R. In this chapter, we

propose a query-planning framework to compute maximal answers to queries in the presence

of limited access patterns. We solve optimization problems in this framework, including how

to decide whether accessing o�-query sources is necessary, how to choose useful sources for a

query, and how to test query containment. We develop algorithms to solve these problems,

and thus compute the maximal answer to a query e�ciently.

Chapter Organization

Section 4.1 shows that sources not in a query can contribute to the query result by providing

useful binding information. Section 4.2 uses an example to introduce the notation in the

chapter. In Section 4.3, we propose a query-planning framework in integration systems with

source restrictions. In the framework, source descriptions and a query are translated into

a datalog program, which can be evaluated on the sources to compute the maximal answer

to the query. In Sections 4.4 and 4.5, we solve the problem of trimming useless source

47

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 48

relations for a query. In Section 4.4, we discuss in what cases accessing o�-query relations

is necessary to answer a query. In Section 4.5, we develop a polynomial-time algorithm for

�nding all the relevant sources for a query. In Section 4.6, we show how to test whether

the answer to one query is contained in that to another query. In such a case, the source

accesses in the contained query can be saved. In Section 4.7 we discuss variations of the

problem of computing maximal answers to queries. We conclude in Section 4.8 and discuss

related work.

4.1 Introduction

The following example shows that because sources have restrictions on retrieving their

information, sources not directly mentioned in a query can contribute to the query result.

EXAMPLE 4.1.1 Suppose we want to compare the average prices of the books sold by

AMAZON.COM and BARNESANDNOBLE.COM. Since both sources require each source

query to specify at least an ISBN, an author, or a title, we cannot retrieve all their book

records. Suppose we can access PRENHALL.COM to retrieve all authors who have pub-

lished books through the publisher. We can use this author list to query AMAZON.COM

and BARNESANDNOBLE.COM to get books and their prices and to compute the average

prices.

Note that the authors who publish books through Prentice Hall may also publish books

through other publishers. We can use the author list of Prentice Hall as a seed list to

retrieve book titles from the two bookstore sources, then use these titles to retrieve more

authors, and so on so forth. We can repeat the iteration until the author list remains stable.

Then we average the prices of the books from the two sources. 2

Example 4.1.1 suggests that we can use the source PRENHALL.COM to retrieve bind-

ings for the author domain, and use the bindings to answer the query, although this source

is not mentioned directly in the query. In some cases, we can even access sources repeatedly

to obtain bindings to compute more results to a query. In Section 4.3 we propose a frame-

work of query planning in integration systems with source restrictions. In the framework,

source descriptions and a query are translated into a datalog program, and we compute the

maximal answer to the query by evaluating the program on the source relations. Datalog is

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 49

used in the query planning since the planning process for a query can be recursive, although

the query itself is not.

Being able to obtain the maximal results is desirable. However, the challenge is to

return the results with the minimum cost. In other words, we do not want to involve all

sources blindly during the plan-generation process. In particular, this framework exhibits

two challenging problems. First, we need to decide when accessing o�-query sources is

necessary. Some of these accesses are essential, as they provide bindings that let us query

sources, which we could not do otherwise. However, some accesses can be proven not to add

anything to the query's answer. We show in what cases o�-query accesses are necessary,

and develop an algorithm for �nding all the relevant sources for a query.

Second, we need to determine whether the maximal answer to a query is contained in

that to another query. Since our framework often produces a recursive datalog program to

answer a query optimally, and containment of datalog programs is undecidable [Shm93],

our containment problem seems to be undecidable. (Our containment problem uses set

semantics, not bag semantics.) We show that this containment problem is decidable since

it can be reduced to containment of monadic programs, which is known to be decidable

[CGKV88]. In addition, we introduce the question of boundedness for the programs in our

framework. When one of the two programs in the containment test is bounded (i.e., it is

equivalent to a �nite union of conjunctive queries), the containment test can be performed

e�ciently [CM77, CV92, SY80]. We develop a polynomial-time algorithm for testing query

boundedness.

In this chapter we focus on a class of conjunctive queries, called connection queries. A

connection query is a natural join of distinct source views with the necessary selection and

projection. (The details are described in Section 4.2.) Here we are taking the following

universal-relation-like assumption [Ull89]: di�erent attributes that share the same name in

di�erent views have the same meaning. However, universal-relation study did not consider

restrictions of retrieving information from relations. As we will see in Section 4.2.2, a

connection query can be generated in various cases, where our techniques are applicable.

In Section 4.7 we discuss how to extend our results on connection queries to conjunctive

queries.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 50

4.2 Preliminaries

This section uses an example to introduce the notation used throughout the chapter.

EXAMPLE 4.2.1 Assume we are building a system to integrate the information from

four sources of musical CDs, as shown in Table 4.1. Sources S1 and S2 have information

about CDs and their songs; sources S3 and S4 have information about CDs, their artists,

and their prices. To simplify the notation, we use attribute Song for song title and attribute

Cd for CD title. The table also includes the binding patterns of the relations. For instance,

every query sent to S2 must provide a CD title. In other words, without the information

about CD titles, source S2 cannot be queried to produce answers.

Table 4.1: Four sources of musical CDs.

Source Contents Binding Pattern

S1 v1(Song; Cd) bf

S2 v2(Song; Cd) fb

S3 v3(Cd;Artist; Price) b�

S4 v4(Cd;Artist; Price) fbf

Source-view schemas can be represented by a hypergraph [Ull89], in which each node is

an attribute and each hyperedge is a source relation (e.g., source view). The hypergraph

of the four views is shown in Figure 4.1, which also shows the tuples at each source. To

simplify the presentation, we use symbols ti, cj , and ak to represent a song title, CD, and

artist, respectively. For instance, the source view v1(Song; Cd) contains two tuples: ht1; c1i

and ht2; c3i. The �gure shows the adornments of the attributes in each view.

CdSong Artist Price

v2(Song; Cd)
f b

v4(Cd;Artist; Price)
f b f

v3(Cd;Artist; Price)
b f f

v1(Song; Cd)
b f

< t1; c4 >
< t1; c5 >
< t2; c2 >

< t1; c1 >
< t2; c3 >

< c1; a1; $15 >
< c3; a3; $14 >

< c1; a1; $13 >
< c2; a1; $12 >
< c5; a5; $11 >
< c4; a3; $10 >

Figure 4.1: The hypergraph representation.

Suppose a user wants to �nd the prices of the CDs that contain a song titled t1. The

answer can be obtained by taking the union of the following four joins: v1 ./ v3, v1 ./

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 51

v4, v2 ./ v3, and v2 ./ v4, and performing a selection Song = t1 and then a projection

onto the attribute Price. Figure 4.1 shows that there are four CDs containing the song:

hc1; a1; $15i, hc1; a1; $13i, hc5; a5; $11i, and hc4; a3; $10i. Therefore, without considering the

source restrictions, the answer is f$15; $13; $11; $10g. However, due to the limited source

capabilities, only the $15 can be computed if we process each join in the query at one

time (as in [HKWY97, LRO96, LYV+98]). The reason is that, v1 ./ v3 yields the $15 in

the answer; v1 ./ v4 cannot be executed by using only v1 and v4, since v4 requires that

attribute Artist be speci�ed, but we cannot bind this attribute using only these two views.

Similarly, neither of the other two joins can be executed. As a consequence, the user misses

the cheaper source for CD c1 and entirely misses CDs c4 and c5. 2

In this chapter, we propose a framework that can retrieve more results from sources

with restrictions. Instead of considering each join individually, the framework involves

other sources not in a join to produce bindings to answer the join. For instance, when

joining v1 and v4, we also consider the information provided by v2 and v3. As we will see

in Section 4.3.3, the framework can �nd two additional CDs containing the song titled t1:

hc1; a1; $13i and hc4; a3; $10i. If the user wants to �nd the cheapest CD, this approach can

save $5 for the user!

4.2.1 Source Views

Now we give the notation used throughout the chapter. Let an information-integration

system have n sources, say, S1; : : : ; Sn. Assume that each source Si provides its data in

the form of a relational view vi. If sources have other data models, we can use wrappers

[HGMN+97] to create a simple relational view of data. In the case where one source has

several relations, we can represent this source with several logical sources, each of which

exports only one relational view.

We assume that di�erences in ontologies, vocabularies, and formats used by sources

have been resolved. In particular, if two sources share an attribute name, we assume that

the attributes are equivalent, i.e., wrappers take care of any di�erences. Related research

[MW97, PGMW95, MKW00] suggests ways to deal with ontology and format di�erences.

We assume that the schemas of the source views are de�ned on a global set of attributes.

Each view schema is a list of global attributes, and di�erent views may share the same

schema. For instance, in Example 4.2.1, we have four global attributes: Song, Title,

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 52

Artist, and Price; views v1 and v2 share the same schema (Song; Cd).

For simplicity of exposition, we assume that each view has one template. We use vi

to stand for both the source view and its adorned template, and we believe the distinction

should be clear in context. Let A(vi) denote the attributes in a source view vi, and let B(vi)

and F(vi) be the sets of bound and free attributes in the adorned template of vi, respectively.

For instance, in Example 4.2.1, B(v1) = fSongg, F(v1) = fCdg, and A(v1) = fSong; Cdg.

Let V denote the source views with their adornments, A(V) be the attributes in V .

4.2.2 Connection Queries

We consider a class of conjunctive queries, called connection queries. Each connection query

is represented in the form

Q = hI; O; Ci

where I is a list of input assignments of the form attribute = constant, O is a list of

output attributes whose values the user is interested in, and C is a list of connections.

Each connection is a set of source views that connect the input attributes and the output

attributes. As we will see shortly, we interpret a connection as the natural join of the views

in the connection. The following are some possible ways in which C could be generated:

1. It is generated by query expansion at a mediator, as in TSIMMIS [LYV+98].

2. It is generated by a minimal-connection algorithm, as in universal-relation systems

[Ull89].

3. It is explicitly speci�ed by the user.

For instance, the query in Example 4.2.1 can be represented as

Q = hfSong = t1g; fPriceg; fT1; T2; T3; T4gi

in which the four connections are: T1 = fv1; v3g, T2 = fv1; v4g, T3 = fv2; v3g, and T4 =

fv2; v4g. Note that there can be several input attributes and several output attributes

in a query. Let I(Q) and O(Q) respectively denote the input attributes and the output

attributes of query Q. I(Q) and O(Q) do not overlap. Let A(T) be all the attributes in a

connection T .

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 53

4.2.3 The Answer to a Query

Suppose T is a connection in query Q. For those tuples in the natural join of the relations

in T that satisfy the input constraints in Q, their projections onto the output attributes are

the complete answer to connection T . The union of the answers to all the connections in

Q is the complete answer to query Q. Due to the limited source capabilities, the obtainable

answer to a connection is the maximal answer to the connection that can be retrieved from

the sources, using only the initial bindings in the query and the source relations. The union

of the obtainable answers to all the connections in Q is the obtainable answer to query Q.

The complete answer to a user query could be retrieved if the sources did not have

limited capabilities. However, we may get only a partial answer to the query due to the

source restrictions. For instance, in Example 4.2.1, the complete answer to the query is

f$15; $13; $11; $10g, while as we will see in Section 4.3.3, the obtainable answer to the

query is f$15; $13; $10g. Given source descriptions and a query, if the complete answer to

the query cannot be computed, our framework collects as much information as possible to

answer the query. In the rest of this chapter, unless otherwise speci�ed, the answer to a

connection means the obtainable answer to the connection, and the answer to a query is

the union of the obtainable answers to all the connections in the query.

4.3 A Query-Planning Framework

In this section, we propose a query-planning framework in the presence of source restrictions.

In the framework, source descriptions and a query are translated into a datalog program,

which can be evaluated to answer the query.

4.3.1 Constructing the Program �(Q;V)

Given source descriptions V and a query Q, we translate them into a datalog program,

denoted �(Q;V). For instance, Figure 4.2 shows the datalog program �(Q;V) for the

query and the source views in Example 4.2.1. We use names beginning with lower-case

letters for constants and predicate names, and names beginning with upper-case letters for

variables. Note that this program is recursive, although query Q is not.

Let us look at the details of how the program �(Q;V) is constructed. For each source

view vi, we introduce an EDB predicate ([Ull89]) vi and an IDB predicate bvi (called the

�-predicate of vi). Predicate vi represents all the tuples at source Si, and bvi represents the

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 54

r1: ans(P) :- cv1(t1; C);cv3(C;A; P) r9: cv3(C;A; P) :- cd(C); v3(C;A; P)
r2: ans(P) :- cv1(t1; C);cv4(C;A; P) r10: price(P) :- cd(C); v3(C;A; P)
r3: ans(P) :- cv2(t1; C);cv3(C;A; P) r11: artist(A) :- cd(C); v3(C;A; P)
r4: ans(P) :- cv2(t1; C);cv4(C;A; P) r12: cv4(C;A; P) :- artist(A); v4(C;A; P)
r5: cv1(S;C) :- song(S); v1(S;C) r13: cd(C) :- artist(A); v4(C;A; P)
r6: cd(C) :- song(S); v1(S;C) r14: price(P) :- artist(A); v4(C;A; P)
r7: cv2(S;C) :- cd(C); v2(S;C) r15: song(t1) :-
r8: song(S) :- cd(C); v2(S;C)

Figure 4.2: The datalog program �(Q;V) in Example 4.2.1.

obtainable tuples at Si. Introduce a goal predicate ans to store the answer to the query;

the arguments of ans correspond to the output attributes O(Q) in Q.

Let T = fv1; : : : ; vkg be a connection in Q. The following rule is the connection rule of

T :

ans(O(Q)) :- cv1(A(v1)); : : : ;cvk(A(vk))
where the arguments in predicate ans are the corresponding attributes in O(Q). For each

argument in bvi, if the corresponding attribute in view vi is an input attribute of Q, this

argument is replaced by the initial value of the attribute in Q. Otherwise, a variable

corresponding to the attribute name is used as an argument in predicate bvi. For instance,
in Figure 4.2, rules r1, r2, r3, and r4 are the connection rules of the connections T1, T2, T3,

and T4, respectively.

Decide the domains of all the attributes in the views, and group the attributes into sets

while the attributes in each set share the same domain. Introduce a unary domain predicate

for each domain to represent all its possible values that can be deduced.1 In Figure 4.2,

the predicates song, cd, artist, and price represent the domains of song titles, CD titles,

artists, and prices, respectively.

Suppose that source view vi has m attributes, say A1; : : : ; Am. Assume the adornment

of vi says that the arguments in positions 1; : : : ; p need to be bound, and the arguments in

positions p+ 1; : : : ; m can be free. The following rule is the �-rule of vi:

bvi(A1; : : : ; Am) :- domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

1The idea of using domain predicates in the framework is borrowed from [DL97]. However, in our
framework, di�erent domains have di�erent domain predicates, while in [DL97] only one domain predicate
is used for all attributes. In addition, we use the query-centric approach to information integration, while
[DL97] uses the source-centric approach to information integration [Dus97].

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 55

in which each domAj (j = 1; : : : ; p) is the domain predicate for attribute Aj . For k =

p+ 1; : : : ; m, the following rule is a domain rule of vi:

domAk(Ak) :- domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

For instance, rule r9 in Figure 4.2 is the �-rule of v3; rules r10 and r11 are its domain

rules. Assume that Ai = ai is in the assignment list I of Q, the following rule is a fact rule

of attribute Ai:

domAi(ai) :-

For instance, rule r15 in Figure 4.2 is a fact rule of attribute Song, since we know from the

query that t1 is a song title.

The program �(Q;V) is constructed in three steps:

1. Write the connection rule for each connection in Q.

2. Write the �-rule and the domain rules for each source view in V .

3. Write the fact rule for each input attribute in Q.

In Figure 4.2, rules r1, r2, r3, and r4 are the connection rules of T1, T2, T3, and T4,

respectively. Rule r5 is the �-rule of v1, and r6 is the domain rule of v1; rules r7 to r14 are

the �-rules and the domain rules of the other three source views. Finally, r15 is the fact rule

of the attribute Song. Recall that the views in each connection link the input attributes

and the output attributes in the query. Based on how program �(Q;V) is constructed, we

have the following proposition:

Proposition 4.3.1 Given source descriptions V and a query Q, the datalog program �(Q;V)

is safe. 2

4.3.2 Binding Assumptions

During the construction of the program �(Q;V), we make the following important assump-

tions about the way we use bindings:

1. Each binding for an attribute must be from the domain of this attribute.

2. If a source view requires a value, say, a string, as a particular argument, we will not

allow the strategy of trying all the possible strings to \test" the source.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 56

3. Rather we assume that any binding is either obtained from the user query, or from a

tuple returned by another source query.

We use Example 4.2.1 to explain these assumptions. The �rst assumption says that we

would not use an artist name as a binding for attribute Song. View v3(Cd;Artist; Price)

requires each query to source S3 to give a CD title. The second assumption says that we

would not allow the following naive \strategy": generate all possible strings to test whether

S3 has CDs with these strings as titles. This approach would not terminate, since there will

be an in�nite number of strings that need to be tested. The third assumption says that

each binding of an attribute A must either be derived from the user query, or be a value

of A in a tuple returned by another source query. For instance, if c1 is a CD title returned

from source S1, and Cd = c2 is an initial binding in a query, then we know that c1 and c2

are two CD titles, and we can use them to query source S3. In Section 4.7 we will discuss

other possibilities for obtaining bindings.

4.3.3 Evaluating the Program �(Q;V)

We evaluate the datalog program �(Q;V) on the source relations to compute the facts for

the ans predicate. Note that the vi's are the only EDB predicates in �(Q;V). However,

because of the source restrictions, we do not know the tuples at each source before sending

source queries. Now we show how to evaluate �(Q;V) to answer the query.

To evaluate the domain rules and the �-rule of a source view vi, predicate vi is \popu-

lated" by source queries to Si. Suppose that the right-hand side of its domain rules and its

�-rule is:

domA1(A1); : : : ; domAp(Ap); vi(A1; : : : ; Am)

Once we know that (a1; : : : ; ap) are the values of the domAj 's (j = 1; : : : ; p), respectively, we

can send a query vi(a1; : : : ; ap; Ap+1; : : : ; Am) to source Si. This source query is guaranteed

to be executable, since it satis�es the binding requirements of vi. The results of this source

query add more tuples to the predicate bvi (for the �-rule) and to the predicates domAj 's

(for the domain rules).

After the evaluation of the program terminates, the facts for the domain predicates

include all the obtainable values of these domains. Similarly, the �-predicate facts are all

the obtainable tuples at the sources. Thus, we have the following proposition:

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 57

Proposition 4.3.2 Given source descriptions V and a query Q, for any database D of V,

if we evaluate �(Q;V) on D, the facts for the ans predicate are the obtainable answer to

Q. 2

Table 4.2: Evaluating the program in Figure 4.2.

Order Source Query Returned Tuple(s) New Bindings(s)

1 v1(t1; C) ht1; c1i Cd = c1
2 v3(c1; A; P) hc1; a1; $15i Artist = a1
3 v4(C; a1; P) hc1; a1; $13i,hc2; a1; $12i Cd = c2
4 v2(S; c2) ht2; c2i Song = t2
5 v1(t2; C) ht2; c3i Cd = c3
6 v3(c3; A; P) hc3; a3; $14i Artist = a3
7 v4(C; a3; P) hc4; a3; $10i Cd = c4
8 v2(S; c4) ht1; c4i

Table 4.3: Evaluation results.

IDBs Results IDBs Results

bv1 ht1; c1iht2; c3i song t1; t2bv2 ht1; c4iht2; c2i cd c1; c2; c3; c4bv3 hc1; a1; $15ihc3; a3; $14i artist a1; a3bv4 hc1; a1; $13i; hc2; a1; $12i; hc4; a3; $10i price $15; $14; $13; $12;$10
ans $15; $13; $10

Table 4.2 shows how to evaluate the program in Figure 4.2 to compute the answer to

the query in Example 4.2.1, and Table 4.3 shows the results. Clearly the program computes

all the obtainable values of song titles, CD titles, artists, and prices from the four sources

and the query, as well as all the obtainable tuples at the sources. The set of ans facts is

the answer to the query. Therefore, this approach returns two more tuples, $13 and $10,

than the approach in Example 4.2.1. Note that we cannot retrieve the tuple ht1; c5i of v2

or the tuple hc5; a5; $11i of v4, since we cannot obtain the binding a5 for attribute Artist,

no matter what legal source queries we execute.

The program �(Q;V) is constructed in a brute-force way, and it needs to be optimized.

In particular, for each connection T in the query, the program may access views that are not

in T . Some of these o�-connection accesses do not add anything to the query's answer. We

thus want to include judiciously only those sources that provide some values at a place where

they are needed. In the rest of the chapter, we solve some optimization problems in this

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 58

framework, including how to decide whether accessing o�-query sources is necessary, how to

choose the relevant sources to obtain useful bindings, and how to test query containment.

4.4 Accessing O�-connection Views

In this section, we discuss in what cases accessing o�-connection views is necessary to answer

a connection. The following example shows that accessing o�-connection views is not always

necessary.

v3(C;D)
b f

v5(E;F)
b f

v1(A;C)
b f

v2(A;B;C)
f f b

f f
v4(C;E)

A D

E F

B

C

Figure 4.3: Source views in Example 4.4.1.

EXAMPLE 4.4.1 Consider the �ve views in Figure 4.3. Suppose that a user submits a

query

Q = hfA = a0g; fDg; fT1; T2gi;

which has two connections T1 = fv1; v3g, T2 = fv2; v3g. That is, the user knows the value of

A is a0, and wants to get the associated D values using v1 ./ v3 and v2 ./ v3. Assume that

di�erent attributes have di�erent domains. The corresponding datalog program �(Q;V) is

shown in Figure 4.4.

Consider connection T1. The program �(Q;V) accesses the three views that are not

in T1 during the evaluation of the program. However, these o�-connection accesses do not

contribute to T1's results. Indeed, suppose t = hdi is a tuple in the complete answer to

T1, and t comes from tuple t1 = ha0; ci of v1 and tuple t3 = hc; di of v3. By sending a

query v1(a0; C) to S1 we can retrieve tuple t1. With the new binding C = c, we can send a

query v3(c;D) to S3, and retrieve tuple t3. Therefore, by using only the views in T1 we can

compute its complete answer.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 59

r1: ans(D) :- cv1(a0; C);cv3(C;D) r9: domD(D) :- domC(C); v3(C;D)
r2: ans(D) :- cv2(a0; B; C);cv3(C;D) r10: cv4(C;E) :- v4(C;E)
r3: cv1(A;C) :- domA(A); v1(A;C) r11: domC(C) :- v4(C;E)
r4: domC(C) :- domA(A); v1(A;C) r12: domE(E) :- v4(C;E)
r5: cv2(A;B;C) :- domC(C); v2(A;B;C) r13: cv5(E; F) :- domE(E); v5(E; F)
r6: domA(A) :- domC(C); v2(A;B;C) r14: domF (F) :- domE(E); v5(E; F)
r7: domB(B) :- domC(C); v2(A;B;C) r15: domA(a0) :-
r8: cv3(C;D) :- domC(C); v3(C;D)

Figure 4.4: The datalog program �(Q;V) in Example 4.4.1.

Consider connection T2. Since we cannot get any binding for attribute C by using only

the two views in T2, we need v2 and v4 to contribute C bindings. Thus these two o�-

connection views are useful to T2. On the other hand, v5(E; F) does not contribute to T2's

results, because the F bindings from S5 do not help obtain more answers to T2. 2

In general, given a connection T in a query Q, we need to decide whether accessing the

views outside T is necessary. Before giving the solution, we �rst introduce some de�nitions.

4.4.1 Forward-closure

De�nition 4.4.1 (forward-closure) Given a set of source views W � V and a set of

attributes X � A(V), the forward-closure of X given W , denoted f-closure(X;W), is a set

of the source views in W such that, starting from the attributes in X as the initial bindings,

the binding requirements of these source views are satis�ed by using only the source views

in W . 2

We can compute f-closure(X;W) as follows. At the beginning, only the attributes

in X are bound, and f-closure(X;W) is empty. At each step, for each source view v 2

W � f-closure(X;W), check whether B(v), the bound attributes of v, is a subset of the

bound attributes so far. If so, add v to f-closure(X;W), and each attribute in F(v), the

free attributes of v, becomes bound. Repeat this process until no more source views can be

added to f-closure(X;W). Let A(f-closure(X;W)) denote all the attributes of the source

views in f-closure(X;W). Therefore, A(f-closure(X;W)) includes all the attributes that can

be bound eventually by using the source views in W starting from the initial bindings in

X .

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 60

EXAMPLE 4.4.2 In Example 4.4.1, f-closure(fAg; fv1; v2; v3g) = fv1; v2; v3g, since we

can use the bound attribute A to get tuples of v1 and bind C, which is the only bound

attribute of v2 and v3. Similarly, in Example 4.2.1, f-closure(fSongg; fv1; v4g) = fv1g, and

f-closure(fSongg; fv1; v3g) = fv1; v3g. 2

4.4.2 Independent Connections

De�nition 4.4.2 (independent connections) A connection T in a query Q is indepen-

dent if

f-closure(I(Q); T) = T:

That is, the binding requirements of the source views in the connection can be satis�ed by

using only these source views and starting from the initial bindings in I(Q). 2

In other words, if connection T = fw1; : : : ; wkg is independent, then there exists a

feasible sequence of all the source views in connection T : wi1 ; : : : ; wik , such that B(wi1) �

I(Q), and for j = 2; : : : ; k, B(wij) � I(Q) [A(wi1) [� � � [A(wij�1). (See Section 3.2.1.)

For instance, the connection T1 = fv1; v3g in Example 4.4.1 is independent, since it has

a feasible sequence: v1; v3. The following theorem shows that an independent connection

does not require bindings from views outside the connection.

Theorem 4.4.1 If connection T is independent, then for any database of the sources, we

can compute the complete answer to T by using only the source views in T . 2

Proof: Suppose connection T has k source views, and it has a feasible sequence v1; : : : ; vk.

Consider each tuple t in the complete answer to T . Assume that tuple t comes from tuples

t1; : : : ; tk of source views v1; : : : ; vk, respectively. Since v1; : : : ; vk is a feasible sequence, the

binding requirements of v1 are satis�ed by I(Q), i.e., B(v1) � I(Q). Thus, we can send

a source query to S1 by binding the attributes in B(v1) to their initial values in Q, and

retrieve the tuple t1 from v1. We then use the bound values of I(Q) [F(v1) to send S2 a

source query to get tuple t2. Repeat this process following the feasible sequence, until we

retrieve all the ti's. Therefore, by using only the views in T , we can retrieve the tuple t in

the complete answer to the connection.

Theorem 4.4.2 For a nonindependent connection T , there exists a database of the sources,

such that some tuples in the complete answer to T cannot be obtained. 2

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 61

Proof: If connection T is not independent, i.e., f-closure(I(Q); T) 6= T , we construct an

instance of source relations, such that a tuple in the complete answer to the connection

cannot be obtained. Let A(T) = fA1; : : : ; Ang be the set of attributes in T . Let tuple

t = (a1; : : : ; an), where ai is a distinct value for attribute Ai. If Ai is in I(Q), then its

value in t, ai, is its initial value in Q. Each view vi in T has only one tuple ti, which is the

projection of t onto the attributes A(vi). Other sources are empty. Then the projection of

t onto O(Q) is in the complete answer to T . However, since f-closure(I(Q); T) 6= T , and all

other sources are empty, we can only retrieve the tuples in f-closure(I(Q); T). We do not

have the necessary bindings to retrieve the tuples in T � f-closure(I(Q); T), thus we cannot

compute any answer to connection T .

Many related studies (e.g., [FLMS99, LYV+98]) consider the case where a connection

in a query is independent. If the connection is not independent, their algorithms give up

attempting to answer the connection. However, our framework can still compute a partial

answer to the connection by accessing o�-connection views.

4.5 Finding Relevant Source Views of a Connection

For a nonindependent connection, not all its o�-connection accesses can contribute to the

connection's results. In this section, we discuss what sources should be accessed to answer a

connection. To simplify the presentation, in the rest of the chapter we assume that di�erent

attributes are from di�erent domains.

De�nition 4.5.1 (relevant source view of a connection) Given source descriptions V,

a query Q, and a connection T in Q, a source view v 2 V is relevant to connection T if for

some source relations, removing v from V can change the obtainable answer to connection

T ; otherwise, v is irrelevant to connection T . 2

In other words, a source view is relevant to a connection T if we can miss some answers

to T if we do not use this view. Note that whether a source view is relevant to a connection

does not depend on other connections in the query.

EXAMPLE 4.5.1 Consider the �ve views in Figure 4.5. Suppose that a user submits a

query

Q = hfA = ag; fF;Gg; fTgi;

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 62

v1(A;B;C)
b f f

v4(H;D)
f f

A

C G

B D

H J

FE v2(B;D;E; F)
b b b f

v5(J; E)
f f

v3(C;D;E;G)
b b f f

Figure 4.5: The source views in Example 4.5.1.

which has one connection T = fv1; v2; v3g. That is, the user knows the value of A is a,

and wants to get the associated F and G values using v1 ./ v2 ./ v3. Connection T is not

independent, since we cannot bind attributes D and E by using only the views in T starting

from the initial binding in Q. We need other views to bind D and E, so that we can query

S2 and S3 to retrieve tuples. Thus, v4 and v5 may be useful.

However, although view v5 can bind attribute E, it is not relevant to connection T . To

illustrate the reason, we prove that the obtainable answers to T can be computed by using

only v1, v2, v3, and v4. Suppose tuple t = hf; gi is in the obtainable answers, and t comes

from tuple t1 = ha; b; ci of v1, tuple t2 = hb; d; e; fi of v2, and tuple t3 = hc; d; e; gi of v3.

Since the initial value of A in the query is a, we can send a source query v1(a; B; C) to

retrieve tuple t1 from v1. Because attribute D is not in I(Q), and only v4 (with binding

pattern �) takes D as a free attribute, the value d of D must be derived from the result of

a source query to S4, which includes a tuple whose D value is d. With C = c and D = d,

we can retrieve tuple t3 from v3 by sending a source query v3(c; d; E;G), and then retrieve

tuple t2 from v2 by sending a source query v2(b; d; e; F). Thus, without using v5, we can

get tuple t in the obtainable answers to connection T . The proof also shows that without

using v4, we cannot get any answer to T . 2

As there may be many views with di�erent schemas and binding patterns, it becomes

challenging to decide which views can really contribute to the results of a connection. Before

giving the algorithm for �nding all the relevant views of a connection, we require a series

of de�nitions.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 63

4.5.1 Queryable Source Views

A source view is queryable if it is in f-closure(I(Q);V). All the queryable source views are

those that we may eventually query, starting from the initial bindings in I(Q), and perhaps

using several preliminary queries to other sources in order to get the bindings we need for

these source views. Let Vq denote all the queryable source views in V , and A(Vq) be all the

attributes in Vq.

Lemma 4.5.1 If attribute A is in A(Vq), then either A is in I(Q), or there exists a feasible

sequence of source views, such that A is a free attribute of the tail in the sequence. 2

Proof: If attribute A is not in I(Q), since A is in A(Vq), there must exist a source view

v in Vq, such that A is in F(v). Based on how Vq = f-closure(I(Q);V) is computed, there

must exist a feasible sequence of source views in which v is the tail. This sequence can be

obtained by backtracking from v following the reverse order in which these source views are

added into f-closure(I(Q);V).

We cannot get any tuples from a nonqueryable source view, no matter what the source

relations are. If a connection contains a nonqueryable source view, we cannot get any

answer to this connection. Thus we need to consider only the queryable connections in Q,

i.e., the connections that do not have any nonqueryable source view. Clearly an independent

connection is also a queryable connection, but not vice versa. For instance, in Example 4.4.1,

connection T2 is queryable, since both v2 and v3 are queryable source views, but T2 is not

independent.

4.5.2 Kernel, BF-chain, and Backward-closure

De�nition 4.5.2 (kernel) Assume T is a queryable connection in query Q. A set of

attributes K � A(T) is a kernel of T if

f-closure(K [I(Q); T) = T

and

f-closure((K� fAg) [I(Q); T) 6= T

for any attribute A 2 K. 2

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 64

Intuitively, a kernel K of connection T is a minimal set of attributes in A(T) such that,

if the attributes in K have been bound, together with the initial bindings in I(Q), we can

bind all the attributes A(T) by using only the source views in T . In Example 4.4.1, fCg is

a kernel of connection T2, because f-closure(fCg [I(Q); T2) = f-closure(fC;Ag; T2) = T2.

Also since f-closure(fAg [I(Q); T2) = f-closure(fAg; T2) 6= T2, then fAg is not a kernel. In

Example 4.5.1, fDg is a kernel of the connection T , while fD;Eg is not. Since a kernel of

a connection must be minimal, it cannot share any attribute with I(Q).

We compute a kernel of a connection T by shrinking the set of attributes X = A(T)�

I(Q) as much as possible, while X satis�es: f-closure(X [I(Q); T) = T . When X cannot

be smaller, it will be a kernel of T . An independent connection has only one kernel: the

empty set. A nonindependent connection has only nonempty kernels. It may have multiple

kernels, as shown by the following example.

A

B

C D E

F

G

v1(A,B,C)
v3(E,F,A)

v4(E,G)v2(C,D,E)

 b f f
 b f f

 f fb f f

Figure 4.6: Multiple kernels of a connection.

EXAMPLE 4.5.2 Figure 4.6 shows a hypergraph of four source views. The binding pat-

terns for v1(A;B;C), v2(C;D;E), and v3(E; F;A) are all b�, and the binding pattern for

v4(E;G) is �. Assume a user query is Q = hfB = b0g; fA;C;Eg; fTgi, in which the only

connection is T = fv1; v2; v3g. T has three kernels: fAg, fCg, and fEg. For instance, fAg is

a kernel because f-closure(fAg[I(Q); T) = f-closure(fA;Bg; fv1; v2; v3g) = fv1; v2; v3g = T .

2

De�nition 4.5.3 (BF-chain) A sequence of queryable source views w1; : : : ; wk (i.e., each

wi 2 Vq) forms a BF-chain (bound-free chain) if for i = 1; : : : ; k� 1, F(wi)\B(wi+1) is not

empty. The source views w1 and wk are the head and the tail of the BF-chain, respectively.

2

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 65

In other words, for every two adjacent views in a BF-chain, the free attributes of the

�rst one overlap with the bound attributes of the second, and thus the �rst view contributes

bindings to the second one. In Example 4.4.1, (v4; v2; v1; v3) is a BF-chain, in which v4 is

the head and v3 is the tail.

De�nition 4.5.4 (backward-closure) Suppose A is an attribute in A(Vq). The backward-

closure of A, denoted b-closure(A), is the set of queryable views that can be backtracked

from A by following some BF-chain in a reverse order, in which A is a free attribute of the

tail in the BF-chain. 2

We can compute b-closure(A) as follows. Start by setting b-closure(A) to those source

views in Vq that take A as a free attribute. For each view v 2 Vq � b-closure(A), if there

is a view w 2 b-closure(A) such that F(v) and B(w) overlap, then add v to b-closure(A).

Repeat this process until no more queryable source views can be added to b-closure(A).

In Example 4.4.1, the backward-closure of attribute C is fv1; v2; v4g. In Figure 4.7, the

backward-closure of fBg is fv2; v3; v4g. The backward-closure of a set of attributes X �

A(Vq), denoted b-closure(X), is the union of all the backward-closures of the attributes in

X , i.e., b-closure(X) =
S
A2X b-closure(A).

v3(D;E)

f b

v2(D;B)

b f

f f

v4(F;E)

v5(G;A)

f f

A B C

D E

F

G
b b f

v1(A;B;C)

Figure 4.7: A backward-closure.

By the de�nitions of kernel, BF-chain, and backward-closure, we have the following

lemmas.

Lemma 4.5.2 If K is a kernel of a queryable connection T and A is an attribute in K,

then A is not in A
�
f-closure((K � fAg) [I(Q); T)

�
. That is, starting from the attributes

of (K � fAg) [I(Q) as the initial bindings, we cannot bind attribute A by using only the

source views in T . 2

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 66

Proof: Suppose that attribute A is in K, andA is also in A
�
f-closure((K�fAg)[I(Q); T)

�
.

Then starting from the attributes of (K� fAg)[I(Q) as the initial bindings, we can bind

attribute A by using only the source views in T . Therefore, we can bind all the attributes

in K, and then bind all the attributes in A(T) (since K is a kernel of T). Thus, K � fAg

would be a kernel of connection T . Then K could not be a kernel since it is not minimal.

Lemma 4.5.3 If A1 and A2 are two attributes, and there is a BF-chain such that A1 is

a bound attribute of the head and A2 is a free attribute of the tail, then b-closure(A1) �

b-closure(A2). 2

Proof: Since A2 is a free attribute of the BF-chain tail, we can backtrack from A2 along

the BF-chain until we reach A1 in the head. Thus all the views on the BF-chain are in

b-closure(A2). By the de�nition of b-closure(A2), all the views in b-closure(A1) are also in

b-closure(A2). Therefore, b-closure(A1) � b-closure(A2).

Lemma 4.5.4 If connection T has two di�erent kernels K1, K2, then b-closure(K1) =

b-closure(K2). 2

I(Q)

bound A1

A2

tail

free

head

BF-Chain

K1

K2X(P)

(attributes on

...connection T)

Figure 4.8: Proof of Lemma 4.5.4.

Proof: The main idea of the proof is shown in Figure 4.8. Since connection T has two

di�erent kernels, T cannot be independent, and both K1 and K2 are not empty. Since

K1 is a kernel of T , for each attribute in K1, say A1, by Lemma 4.5.2, we have A1 62

A
�
f-closure((K1 � fAg) [I(Q); T)

�
. We also have f-closure(K1 [I(Q); T) = T , while

f-closure((K1 � fA1g) [I(Q); T) 6= T . In addition, A(f-closure((K1 � fA1g) [I(Q); T))

cannot be a superset of K2, otherwise starting from the attributes of (K1 � fA1g) [I(Q)

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 67

as initial bindings and using only the source views in T , we could bind all the attributes in

K2, and then bind all the attributes in T (since K2 is a kernel of T), and K1 � fA1g would

be a kernel.

Let A2 be an attribute in K2 that is not in A(f-closure(K1 � fA1g) [I(Q); T)). As

shown in Figure 4.8, since A2 must be in A(f-closure(K1)[I(Q); T)), then either A2 = A1,

or there must exist a BF-chain, such that all the source views on the BF-chain are in T ,

and the head of the BF-chain takes A1 as a bound attribute, and the tail takes A2 as a free

attribute. Note that in Figure 4.8, the attributes in I(Q) may overlap with the attributes

on the BF-chain.

If A2 = A1, then b-closure(A1) = b-closure(A2) � b-closure(K2). If A2 6= A1, then the

above BF-chain exists. By Lemma 4.5.3, b-closure(A1) � b-closure(A2) � b-closure(K2).

Then we have b-closure(K1) � b-closure(K2), since b-closure(K1) =
S
A2K1

(b-closure(A)).

Similarly, we can prove b-closure(K2) � b-closure(K1). Therefore, we have b-closure(K1) =

b-closure(K2).

For instance, in Example 4.5.2, the connection T = fv1; v2; v3g has three kernels: fAg,

fCg, and fEg, and they have the same backward-closure: fv1; v2; v3; v4g.

4.5.3 Finding Relevant Source Views of a Connection

Now we show how to �nd all the relevant views of a connection by giving the following

theorem:

Theorem 4.5.1 If K is a kernel of a queryable connection T , then b-closure(K)[T are all

the relevant source views of connection T . 2

Proof: We need to prove that, for a kernel K of a queryable connection T :

1. All the source views that are not in b-closure(K) [T are irrelevant to T .

2. Every source view on T is relevant to T .

3. Every source view in b-closure(K) is relevant to T .

Proof of (1)We need to show that, by considering only the source views in b-closure(K)[

T , we can get the obtainable answer for connection T . Suppose T = fv1; : : : ; vkg. For each

tuple t in the obtainable answer for T , assume that t comes from the tuples t1; : : : ; tk of

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 68

of B2

of Bj
b-closure

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

of B1

b-closure

b-closure

A1 B1 A2 A3 B2 Bj

I(Q) Kernel K

vi
w2

w1
Connection T

Figure 4.9: The backward-closure of a kernel of a queryable connection.

source views v1; : : : ; vk, respectively. The values of the attributes I(Q) in these ti's must be

their initial values in Q. Now consider the attributes in K and how their values in the ti's

are derived. These values must be obtained by some source queries using a set of source

views, say V1, whose free attributes include K. By the de�nition of b-closure(K), the source

views in V1 must be in b-closure(K). In order to send source queries to the sources of V1,

the binding requirements of the views in V1 must be satis�ed. Let A be the attributes of

V1 such that the values of A are not the initial values in Q. Then the values of A must

be obtained using a set of source views, say V2, whose free attributes include A. Clearly

the source views in V2 are also in b-closure(K). We can see that all the source views used

to derive the values of the attributes K in the ti's are in b-closure(K). After we get these

values, following the same idea as in the proof of Theorem 4.4.1, we can get tuple t in the

obtainable answer for T by using only the source views in T . Therefore, by using the source

views in b-closure(K) [T , we can get all the tuples in the obtainable answer for T .

Proof of (2) By Lemma 4.5.1, we can construct an instance of source relations R such

that the obtainable answer for T is not empty. But if we remove any source view in T , the

obtainable answer for T becomes empty.

Proof of (3) For every source view vi in b-closure(K), we prove that vi is relevant to

connection T by constructing an instance of source relations R, such that without using vi,

we cannot get a tuple in the obtainable answer for T . By the de�nition of b-closure(K),

there must be a BF-chain, as shown in Figure 4.9, such that the head of the BF-chain is

vi, and the tail (denoted w1 in the �gure) takes an attribute in K (denoted B1) as a free

attribute.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 69

R is constructed in four steps. Start by setting all the source relations to be empty. In

step 1, populate the relations in connection T following the same idea as in the proof of

Theorem 4.4.2. Let b1, b2, . . . be the values of attributes B1, B2, . . . in Figure 4.9, and t

be the projection of the join of these tuples onto the attributes O(Q). After we �nish the

construction of R, tuple t will be in the obtainable answer for T .

In step 2, as shown in Figure 4.10, populate the source relations on the BF-chain from vi

to w1 in such a way that only following this BF-chain we can get the value b1 of attribute B1.

Follow the same idea as in the proof of Theorem 4.4.2 to populate the source relations on the

BF-chain, except that the B1-value in the tuple of w1 is b1. For each source view wj on the

BF-chain, wj may have a set of bound attributes Z(wj) � B(wj) that do not overlap with

the free attributes of the previous source view on the BF-chain. For view vi, Z(vi) = B(vi).

For instance, in Figure 4.10, region I includes the attributes of F(w1), region II includes

the attributes of F(w2), and region III includes the attributes Z(w1) = B(w1) � F(w2).

Regarding the attributes in Z(wj)\ I(Q), their values in the tuple of wj in step 2 are their

initial values in Q. The values of all other attributes in Z(wj)�I(Q) in the tuples are some

new distinct values.

w2

t2
w1 t1

B1

D

Free

w3Free

Bound

Bound
Free

vi

Bound
Free

Free

Bound

wk

...

E

ti

III
I II

Bound

Figure 4.10: Populating the relations on the BF-chain in Figure 4.9.

In step 3, for each source view wj on the BF-chain, if Z(wj)�I(Q) is not empty, consider

each attribute A in it. By Lemma 4.5.1, there exists a feasible sequence of source views

such that A is a free attribute of the tail. Populate the source relations of this sequence

following the same idea as in the proof of Theorem 4.4.2, except that the value of A in the

tuple of the tail is the value of A in the tuple of wj that we chose in step 2.

In step 4, consider each attribute in K � fB1g, say Bj . By Lemma 4.5.1, there exists a

feasible sequence of source views such that Bj is a free attribute of the tail. Populate the

source relations of this sequence following the same idea as in the proof of Theorem 4.4.2,

except that the value of Bj in the tuple of the tail is bj , which is the value that we chose

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 70

for Bj in step 1.

After these four steps, it is possible that more than one tuple has been added to a source

relation. Based on how the relations are populated, all the source views that are populated

are in b-closure(K) [T , and we can get the bi's for the Bi's in the connection by using all

these populated source views. Following the same idea of the proof of Theorem 4.4.1, we

can prove that by using all these source views, we can get tuple t in the obtainable answer

for T .

Note that the only shared values among these source relations are those initial values in

Q, those bi's in connection T , and the values of the attributes in some Z(wj)� I(Q) during

step 2, in which wj is a source view on the BF-chain from vi to w1. Since K is a kernel of T ,

B1 cannot be bound by using only the source views in T starting from the initial bindings

in I(Q). On the other hand, without using value b1 of B1, we cannot get tuple t in the

answer for T . Based on how R is constructed, the only way to get b1 of B1 is to use the

source relations on the BF-chain from vi to w1, plus those source views that are populated

in step 3. Without using view vi, we cannot get the value b1 of B1, so we cannot get tuple

t in the answer for T . Therefore, vi is a relevant source view of connection T .

4.5.4 The Algorithm FIND REL

Using Theorem 4.5.1, we give the algorithm FIND REL that �nds all the relevant source

views of a queryable connection in a query. The algorithm is shown in Figure 4.11.

Algorithm FIND REL: Find the relevant views of a connection.
Input: � V : Source views with binding restrictions.

� Q: A query.
� T : A queryable connection in Q.

Output: All the relevant views of T .
Method:

(1) Compute all the queryable source views Vq = f-closure(I(Q);V).
(2) Compute a kernel K of connection T .
(3) Compute the backward-closure b-closure(K).
(4) Return b-closure(K) [T .

Figure 4.11: The algorithm FIND REL.

EXAMPLE 4.5.3 In Example 4.4.1, all the �ve source views are queryable. Connection

T1 = fv1; v3g is independent, so the only relevant source views of T1 are v1 and v3. Connec-

tion T2 = fv2; v3g is not independent, and it has only one kernel: fCg. The backward-closure

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 71

of the kernel is fv1; v2; v4g, so only v1, v2, v3, and v4 are relevant to T2.

In Example 4.5.1, connection T = fv1; v2; v3g has one kernel fDg, whose backward-

closure is fv4g. Thus the relevant source views of the connection are v1, v2, v3, and v4.

The connection in Example 4.5.2 has three kernels: fAg, fCg, and fEg. We choose one

of them, say fAg, and compute its backward-closure, which is fv1; v2; v3; v4g. Thus all the

four views are relevant to the connection. 2

Let us analyze the complexity of the algorithm FIND REL. Suppose that there are n

source views in V. Consider a queryable connection T with m source views and k attributes.

Assume it takes O(1) time to check whether a set of attributes is a subset of another set

of attributes. As described in Section 4.5.1, we can get all the queryable source views

by computing f-closure(I(Q);V). Step 1 thus can be done in O(n2) time. Step 2 can be

done by following the approach described in Section 4.5.2, which shrinks the attributes in

A(T) � I(Q) as much as possible. Since for each set of attributes X � A(T) � I(Q), it

takes O(m2) time to compute f-closure(X [I(Q); T), step 2 can be done in O(km2) time.

In step 3, for each attribute A in a kernel K of T , b-closure(A) can be computed in O(n2)

time, where n is the number of views in V. The reason is that during the computation,

we can keep a set of attributes Ab as the union of the B(wi)'s for each wi in b-closure(A)

that has been computed so far. At each step, for each queryable source view v that is

not in the current b-closure(A), we check whether F(v) \ Ab is not empty. If so, v is

added to b-closure(A). Thus step 3 can be done in O(kn2) time. Therefore, the total time

complexity of �nding the relevant source views of the connection is O(n2)+O(km2)+O(kn2)

= O(k(m2 + n2)) = O(kn2).

4.5.5 Constructing an E�cient Program

Given source descriptions V and a query Q, we can construct an e�cient program using

Theorem 4.5.1. We �rst �nd the relevant views of all the connections in Q as follows:

1. Compute all the queryable source views Vq = f-closure(I(Q);V).

2. Remove the nonqueryable connections, i.e., the connections that have a nonqueryable

view.

3. Compute the relevant views for each queryable connection by calling the algorithm

FIND REL.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 72

4. Take the union of all these relevant source views.

We then use only these relevant source views (denoted Vr) of query Q to construct a

datalog program �(Q;Vr) in the same way as �(Q;V) is constructed. For instance, in

Example 4.4.1, all �ve source views are queryable. By calling the algorithm FIND REL we

�nd that views v1 and v3 are relevant to connection T1; views v1, v2, v3, and v4 are relevant

to connection T2. Therefore, the relevant views for both connections are v1, v2, v3, and v4.

We use these four views to construct a more e�cient program, which can be obtained by

dropping the rules r13 and r14 in Figure 4.4.

In addition, some useless rules in the program �(Q;Vr) can be removed, since they do

not contribute to the answer. For instance, in Example 4.4.1, the user is not interested in

the B and E values, so rules r7 and r12 in Figure 4.4 can be dropped. Rules r9 and r10 can

also be removed since the predicates in their heads are not used by other rules. Figure 4.12

shows the optimized program that can compute the same answer as before.

r1: ans(D) :- cv1(a0; C);cv3(C;D) r6: domA(A) :- domC(C); v2(A;B;C)
r2: ans(D) :- cv2(a0; B; C);cv3(C;D) r8: cv3(C;D) :- domC(C); v3(C;D)
r3: cv1(A;C) :- domA(A); v1(A;C) r11: domC(C) :- v4(C;E)
r4: domC(C) :- domA(A); v1(A;C) r15: domA(a0) :-
r5: cv2(A;B;C) :- domC(C); v2(A;B;C)

Figure 4.12: The optimized datalog program in Example 4.4.1.

In general, we can simplify the program �(Q;Vr) as follows. Scan through all the rules

in the program �(Q;Vr), except for the connection rules. For each rule r, check whether

the IDB predicate in its head is used by other rules in the program. If not, rule r is useless

and can be removed from the program.

4.6 Testing Containment Between Connections

We have shown so far how to trim useless source accesses for individual connections in a

query. In this section, we study the containment problem between two connections in �ve

steps:

1. We formally de�ne connection containment (Section 4.6.1).

2. We prove that connection containment is decidable (Section 4.6.2).

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 73

3. We introduce the question of boundedness for the program of a connection (Sec-

tion 4.6.3). When one of the two programs in the containment test is bounded,

we can perform the test e�ciently.

4. We develop a polynomial-time algorithm for testing connection boundedness (Sec-

tion 4.6.4).

5. Finally, we compare our decidability proof to the approach of [MLF00] (Section 4.6.5).

4.6.1 Connection Containment

De�nition 4.6.1 (program for a connection) Let T be a connection in a query Q on

source descriptions V. The program for connection T is the program �(QT ;V), where QT

is the query that has only one connection T , with the input attributes I(Q) and the output

attributes O(Q). For any database D of the source relations, the ans facts computed by

the program �(QT ;V) is the maximal answer to the connection T . 2

v1(Studio;Movie)

v2(Movie; Star; Award)

v3(Movie; Star)

b f

b b f

Movie Star Award

b f

Studio

v4(Star; Addr;Dob)

b f f
Addr

Dob

Figure 4.13: The hypergraph representation of four movie sources.

EXAMPLE 4.6.1 Assume we have four sources of movie information as shown in Fig-

ure 4.13. Suppose that a user wants to �nd the addresses and dates of birth of the stars in

movies produced by Disney. The query can be represented as

Q = hfStudiog; fAddr;Dobg; fT1; T2gi

in which the two connections are T1 = fv1; v2; v4g and T2 = fv1; v3; v4g. Clearly connection

T2 is independent, while T1 is not. Figure 4.14 shows the corresponding datalog program

�(Q;V).

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 74

r1: ans(A;D) :- cv1(disney;M);cv2(M;S;W);cv4(S;A;D)
r2: ans(A;D) :- cv1(disney;M);cv3(M;S);cv4(S;A;D)
r3: cv1(T;M) :- studio(T); v1(T;M)
r4: movie(M) :- studio(T); v1(T;M)
r5: cv2(M;S;W) :- movie(M); star(S); v2(M;S;W)
r6: award(W) :- movie(M); star(S); v2(M;S;W)
r7: cv3(M;S) :- movie(M); v3(M;S)
r8: star(S) :- movie(M); v3(M;S)
r9: cv4(S;A;D) :- star(S); v4(S;A;D)
r10: addr(A) :- star(S); v4(S;A;D)
r11: dob(D) :- star(S); v4(S;A;D)
r12: studio(disney) :-

Figure 4.14: The datalog program �(Q;V) for the query in Example 4.6.1.

Figure 4.15 shows the program �(QT1 ;V) for connection T1. It can be constructed from

the program �(Q;V) by removing the connection rule r2. That is, it includes the connection

rule for T1, and the �-rules, and the fact rule in �(Q;V). Similarly, �(QT2 ;V) can be

constructed by removing the connection rule r1 from the program �(Q;V) in Figure 4.14.

Although T1 and T2 have di�erent views, surprisingly, as we will see in Section 4.6.2,

the answer to connection T1 is contained in the answer to connection T2, i.e., �(QT1 ;V) v

�(QT2 ;V). Therefore, we can compute the answer to the query by considering only connec-

tion T2, and thus save the queries to source S2. 2

r1: ans(A;D) :- cv1(disney;M);cv2(M;S;W);cv4(S;A;D)
r3: cv1(T;M) :- studio(T); v1(T;M)
r4: movie(M) :- studio(T); v1(T;M)
r5: cv2(M;S;W) :- movie(M); star(S); v2(M;S;W)
r6: award(W) :- movie(M); star(S); v2(M;S;W)
r7: cv3(M;S) :- movie(M); v3(M;S)
r8: star(S) :- movie(M); v3(M;S)
r9: cv4(S;A;D) :- star(S); v4(S;A;D)
r10: addr(A) :- star(S); v4(S;A;D)
r11: dob(D) :- star(S); v4(S;A;D)
r12: studio(disney) :-

Figure 4.15: The program �(QT1 ;V) for the connection T1 in Example 4.6.1.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 75

De�nition 4.6.2 (connection containment) Suppose T1 and T2 are two connections in

a query Q on source descriptions V . T1 is contained in T2, denoted T1 �
ans T2, if the

program �(QT1 ;V) is contained in �(QT2 ;V) with respect to the goal predicate ans, i.e.,

�(QT1 ;V) v �(QT2 ;V). 2

This connection-containment problem is also called relative containment in [MLF00].

For brevity, further on, we use \connection containment" to mean \relative containment."

In general, given two connections T1 and T2 in a query Q on source descriptions V , we want

to test whether T1 �ans T2.

4.6.2 Connection Containment Is Decidable

The program �(QT ;V) for a connection T could be recursive (as shown in Example 4.2.1),

connection containment appears undecidable, since containment of datalog programs is

undecidable [Shm93]. However, we prove connection containment is decidable, since it

can be reduced to containment of monadic programs. A datalog program is monadic if its

recursive IDB predicates are monadic (the nonrecursive predicates can have arbitrary arity).

An IDB predicate is nonrecursive if it either does not depend on another IDB predicate,

or it depends only on nonrecursive predicates. Under this de�nition of nonrecursive IDB

predicates, it is shown in [CGKV88] that containment of monadic programs is decidable

[Var99].

Theorem 4.6.1 Connection containment is decidable. 2

The main idea of the proof is as follows. Let �(QT1 ;V) and �(QT2 ;V) be the programs

for connection T1 and T2, respectively. We construct two programs �1 and �2, such that:

1. Both �1 and �2 are monadic programs;

2. �(QT1;V) v �(QT2 ;V) if and only if �1 v �2.

Since containment of monadic programs is decidable, the problem of testing �(QT1 ;V) v

�(QT2 ;V) is decidable. The construction of �1 from �(QT1;V) has two steps. (�2 can be

constructed from �(QT2 ;V) similarly.) In step (1), each �-predicate bvi in the connection

rule is substituted by the body of the corresponding �-rule of vi, with the necessary vari-

able uni�cation. After the substitutions, remove the �-rules from �(QT1 ;V), and the new

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 76

program, denoted �(QT1 ;V)
0, is equivalent to �(QT1 ;V). Let r0 be the modi�ed connection

rule. For instance, the program �(QT1;V) in Figure 4.15 can be rewritten to the following

equivalent program:2

r0: ans(A;D) :- studio(disney); v1(disney;M);movie(M); star(S); v2(M;S;W); v4(S;A;D)

r4: movie(M) :- studio(T); v1(T;M)

r6: award(W) :- movie(M); star(S); v2(M;S;W)

r8: star(S) :- movie(M); v3(M;S)

r10:addr(A) :- star(S); v4(S;A;D)

r11:dob(D) :- star(S); v4(S;A;D)

r12:studio(disney) :-

In the new program, ans is the only IDB predicate that might not be unary. It could be

recursive, since it might depend on recursive domain predicates. Thus this program is not

monadic, and we cannot use the decidability result of monadic programs directly. Suppose

the modi�ed connection rule r0 is:

ans(X1; : : : ; Xm) :- dom1(Y1); : : : ; domk(Yk); F

where dom1; : : : ; domk are unary domain predicates, and F is a set of EDB formulas. In

step (2), we construct program �1 by replacing r0 with the following rule:

final(Z) :- E1(X1; Z); : : : ; Em(Xm; Z); dom1(Y1); : : : ; domk(Yk); F

where final is a new IDB predicate representing the answer to the new program, Z is a

fresh variable, and E1; : : : ; Em are new EDB predicates. For instance, the rule r0 in the

program above is replaced with:

r0 : final(Z) :- E1(A;Z); E2(D;Z); studio(disney); v1(disney;M); movie(M); star(S);

v2(M;S;W); v4(S;A;D)

Clearly the program �1 is monadic, since all its IDB predicates are unary. Now we

prove that �(QT1 ;V) v �(QT2 ;V) if and only if �1 v �2. The \only if" part is obvious by

the construction of the two programs. For the \if" part, suppose �1 v �2, but �(QT1 ;V) 6v

�(QT2 ;V). Then there exists a database D, such that there is a tuple ans(x1; : : : ; xm)

2We use this example to illustrate how to construct monadic program �1 for program �(QT1 ;V), even
though the program �(QT1 ;V) in this example is not recursive. In general, this program can be recursive,
as shown in Example 4.2.1.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 77

in �(QT1 ;V)(D), but not in �(QT2 ;V)(D). Let z be a fresh constant. We add tuples

E1(x1; z); : : : ; Em(xm; z) to D, and get a new database D0. By the construction of the

two programs and D0, tuple z is in �1(D0), but not in �2(D0), contradicting the fact that

�1 v �2.

In conclusion, we can test �(QT1 ;V) v �(QT2 ;V) by testing �1 v �2, which is decidable

since both �1 and �2 are monadic programs.

4.6.3 Connection Boundedness

If one of the two programs in testing �(QT1 ;V) v �(QT2;V) is bounded, the containment

can be tested e�ciently using the algorithms in [CM77, CV92, SY80]. A datalog program

is bounded if it is equivalent to a �nite union of conjunctive queries. For instance, the

programs for the two queries in Example 4.6.1 are both bounded, because each of them

can be rewritten to an equivalent conjunctive query. In this section, we study the following

problem: given a connection T on source views V with binding restrictions, how do we

test the boundedness of �(QT ;V)? We develop a polynomial-time algorithm for testing

boundedness of connections. The following example shows an unbounded connection.

A

C

b f

v3(B;D)

f b

v5(D;E)

v4(B;D)

b f

v2(B;C)

v1(A;B)

f b

DB E

f f

Figure 4.16: The source descriptions in Example 4.6.2.

EXAMPLE 4.6.2 Consider the �ve source views in Figure 4.16. Assume a user knows

the value of A is a, and wants to get the C values by joining the views v1 and v2. The

following is the query:

Q = hfAg; fCg; fTgi

in which the only connection is T = fv1; v2g. Assume the �ve attributes have �ve di�erent

domains. The program �(QT ;V) is shown in Figure 4.17. This program is unbounded.

Intuitively, since the binding pattern of v3(B;D) is fb, and the binding pattern of v4(B;D)

is bf, we can visit these two source views repeatedly to retrieve more B values. Each new

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 78

B value can participate in v1 ./ v2, and generate more answers to the query. (We will give

a proof of the unboundedness in Section 4.6.4.) 2

r1: ans(C) :- bv1(a; B); bv2(B;C) r8: bv4(B;D) :- domB(B); v4(B;D)
r2: bv1(A;B) :- domB(B); v1(A;B) r9: domD(D) :- domB(B); v4(B;D)
r3: domA(A) :- domB(B); v1(A;B) r10: bv5(D;E) :- v5(D;E)
r4: bv2(B;C) :- domB(B); v2(B;C) r11: domD(D) :- v5(D;E)
r5: domC(C) :- domB(B); v2(B;C) r12: domE(E) :- v5(D;E)
r6: bv3(B;D) :- domD(D); v3(B;D) r13: domA(a) :-
r7: domB(B) :- domD(D); v3(B;D)

Figure 4.17: The program �(QT ;V) in Example 4.6.2.

4.6.4 Testing Connection Boundedness

In this section, we develop a polynomial-time algorithm for testing connection boundedness,

even though boundedness of datalog programs in general is undecidable [GMSV93].

Independent Connections

Recall that a connection T in a query Q is independent if f-closure(I(Q); T) = T . For

instance, the connection T2 in Example 4.6.1 is independent, while connection T1 is not.

Similarly, the connection in Example 4.6.2 is not independent.

Lemma 4.6.1 If a connection T is independent, then T is bounded. 2

Proof: Assume T = fw1; : : : ; wkg. Since f-closure(I(Q); T) = T , there exists a feasible

sequence of the views in connection T , say, wi1 ; � � � ; wik , that satis�es: (i) B(wi1) � I(Q);

(ii) for j = 2; : : : ; k, B(wij) � I(Q) [A(wi1) [� � � [A(wij�1). For any database of V , we

can compute the maximal answer to T as follows. Compute the corresponding sequence of

n supplementary relations S1; : : : ; Sn, where Si is the supplementary relation after the �rst

i subgoals have been processed. The supplementary relation Sn is the answer to query Q.

Therefore, we can compute the answer to T after n+1 applications of the rules in �(QT ;V)

(the last application is to evaluate the connection rule).

If a connection T is not independent, the predicate ans in �(QT ;V) may not be bounded,

as shown in Example 4.6.2.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 79

BF-loop and BF-graph

De�nition 4.6.3 (BF-loop) A sequence of views forms a BF-loop if it forms a BF-chain,

and the bound attributes of the head overlap with the free attributes of the tail. 2

For instance, in Figure 4.16, (v3; v4) forms a BF-loop, because F(v3)\B(v4) = fBg and

F(v4)\ B(v3) = fDg.

De�nition 4.6.4 (BF-graph) The BF-graph of a set of source viewsW is a directed graph

in which each vertex corresponds to a view in W , and there is an edge from vertex vi to

vertex vj if and only if F(vi)\ B(vj) 6= �. 2

v1 v2 v4

v3

Figure 4.18: BF-graph for Example 4.6.1.

v1

v2

v4

v3
v5

Figure 4.19: BF-graph for Example 4.6.2.

Figures 4.18 and 4.19 show the BF-graphs of the source views in Example 4.6.1 and

Example 4.6.2, respectively. For instance, in Figure 4.18, there is an edge from vertex v1 to

vertex v2 because F(v1) \ B(v2) = fMovieg. Clearly there is a BF-loop in a set of source

views if and only if the BF-graph of these views is cyclic.

Algorithm TestBoundedness

Theorem 4.6.2 If T is a connection in a query Q on source descriptions V, and all the

source views on T are queryable, then T is bounded if and only if there is no BF-loop among

the views in b-closure(K), in which K is a kernel of T . 2

Proof: If: Assume T = fw1; : : : ; wng, and b-closure(K) = fv1; : : : ; vkg. Since there is no

BF-loop among the views in b-closure(K), there exists a BF-chain vi1 ; : : : ; vik in b-closure(K)

with distinct views, such that the free attributes of each view vij do not overlap with the

bound attributes of any previous source view. Starting with the initial bindings in Q and

following the sequence vi1 ; : : : ; vik , we use the views in this sequence to send source queries

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 80

and retrieve all the possible bindings X of the attributes in K. With these bindings X

and the initial bindings in I(Q), there exists a sequence of the views in T , say wl1; : : : ; wln,

such that the binding requirements of each view in the sequence can be satis�ed. We follow

this sequence to send source queries, collect tuples from the sources in the connection, and

evaluate the connection rule in �(QT ;V) to compute the answer to T . Therefore, we can

evaluate the rules in a �nite number of steps to compute the answer to the connection, and

the number is independent of the source relations. Thus T is bounded.

Only If: If there is a BF-loop among the views b-closure(K), we prove T is unbounded

by showing that for any integer k > 0, there exists some database D, such that only after

k applications of the rules in �(QT ;V) we can compute a tuple in the answer to T . Since

there is a BF-loop among b-closure(K), there exists an attribute A in K, such that there is

a BF-loop among b-closure(A). For any integer k > 0, there is a BF-chain v1; : : : ; vk with

length k, and A 2 F(vk). We can add tuples to the relations on the BF-chain, such that in

following the BF-chain only, we can retrieve a tuple in the answer to T . In other words, we

\populate" the relations in a BF-loop of the views in b-closure(K) along the loop as many

times as we want. By the construction of database D, we can only compute a tuple in the

answer to T after k applications of the rules in �(QT ;V).

Consider the two connections in Example 4.6.1. Connection T1 has one kernel fStarg,

whose backward-closure is fv1; v3g. Clearly there is no BF-loop in fv1; v3g, thus T1 is

bounded. Similarly, connection T2 has one kernel �, and there is no BF-loop in its backward-

closure, thus T2 is also bounded. Thus the two programs �(QT1 ;V) and �(QT2 ;V) can be

rewritten to unbounded queries. In Example 4.6.2, fBg is the only kernel of the connection

fv1; v2g, and the backward-closure of fBg is fv1; v3; v4; v5g. Since there is a BF-loop, (v3; v4),

among these four views, by Theorem 4.6.2, the connection is unbounded. If a connection

T is independent, it has only one kernel, the empty set �. Thus the backward-closure of

this kernel is empty, and there is no BF-loop among the views in the backward-closure. By

Theorem 4.6.2, connection T is bounded, which is consistent with Lemma 4.6.1.

By Theorem 4.6.2, we give an algorithm called TestBoundedness for testing connection

boundedness, as shown in Figure 4.20.

Let us see the complexity of this algorithm. Assume V has n views, T has m views

and k attributes, and b-closure(K) has p views. Section 4.5.4 gives the details how steps 1

to 4 are executed in O(kn2) time. Steps 5 and 6 can be done in O(p2) time, since we can

test the cyclicity of the BF-graph in O(p2) time [AHU83]. Therefore, the complexity of the

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 81

Algorithm TestBoundedness: Test connection boundedness
Input: � V: Source views with binding restrictions.

� Q: A query on V .
� T : A connection in Q.

Output: Decision about the boundedness of T .
Method:

(1) Compute the queryable views Vq = f-closure(I(Q);V).
(2) If there is one view v 2 T that is not in Vq, T is bounded and return.
(3) Compute a kernel K of T .
(4) Compute b-closure(K).
(5) Build the BF-graph G of b-closure(K).
(6) Test the acyclicity of G. If G is acyclic, then T is bounded; otherwise, T is unbounded.

Figure 4.20: Testing the boundedness of a connection.

algorithm is:

O(kn2) + O(p2) = O(kn2)

4.6.5 Comparison with the Approach in [MLF00]

[MLF00] proved the same decidability result as Theorem 4.6.1. Assume Q1 and Q2 are two

conjunctive queries on relations with binding restrictions. Let P1 and P2 be the datalog

programs that compute the maximal answers to P1 and P2, respectively. The authors

showed that, surprisingly, P exp
1 v P exp

2 if and only if P exp
1 v Q2, where P

exp
1 is the expansion

of P1 (see Section 2.5 for the de�nition). It is decidable to test P exp
1 v Q2 [CV92].

Readers should compare the two approaches to the decidability result. Besides the fact

that we studied this problem in 1999, the following are the di�erences:

1. [MLF00] uses the source-centric approach to information integration, while we use the

query-centric approach. However, our proof can be generalized to the source-centric

approach [LC99].

2. The decidability proof in [MLF00] is based on the assumption that the set of bindings

for the contained query is a subset of the bindings for the containing query. Theo-

rem 4.6.1 is true even if the two queries have di�erent initial bindings. However, we

assume both queries are connection queries, while in [MLF00] the contained query

can be a recursive datalog program.

3. We also discuss how to test the boundedness of the program for a query.

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 82

4.7 Discussion

In this section we discuss variations of the problem of computing maximal answers to queries.

4.7.1 Other Possibilities for Obtaining bindings

Theorem 4.4.1 suggests that accessing o�-connection views is only necessary for noninde-

pendent connections. So far, we have assumed that the bindings of a domain are either from

a user query or from other source queries. If cached data is available, it can be incorporated

into the program �(Q;V) for a query Q and source descriptions V . Suppose that we have

a cached tuple ti(a1; : : : ; an) for source view vi(A1; : : : ; An). The following rules are added

to the program �(Q;V):

cv1(a1; : : : ; an) :-

domAi(ai) :- (i = 1; : : : ; n)

Predicates domA1; : : : ; domAn are the domain predicates for the attributes A1; : : : ; An,

respectively. The �rst rule says that tuple ti(a1; : : : ; an) is an obtained tuple of source

view vi. The other fact rules represent the bindings for the corresponding domains. The

new rules can contribute more answers to the query. Some views that were nonqueryable

when we considered only the initial bindings in Q may now become queryable with the new

bindings from the cached data. The de�nition of kernel does not change. In general, if we

have some information about a domain, we can always incorporate the information into the

program �(Q;V) by adding the corresponding fact rules.

We may also obtain bindings by using some known domain knowledge. For example,

suppose that we have a source view student(name; dept; GPA) with the binding pattern

bbf . That is, every query to this source must supply a name and a department of a student,

so that the student's GPA can be returned. Assume we know that all the students at the

source are in four departments: fCS, EE, Physics, Chemistryg. Then we can use these four

departments as bindings for attribute dept to query the source, and we do not need other

sources to retrieve dept bindings.

4.7.2 Computing a Partial Answer

In some cases a user may be interested in a partial answer to a query. Thus we do not

need to compute the maximal answer, which may be expensive to retrieve. Theorem 4.4.1

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 83

suggests that if a connection is independent, its complete answer can be computed by using

only the views in the query. If a connection T is not independent, we can �nd a kernel K

of T . We access some sources in b-closure(K) to obtain bindings for the attributes in K,

and compute a partial answer for the connection. Notice that we may access only a subset

of the backward-closure of K, since we are not interested in the maximal answer for T . In

addition, we need to consider the tradeo� between the number of results and the number

of source accesses. The more sources we access, the more bindings we can retrieve, and the

more answers we can compute for the connection. We decide how many source queries to

send based on how many results the user is interested in.

4.7.3 Extending Results to Conjunctive Queries

Note that a conjunctive query might not be a connection query. The following query:

ans(A;B) :- r(A;B); r(B;A)

is an example. Some results on connection queries in this chapter can be extended to

arbitrary conjunctive queries. (1) We can construct a datalog program for a conjunctive

query following the idea in Section 4.3.1. That is, we introduce an IDB predicate for each

domain that can be shared by several attributes. The idea of using �-predicates and adding

rules can be generalized naturally. (2) The decidability result in Section 4.6 can be extended

to datalog programs for conjunctive queries.

4.8 Conclusions and Related Work

In this chapter we showed that sources not mentioned in a query can contribute to the

query's result by providing useful bindings. We proposed a query-planning framework in

the presence of source restrictions. In the framework, a user query and source descriptions

are translated into a datalog program, which can be evaluated on the source relations to

answer the query. We then solved optimization problems in this framework. In particular,

we showed in what cases accessing o�-query sources is necessary, and developed an algorithm

for �nding all useful sources for a query. We also solved the problem of testing whether

the answer to a query is contained in the answer to another query. By using the results

on monadic programs, we proved this containment problem is decidable. We developed an

CHAPTER 4. ANSWERING QUERIES WITH USEFUL BINDINGS 84

e�cient algorithm for testing program boundedness in our framework. We can perform the

containment test e�ciently when one of the programs in the test is bounded.

Related Work

Taking the source-centric approach, Rajaraman, Sagiv, and Ullman [RSU95] proposed al-

gorithms for answering queries using views with binding patterns. Duschka and Gene-

sereth [DG97] studied the problem of answering datalog queries using views, and the

plan can be a datalog program. Duschka and Levy [DL97] considered source restric-

tions by translating source binding patterns into rules in a datalog program, assuming

that all attributes share the same domain. The paper did not discuss how to trim useless

sources, thus it may generate programs that are not e�cient to evaluate. Other stud-

ies [ASU79a, ASU79b, CM77, CKPS95, SY80] discussed conjunctive-query rewriting and

optimization without considering the restrictions of retrieving information from relations.

Taking the query-centric approach, [LYV+98] showed how to generate a feasible plan of a

query based on source restrictions. If the complete answer to the query cannot be retrieved,

[LYV+98] would not answer the query, but would claim that a feasible plan does not exist.

In this case, our approach can still compute a partial answer. Although we take the query-

centric approach in this study, our techniques for �nding useful sources are also applicable to

the source-centric approach, since when source views are the same as global predicates, the

query-centric approach in [DL97] and our framework generate equivalent datalog programs.

Other related studies include how to optimize conjunctive queries with source restrictions

[FLMS99, YLUGM99], how to describe source capabilities using a powerful language [VP97],

how to compute mediator capabilities given source capabilities [YLGMU99], and how to

convert data at mediators [CDSS98].

Chapter 5

Computing Complete Answers to

Queries

In the previous chapter we studied how to compute the maximal answer to a query by using

the useful bindings from other relations. In many cases we want to know whether the answer

computed by a plan is really the complete answer, i.e., the answer that could be computed

if we could retrieve all the tuples from all relations. In this chapter we study the following

problem: given a query on relations with binding restrictions, can its complete answer be

computed? If so, what is the execution plan? Since we can only retrieve some tuples from

the relations due to their restrictions, we need to do reasoning about the completeness of

the answer computed by a plan.

Chapter Organization

In Section 5.1 we motivate the study of this problem using an example. Section 5.2 in-

troduces the notation used throughout the chapter. In particular, we say a query on rela-

tions with binding restrictions is stable if there exists a plan for the query that computes

the query's complete answer independent of the database. Section 5.3 studies stability of

conjunctive queries. Section 5.4 shows that for some conjunctive queries, whether their

complete answers are computable depend on the relations. Section 5.5 studies stability

of unions of conjunctive queries. Section 5.6 studies stability of conjunctive queries with

arithmetic comparisons. Section 5.7 studies stability of datalog queries. In Section 5.8 we

conclude the chapter and discuss related work.

85

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 86

5.1 Introduction

The following example shows that in some cases the complete answer to a query can be

computed.

EXAMPLE 5.1.1 Assume that we have two relations. Relation r(Star;Movie) has in-

formation about movies and their stars. Its only binding pattern, bf, says that each query

to s1 must specify a star name. Similarly, relation s(Movie; Award) has a binding pattern

bf. Consider the following query that asks for the awards of the movies in which Henry

Fonda starred:

Q1 : ans(A) :- r(
0Henry Fonda0;M); s(M;A)

To answer Q1, we �rst access relation r to retrieve the movies in which Henry Fonda

starred. For each returned movie, access relation s to obtain its awards. Return all these

awards as the answer to the query. Although only part of the two relations was retrieved,

we can still claim that the computed answer is the complete answer. The reason is that

all the tuples of relation r that satisfy the �rst subgoal were retrieved in the �rst step.

Similarly, all the tuples of s that satisfy the second subgoal and join with the results of the

�rst step were retrieved in the second step. 2

Query Q1 is called a \stable" query. A query is stable if for any instance of the relations

mentioned in the query, the complete answer to the query is computable. That is, there

exists a plan such that the answer computed by this plan is guaranteed to be the complete

answer to the query. (The formal de�nition is in Section 5.2.) We show that if a conjunctive

query is feasible (see De�nition 3.2.1 in Section 3.2.1), then the query is stable, and its

complete answer can be computed by a linear plan (see Section 3.2.1). In addition, the

following example shows that a query can be stable even if it is not feasible.

EXAMPLE 5.1.2 Suppose that we have two relations: r(A;B;C) with a binding pattern

bff , and s(D;E; F) with a binding pattern fbb. Consider the following query:

Q2 : ans(V;X) :- r(a; V; Y); r(b;W;U); s(X;V;W); s(X;Z;W)

This query is not feasible, since the binding pattern fbb of relation s requires the second

argument to be bound, but variable Z in subgoal s(X;Z;W) cannot be bound by other

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 87

subgoals. However, this subgoal is actually redundant, and Q2 is equivalent to the following

query (i.e., Q0
2 � Q2):

Q0
2 : ans(V;X) :- r(a; V; Y); r(b;W;U); s(X; V;W)

Q0
2 is contained in Q2, i.e., Q

0
2 v Q2, because there is a containment mapping from Q2

to Q0
2: a ! a, b! b, V ! V , Y ! Y , W ! W , U ! U , X ! X , and Z ! V . Similarly,

Q2 v Q0
2 because the identity mapping on subgoals gives us a containment mapping from

Q0
2 to Q2. Since Q0

2 has a feasible sequence of all its subgoals: r(a; V; Y), r(b;W; U),

and s(X; V;W), a linear plan following this sequence (see Section 3.2.1) can compute the

complete answer, which is also the complete answer to Q2. 2

Example 5.1.2 suggests that we need to minimize a conjunctive query before checking

its feasibility. However, even if the minimal equivalent of a query Q is not feasible, it is

still not clear whether the query has an equivalent query that is feasible. Note that there

is no a priori limit on the size of an equivalent of query Q, and some equivalents may look

quite di�erent from Q. Fortunately, in Section 5.3 we prove that if a minimal conjunctive

query is not feasible, then no equivalent of the query can be feasible. We then show that

a conjunctive query is stable if and only if its minimal equivalent is feasible. In particular,

if its minimal equivalent is not feasible, then there can always be a database, such that the

complete answer to the query cannot be computed. We propose two algorithms for testing

stability of conjunctive queries, and we prove this problem is NP-complete.

For a nonstable conjunctive query, whether its complete answer can be computed is

data dependent. We categorize nonstable conjunctive queries into two classes based on

whether the distinguished variables can be bound by the answerable subgoals in a query.

We thus develop a decision tree (as shown in Figure 5.6) that guides the planning process

to compute the complete answer to a conjunctive query. While traversing the decision tree,

two planning strategies | a pessimistic strategy and an optimistic strategy | can be taken.

We then study unions of conjunctive queries, and show similar results as conjunctive

queries (Section 5.5). In particular, we need to minimize a union of conjunctive queries

before checking its stability. We show that a �nite union of conjunctive queries Q is stable

i� each query in the minimal equivalent of Q is stable. We also propose two algorithms for

testing stability of unions of conjunctive queries. For conjunctive queries with arithmetic

comparisons, stability testing becomes tricky, since a conjunctive query might not have a

minimal equivalent consisting of a subset of its subgoals. We �rst show that if a query only

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 88

includes comparisons f<;>g, we can generalize an algorithm for conjunctive queries for

testing its stability. We then give an algorithm for testing stability of conjunctive queries

with general arithmetic comparisons, including f�;�;=; 6=g.

Finally we study datalog queries, and show that if a set of rules and a query goal have

a feasible rule/goal graph [Ull89], then the query is stable. We also show that stability of

datalog queries is undecidable.

5.2 Preliminaries

In this section, we introduce the notation used in the chapter. The following observation

serves as a starting point of our work.

Observation 1 If a relation does not have an all-free binding pattern, then after some

source queries are sent to the relation, there can always be some tuples in the relation that

have not been retrieved, because we did not obtain the necessary bindings to retrieve them.

2

De�nition 5.2.1 (complete answer to a query) Given a database D of relations with

binding restrictions, the complete answer to a query Q is ANS(Q;D), i.e., the query's

answer that could be computed if we could retrieve all the tuples from the relations. 2

De�nition 5.2.2 (stable query) A query on relations with binding restrictions is stable

if there exists a plan that accesses the relations using legal patterns, and the plan always

computes the query's complete answer independent of the database. 2

In this chapter we are especially interested in the two classes of plans: linear plans and

exhaustive plans. As de�ned in Section 3.2.1, a linear plan computes the answer to a query

by computing the supplementary relations following a feasible sequence of all the subgoals

in the query. We call the plan in Section 4.3 an exhaustive plan, since it computes all the

obtainable answers to the query by exhaustively retrieving tuples from relations. Here we

make the binding assumptions in Section 4.3.2.

In general, an exhaustive plan for a CQ is more expensive than a linear plan, since

an exhaustive plan often accesses relations not mentioned in the query to obtain bindings.

Thus adding more relations to the database may help compute more results for the query.

The previous chapter also discussed how to incorporate cached data into an exhaustive

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 89

plan by adding the corresponding rules. As we will see in Section 5.4, exhaustive plans

are especially useful for nonstable CQ's, since these queries cannot be answered by linear

plans. Since the complete answer to a stable query can be computed by a linear plan, an

exhaustive plan is not necessary for stable CQ's.

5.3 Stability of Conjunctive Queries

In this section we study stability of CQ's. We propose two algorithms for testing stability

of CQ's, and prove that this problem is NP-complete.

5.3.1 Feasible Conjunctive Queries

The following lemma shows that all feasible CQ's are stable.

Lemma 5.3.1 If a CQ Q on relations with binding restrictions is feasible, then for any

database D, ANS(Q;D) can be computed by a linear plan. Thus every feasible CQ is

stable. 2

Proof: Let Q have a feasible sequence g1(�X1); : : : ; gn(�Xn) of all its subgoals, and L be the

corresponding linear plan of this sequence. For each tuple t 2 ANS(Q;D), suppose that t

comes from the tuples t1; : : : ; tn of the relations g1; : : : ; gn, respectively. For j = 1; : : : ; n�1,

the tuple t1 ./ � � � ./ tj is included in the supplementary relation Sj after its values for the

irrelevant variables are dropped. This tuple agrees with the tuple tj+1 on their common

variables. Therefore, during the computation of the supplementary relation Sj+1 in the

plan L, no matter which binding pattern of the relation gj+1 is chosen, tuple tj+1 in gj+1 is

retrieved by a source query to relation gj+1. Based on the way Sj+1 is computed, Sj+1 also

includes the tuple t1 ./ � � � ./ tj+1 after the values for the irrelevant variables are dropped.

Thus the supplementary relation Sn computed by the plan L includes the tuple t, which

can derived from t1 ./ � � � ./ tn by dropping the values for the nondistinguished variables.

Lemma 5.3.1 shows that the computability of the complete answer to a feasible CQ is

static, because no matter what the relations mentioned in the query are, the complete answer

can be computed by the same linear plan. As we will see in Section 5.4, the computability

of the complete answer to a nonstable CQ is dynamic, since the computability is unknown

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 90

until some plan is executed. Recall that the feasibility of a CQ can be checked by the

Inationary algorithm (Section3.2.1).

5.3.2 Minimal Equivalents of CQ's

Example 5.1.2 shows that even if a query is not feasible, it can still be stable, since its

minimal equivalent may be feasible. A CQ is minimal if it has no redundant subgoals, i.e.,

removing any subgoal from the query will yield a nonequivalent query. It is known that each

CQ has a unique minimal equivalent up to renaming of variables and reordering of subgoals,

which can be obtained by deleting its redundant subgoals [CM77]. Thus Lemma 5.3.1 can

be strengthened to the following corollary.

Corollary 5.3.1 If a CQ has a minimal equivalent that is feasible, then the query is stable.

2

However, if the minimal equivalent Qm of a CQ Q is not feasible, it is still not clear

whether there exists an equivalent query that is feasible. In analogy with [RSU95], we might

need to consider the possibility that by adding some redundant subgoals to query Qm, we

could have an equivalent query that is feasible. In principle, we have to consider all the

equivalents of the query Q to check whether some of them are feasible. Note that there are

in�nite number of equivalents to a query, and some of them may look quite di�erent from

the query. Fortunately, we have the following lemma:

Lemma 5.3.2 If a minimal CQ is not feasible, then it has no equivalent that is feasible. 2

Proof: Let Q be a minimal CQ that is not feasible. Suppose there is an equivalent CQ

P that is feasible, and �P = he1; : : : ; emi is a feasible sequence of all the subgoals in P .

Since the two queries are equivalent, there exist two containment mappings �: Q ! P ,

and �: P ! Q. Consider the targets in Q of the subgoals e1; : : : ; em under the mapping �:

�(e1); : : : ; �(em). Scan these subgoals from �(e1) to �(em), and remove the subgoals with

identical subgoals earlier in the sequence, and we have a sequence of some subgoals in Q:

�Q = hg1; : : : ; gni, as shown in Figure 5.1. Now we prove that �Q is a feasible sequence

of all the subgoals in Q. That is, we need to show: (1) �Q includes all the subgoals in

query Q; (2) �Q is a feasible sequence. Since query Q is not feasible, we can claim that the

equivalent query P actually does not exist.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 91

� � � �

Q:

P :

H :- g1(: : :) & : : : & gt(: : : ; X; : : :) & : : : & gi(: : : ; X; : : :) & : : : & gn(: : :)

E :- e1(: : :) & : : : & ej(: : : ; Y; : : :) & : : : & eki(: : : ; Y; : : :) & : : : & em(: : :)

Figure 5.1: Proof of Lemma 5.3.2.

Claim (1) is correct because Q is minimal. If �Q did not include all the subgoals in Q,

let Q0 be the head of Q and the subgoals in �Q. Then Q0 v P because of the containment

mapping �, and P v Q0 because of the containment mapping �. Thus Q0 is equivalent to

Q, and Q could not be minimal.

We now prove claim (2). Consider the �rst subgoal g1 = �(e1) in �Q. Since the

containment mapping � maps a variable to a variable or a constant, and maps a constant

to the same constant, all the targets of the constant arguments in subgoal e1 must also be

constant arguments in subgoal g1. Since e1 is answerable by the relation e1, subgoal g1 is

also answerable by the relation g1, which is the same as relation e1.

Consider each subgoal gi in the sequence �Q, and let gi = �(eki) for some 1 � ki � m.

Since subgoal eki is answerable in �P , there is a binding pattern p of relation eki , such

that for each argument Y in subgoal eki that is adorned b in binding pattern p, either Y

is a constant, or Y is a variable bound by a previous subgoal ej . Consider the argument

X = �(Y) in subgoal gi. If Y is a constant, then X is also a constant. If Y is a variable,

and X is not a constant, based on how �Q was constructed, there exists a subgoal gt before

gi in �Q, such that gt = �(ej). (If �(ej) was removed during the construction of �Q, then

gt is a subgoal identical to �(ej).) Therefore, the variable X is also bound by the subgoal

gt. In summary, X is either a constant or a variable that is bound by a previous subgoal

in �Q. Subgoal gi satis�es the binding requirements of the binding pattern p, and thus it

is also answerable by the relation gi.

Lemma 5.3.3 If the minimal equivalent of a CQ is not feasible, then the query is not

stable. 2

Proof: Assume that query Q has a minimal equivalent Qm that is not feasible. In

order to prove that Q is not stable, we construct two databases, D1 and D2, such that

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 92

ANS(Q;D1) 6= ANS(Q;D2), but D1 and D2 have the same observable tuples. Since we

cannot tell which database we have by looking at the observable tuples, no plan for the

query can guarantee that its computed answer is the complete answer to the query.

Let X1; : : : ; Xm be all the variables in Qm. Each variable Xi is assigned a distinct value

xi. All the relations are empty initially. For each subgoal gi in Qm, add a tuple ti to its

relation. For each argument A in subgoal gi, if A is a constant c, then the corresponding

component in ti is c. If A is a variable Xj, then the corresponding component in ti is the

distinct value xj assigned to this variable. Let �a = fg1; : : : ; gkg be the set of answerable

subgoals of Qm, and �na = fgk+1; : : : ; gng be the set of nonanswerable subgoals. Since Qm

is not feasible, �na is not empty. Let this substitution turn the head of Qm to a tuple th.

t1,. . . ,tkD1:

H :-

�az }| {
g1; : : : ; gk;

�naz }| {
gk+1; : : : ; gnQm:

D2: t1,. . . ,tk, tk+1,. . . ,tn

Figure 5.2: Proof of Lemma 5.3.3.

As shown in Figure 5.2, D1 is constructed by adding the tuples t1; : : : ; tk to the relations

g1; : : : ; gk, respectively; D2 is constructed by adding all the tuples t1; : : : ; tn to the relations

g1; : : : ; gn, respectively.
1 A relation may have multiple tuples, since it may appear in mul-

tiple subgoals of Qm. All the relations that are not mentioned in the query are empty in

both databases, so that these relations cannot provide any bindings.

Under both databases we can retrieve tuples t1; : : : ; tk following a feasible sequence of the

subgoals g1; : : : ; gk. Under databaseD2, we cannot obtain the necessary bindings to retrieve

the tuples tk+1; : : : ; tn. Thus D1 and D2 have the same observable tuples, i.e., the tuples

in D1. Clearly th 2 ANS(Qm; D2). Now we only need to prove that th 62 ANS(Qm; D1).
2

Otherwise, there must be a substitution � from a subset of the obtainable tuples ft1; : : : ; tkg

to all the subgoals g1; : : : ; gn, such that under � each subgoal becomes true. Let Q0
m be a

query with the head of Qm plus the subgoals of the tuples used in � . Since each variable

was assigned with a distinct constant, these constants can represent their corresponding

variables. Thus � can be considered to be a containment mapping from Qm to Q0
m, and

Qm = Q0
m. Then Qm could not be minimal, since it has an equivalent query Q0

m that has

1Tuples t1; : : : ; tn are called canonical tuples of query Q.
2Note that this claim might not be correct if Qm is not minimal.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 93

fewer subgoals.

In general, if we want to prove a query Q is not stable, we need to show two databases

D1 and D2, such that ANS(Q;D1) 6= ANS(Q;D2), but these two databases have the same

observable tuples.

5.3.3 Algorithm: CQstable

By Corollary 5.3.1 and Lemma 5.3.3 we have the following theorem.

Theorem 5.3.1 A CQ is stable if and only if its minimal equivalent is feasible. 2

This theorem gives us an algorithm CQstable for testing the stability of a CQ, as shown

in Figure 5.3.

Algorithm CQstable: Test stability of CQ's
Input: � Q: A conjunctive query.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute the minimal equivalent Qm of Q by deleting its redundant subgoals.
(2) Based on B, use the algorithm Inationary to test the feasibility of the query Qm.
(3) If Qm is feasible, then Q is stable; otherwise, Q is not stable.

Figure 5.3: Algorithm: CQstable.

Assume that a CQ Q has n subgoals, and its minimal equivalent Qm has k subgoals.

It is known that the minimization of CQ's is NP-complete [CM77], so the �rst step takes

exponential-time in the size of query Q. A number of papers (e.g., [ASU79a, ASU79b, JK83,

Sar91]) considered special cases that have polynomial-time algorithms to minimize queries.

The complexity of the algorithm Inationary in the second step is O(k2). Since k � n, the

total time complexity of the algorithm CQstable is exponential in the size of Q.

5.3.4 Algorithm: CQstable*

The exponential complexity of the algorithm CQstable comes from the fact that we need to

minimize a CQ before its feasibility. There is a more e�cient algorithm for testing stability

of CQ's, which is based on the following theorem:

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 94

Theorem 5.3.2 Let Q be a CQ on relations with binding restrictions. Let Qa be its an-

swerable subquery, i.e., the query that includes the head of Q and the answerable subgoals

of Q. Then Q is stable i� Q � Qa. 2

Proof: If: Straightforward, since query Qa is a stable query, and it has a feasible sequence

of all its subgoals). Only if: The proof is essentially the same as the proof of Lemma 5.3.3,

which is correct as long as the following conditions are satis�ed: all subgoals in Q0
m are

answerable, and Q0
m 6� Qm as queries.

Theorem 5.3.2 gives another algorithm CQstable* for testing stability of CQ's, as shown

in Figure 5.4.

Algorithm CQstable*: Test stability of CQ's
Input: � Q: A conjunctive query.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute the answerable subquery Qa: use the algorithm Inationary to �nd all the
answerable subgoals of Q. Let Qa be the query with these answerable subgoals and
the head of Q.

(2) check whether these is a containment mapping from Q to Qa.
(3) If such a containment mapping exists, then Q is stable; otherwise, Q is not stable.

Figure 5.4: Algorithm: CQstable*.

One advantage of algorithm CQstable* is that we do not need to minimize a CQ Q if

all its subgoals are answerable. Note that if Q is stable, its answerable subquery Qa may

properly include the subgoals in Q's minimal equivalent, since some redundant subgoals

in Q might be answerable. In addition, the complexity of step 1 is O(n2), where n is the

number of subgoals in Q. However, if not all the subgoals are answerable in step 1, we still

need to check the existence of a containment mapping from Q to Qa.

Another advantage of algorithm CQstable*, as we will see in Section 5.6, is that we

can extend it to CQ's with arithmetic comparisons (CQAC's for short). We cannot extend

the algorithm CQstable to the case of CQAC's, since a CQAC does not necessarily have a

unique minimal form (details in Section 5.6).

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 95

5.3.5 Complexity of Testing Stability of CQ's

We might want to �nd a polynomial-time algorithm for testing stability of CQ's. Unfortu-

nately, the following theorem shows that this problem is NP-complete.

Theorem 5.3.3 Stability of a CQ is NP-complete. 2

Q0 : ans(�X) :- g1(�X1); : : : ; gk(�Xk)

P : ans(�X) :- h(A); g1(A; �X1); : : : ; gk(A; �Xk); gk+1(B; �Xk+1); : : : ; gn(B; �Xn)

Q : ans(�X) :- g1(�X1); : : : ; gk(�Xk); : : : ; gn(�Xn)
�

� Pa : ans(�X) :- h(A); g1(A; �X1); : : : ; gk(A; �Xk)

(b) Testing Pa v P .

(a) Testing Q0 v Q.

Figure 5.5: Proof of Theorem 5.3.3.

Proof: Let P be a CQ on relations with binding restrictions. Let Pa be its answerable

subquery. Clearly Pa can be computed in polynomial time. By Theorem 5.3.2, we only need

to prove that the problem of testing P � Pa is NP-complete. In particular, we need to

show that Pa v P is NP-complete. Clearly this problem is in NP , since given a mapping

from P to Pa, it takes polynomial time to verify if this mapping is a containment mapping.

Now we prove this problem is NP-hard by reducing the following NP-complete problem

to it. Given a CQ Q and a CQ Q0 that is a subset of the subgoals in Q, the problem of

deciding whether Q0 v Q is known to be NP-complete [CM77]. Assume we have:

Q : ans(�X) :- g1(�X1); : : : ; gn(�Xn)

Q0 : ans(�X) :- g1(�X1); : : : ; gk(�Xk)

where k < n. We construct a query P on relations with binding restrictions, such that

Q0 v Q i� Pa v P , where Pa is the answerable subquery of P . Figure 5.5 shows how

P is constructed. Let A and B be two new variables that do not appear in the subgoals

of Q. For each relation gi, introduce a new relation g0i with one more attribute than gi,

and g0i has only one binding pattern b�. . . f. Introduce a new monadic (i.e., 1-ary) relation

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 96

h with a binding pattern f . Let P be the query with the same head of Q and subgoals

h(A); g01(A;
�X1); : : : ; g

0
k(A;

�Xk); g
0
k+1(B;

�Xk+1); : : : ; g
0
n(B;

�Xn).

Clearly the above construction of query P takes polynomial time in the size of Q.

By the construction of the relations h and g01; : : : ; g
0
n, the answerable subgoals of P are

h(A); g01(A; �X1); : : : ; g
0
k(A;

�Xk). Let Pa be the answerable subquery with these answerable

subgoals. It is easy to show that there is a containment mapping � from P to Pa i� there

is a containment mapping from Q to Q0. Note that any such containment mapping from P

to P 0 must map both variables A and B to A.

5.4 Nonstable Conjunctive Queries

For a nonstable CQ, in some cases we may still compute its complete answer. However, the

computability of its complete answer is data dependent. In this section we discuss in what

cases the complete answer to a nonstable CQ may be computed. We develop a decision tree

that guides the planning process to compute the complete answer to a CQ. We discuss two

planning strategies that can be taken while traversing the tree.

5.4.1 Dynamic Cases

The following example shows that even if a CQ is not stable, its complete answer may still

be computable, and we do not know the computability until some plan is executed.

EXAMPLE 5.4.1 Suppose that we have a relation r(A;B;C) with one binding pattern

b�, a relation s(C;D) with a binding pattern fb, and a relation p(D;E) with a binding

pattern �. The attributes A;B; : : : ; E have di�erent domains. Consider the following two

queries:

Q1: ans(B) :- r(a; B; C); s(C;D)

Q2: ans(D) :- r(a; B; C); s(C;D)

The two queries have the same subgoals but di�erent heads. They are not stable, since

their minimal equivalents (themselves) are not feasible. However, we can still try to answer

query Q1 as follows: send a query r(a;X; Y) to relation r. Assume this source query returns

three tuples: ha; b1; c1i, ha; b2; c2i, and ha; b2; c3i. The supplementary relation S1 after the

�rst subgoal has the schema BC, and contains three tuples: hb1; c1i, hb2; c2i, and hb2; c3i.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 97

Although we cannot use the new bindings fc1; c2; c3g for attribute C to query relation

s directly due to its fb binding pattern, we may still use an exhaustive plan to retrieve

tuples from relation s, e.g., using the D bindings provided by relation p, although p is not

mentioned in the query.

If the exhaustive plan retrieves two tuples hc1; d1i and hc2; d2i from relation s, we can

still claim that the complete answer is fb1; b2g. The reason is that the only distinguished

variable B is bound by the supplementary relation S1. Tuples hb1; c1i, hb2; c2i, and hb2; c3i

are the only tuples in S1, and their projection onto variable B is fb1; b2g. Tuples hb1; c1i and

hb2; c2i in S1 can join with tuples hc1; d1i and hc2; d2i in s, respectively, and their projection

onto the variable B is also fb1; b2g. Thus, this projection is the complete answer. On the

other hand, if the exhaustive plan retrieves only one tuple hc2; d2i from relation s, then we

do not know whether hb2i is the complete answer or not, since we do not know whether

relation s has a tuple hc1; di (for some d value) that has not been retrieved. This tuple can

join with the tuple hb1; c1i in S1 to produce the value b1 as an answer.

We can also try to answer query Q2 in the same way. After the �rst subgoal is solved, the

supplementary relation S1 also includes three tuples hb1; c1i, hb2; c2i, and hb2; c3i. However,

even if an exhaustive plan is executed to retrieve tuples from relation s, we can never know

the complete answer to Q2, since there can always be a tuple hc1; d0i in relation s that has

not been retrieved, and d0 is in the complete answer to Q2. For both queries Q1 and Q2, if

the supplementary relation S1 is empty, then we can claim that their complete answers are

both empty. 2

An important observation on the two queries is that in query Q1, the distinguished

variable B can be bound by the answerable subgoal r(a; B; C), while in query Q2, the

distinguished variable D cannot be bound by the answerable subgoal r(a; B; C). In general,

if a minimal CQ Qm is not stable, we can use the algorithm Inationary to �nd all its

answerable subgoals �a. If all the distinguished variables can be bound by �a, i.e., the

answerable subquery of Qm is safe, we use a linear plan of a feasible sequence of �a to

compute the supplementary relation (denoted Ia) of these subgoals. There are two cases:

1. If Ia is empty, then the complete answer to the query is empty.

2. If Ia is not empty, let IPa be the projection of Ia onto the distinguished variables.

Execute an exhaustive plan to retrieve tuples for the nonanswerable subgoals �na.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 98

(a) If for every tuple tP in IPa , there is a tuple ta in Ia, such that the projection of

ta onto the distinguished variables is tP , and ta can join with some tuples for

all the subgoals �na (tuple tP is then called satis�able), then IPa is the complete

answer to the query.

(b) Otherwise, we do not know the complete answer to the query.

If not all the distinguished variables are bound by the answerable subgoals �a, i.e., the

answerable subquery of Qm is not safe, then the complete answer is not computable, unless

the supplementary relation Ia is empty. The following lemmas prove the claims above.

Lemma 5.4.1 For a minimal CQ Qm, if the supplementary relation Ia of the answerable

subgoals �a is empty, then the complete answer to the query is empty. 2

Proof: Otherwise, if the complete answer has a tuple t, consider the tuples for the

answerable subgoals �a that contribute to the tuple t. By using a linear plan of a feasible

sequence of �a, we can retrieve these tuples. Therefore, the join of these tuples, with the

values for the irrelevant attributes dropped, must be in the supplementary relation Ia, which

cannot be empty.

Lemma 5.4.2 Assume that Qm is a minimal CQ, and all the distinguished variables are

bound by the answerable subgoals �a. Let I
P
a be the projection of Ia onto the distinguished

variables. (1) If every tuple tP in IPa is satis�able, then IPa is the complete answer to the

query. (2) Otherwise, the complete answer is not computable. 2

Proof: (1) Let t be a tuple in the complete answer, and suppose t comes from tuples

t1; : : : ; tk of the answerable subgoals �a and tuples tk+1; : : : ; tn of the nonanswerable sub-

goals �na. Tuples t1; : : : ; tk must be retrieved by a linear plan of a feasible sequence of

�a during the computation of Ia. The projection of t1 ./ � � � ./ tk onto the distinguished

variables is tuple t, since the distinguished variables are all bound by the subgoals �a. Thus

tuple t is in IPa . On the other hand, since every tuple tP in IPa is satis�able, tP is in the

answer to the query. Therefore, IPa is the complete answer.

(2) Let tP be a tuple in IPa that is not satis�able. Following the idea of the proof of

Lemma 5.3.3, there can always be some tuples for the nonanswerable subgoals �na that

can join with a tuple in Ia that produces tP , such that tP is a tuple in the complete

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 99

answer. However, these tuples for �na cannot be retrieved because of the restrictions of

�na. Without these tuples, tP is not in the complete answer. Since we do not know whether

these tuples for �na exist or not, we do not know whether the complete answer includes tP

or not.

Lemma 5.4.3 For a minimal CQ Qm, if not all the distinguished variables are bound by the

answerable subgoals �a, and the supplementary relation Ia is not empty, then the complete

answer is not computable. 2

Proof: Let ta be a tuple in Ia, and v be a distinguished variable that cannot be bound by

�a. Following the idea of the proof of Lemma 5.3.3, there can always be some tuples for the

nonanswerable subgoals �na that can join with the tuple ta, such that the projection r of

the join onto the distinguished variables (including v) is in the complete answer. However,

these tuples cannot be retrieved because of the restrictions of �na. Without these tuples,

tuple r is not in the complete answer. Since we do not know whether these tuples for �na

exist or not, we do not know whether the complete answer includes tuple r or not.

To summarize, whether the complete answer to a nonstable CQ is computable is dynamic

or data dependent, since it is not known until some plan is executed, and some information

about the relations becomes available.

5.4.2 The Decision Tree

We develop a decision tree (as shown in Figure 5.6) that guides the planning process to

compute the complete answer to a CQ. The shaded nodes are where we can conclude about

whether the complete answer is computable or not. Now we explain the decision tree in

details. We �rst minimize a CQ Q by deleting its redundant subgoals, and compute its

minimal equivalent Qm (arc 1 in Figure 5.6). Then we test the feasibility of the query Qm

by calling the algorithm Inationary; that is, we test whether Qm has a feasible sequence

of all its subgoals. If so (arc 2 in Figure 5.6), Qm (thus Q) is stable, and its answer can be

computed by a linear plan following a feasible sequence of all the subgoals in Qm.

If Qm is not feasible (arc 3), we compute all its answerable subgoals �a by calling the

algorithm Inationary. Then we check if all the distinguished variables are bound by the

subgoals �a. There are two cases:

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 100

use a linear plan following

complete answer
the order to compute the

variables bound in �a?

use a linear plan to compute Ia

all distinguished

use a linear plan to compute Ia

of the subgoals in Qm

�nd a feasible order

is not computable

tuples for the nonanswerable subgoals
use an exhaustive plan to retrieve

Ia onto the distinguished variables

minimal equivalent Qm

relation Ia of �a is empty

the complete answer is not
computable unless the supplementary

the complete answer

compute the relation IPa by projecting

minimization

Q is stable

Yes No

Q is not stable

Yes Yes
Ia empty?

Qm feasible?

Yes No

subgoals �a

�nd the answerable

the complete
answer is empty

No

Yes

Ia empty?

IPa is the complete answer

No
No

all tuples in IPa satis�able?

relation Ia of �a is not empty

the complete answer may be
computable even if the supplementary

1

2 3

4

5

7

8

9

11
6

10

conjunctive query Q

Figure 5.6: The decision tree of computing the complete answer to a CQ.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 101

1. If all the distinguished variables are bound by the subgoals �a (arc 4), then the

complete answer to the query may be computed even if the supplementary relation

Ia of subgoals �a is not empty. We compute Ia by a linear plan following a feasible

sequence of �a.

(a) If Ia is empty (arc 5), then the complete answer is empty.

(b) If Ia is not empty (arc 6), we compute the relation IPa by projecting Ia onto

the distinguished variables. We use an exhaustive plan to retrieve tuples for

the nonanswerable subgoals �na, and check whether all the tuples in IPa are

satis�able. If so (arc 7), then IPa is the complete answer. If not (arc 8), then the

complete answer is not computable.

2. If some distinguished variables are not bound by the subgoals �a (arc 9), then the

complete answer is not computable, unless the supplementary relation Ia is empty.

Similarly to the case of arc 4, we compute Ia by a linear plan. If Ia is empty (arc 10),

then the complete answer is empty. Otherwise (arc 11), the complete answer is not

computable.

While traversing the tree, if we reach a node where the complete answer is unknown, we

still have some information about the lower bound and the upper bound of the answer. For

instance, if arc (8) is reached, then the upper bound of the answer is IPa (i.e., the answer

can only be a subset of IPa), and the lower bound is all the satis�able tuples in IPa . If

arc (11) is reached, the answer has the lower bound �, while it has no upper bound. In

the shaded nodes where we can compute the complete answer, the lower bound and upper

bound converge. We can tell the user the information about the lower bound and upper

bound for decision support and analysis by the user.

5.4.3 Pessimistic Planning and Optimistic Planning

While traversing the decision tree, we may reach a node where we do not know whether

the complete answer is computable until we traverse one level down the tree. Two planning

strategies can be adopted at this kind of nodes: a pessimistic strategy and an optimistic

strategy. A pessimistic strategy gives up traversing the tree once the complete answer is

unlikely to be computable. On the contrary, an optimistic strategy is optimistic about the

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 102

possibility of computing the complete answer, and it traverses one more level by doing the

corresponding operations.

For instance, if the minimal equivalent Qm is not feasible, and all the distinguished

variables are bound by the answerable subgoals �a, we do not know whether the complete

answer is computable before using a linear plan to compute the supplementary relation Ia

and checking the emptiness of Ia. A pessimistic strategy gives up the planning process, but

claims that the complete answer cannot be computed. An optimistic strategy continues

traversing the tree by executing a linear plan to compute Ia. If Ia is empty, the complete

answer is empty. Otherwise, we still have two options: a pessimistic strategy gives up

answering the query, while an optimistic strategy executes an exhaustive plan to retrieve

tuples for the nonanswerable subgoals �na.

What strategy should be taken is application dependent. For instance, we should con-

sider how \eager" the user is for the complete answer to a query, how expensive a linear

plan and an exhaustive plan are, how likely the supplementary relation Ia is to be empty,

and how likely it is that all the tuples in IPa are satis�able. We may use statistics to answer

these questions and then make the decision about what strategy to take.

5.5 Stability of Unions of Conjunctive Queries

In this section we study stability of unions of CQ's, and present similar results as CQ's. In

particular, a union of CQ's is stable i� each query in its minimal equivalent is stable. We

also propose two algorithms for testing of stability of unions of CQ's. Let Q = Q1[� � �[Qn

be a �nite union of conjunctive queries (UCQ for short), all of which have a common head

predicate. It is known that there is a unique minimal subset of Q that is its minimal

equivalent [SY80]. The following theorem is from [SY80]:

Theorem 5.5.1 Let Q = Q1[� � �[Qm and R = R1[� � �[Rn be two UCQ's. Then Q v R

(i.e., Q is contained in R as queries) i� for any query Qi in Q, there is a query Rj in R,

such that Qi v Rj. 2

EXAMPLE 5.5.1 Let us see some examples of UCQ's and their stability. Suppose that

we have three relations r, s, and p, and each relation has only one binding pattern bf.

Consider the following three queries:

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 103

Q1: ans(X) :- r(a;X)

Q2: ans(X) :- r(a;X); p(Y;Z)

Q3: ans(X) :- r(a;X); s(X;Y); p(Y; Z)

Clearly Q3 v Q2 v Q1. Queries Q1 and Q3 are both stable (since they are both feasible),

while query Q2 is not. Consider the following two UCQ's: Q1 = Q1[Q2[Q3 and Q2 =

Q2[Q3. Q1 has a minimal equivalent Q1, and Q2 has a minimal equivalent Q2. Therefore,

query Q1 is stable, and Q2 is not. 2

5.5.1 Algorithm: UCQstable

In analogy with Theorem 5.3.1, we can prove a theorem that gives us a stability test for

UCQ's.

Theorem 5.5.2 Let Q be a UCQ on relations with binding restrictions. Q is stable i� each

query in the minimal equivalent of Q is stable. 2

Proof: Let Q = Q1[� � �[Qn. Without loss of generality, assume that the minimal

equivalent Qm has k queries, Q1; : : : ; Qk, where k � n.

If: Straightforward, since for any database D, we can compute ANS(Q; D) by comput-

ing ANS(Qi; D) for each Qi (1 � i � k), and taking the union of these answers.

Only If: If Qm has a query, say Q1, that is not stable. Without loss of generality,

suppose that subgoals

g1(�X1); : : : ; gp(�Xp)

are the answerable subgoals of query Q1, and subgoals

gp+1(�Xp+1); : : : ; gq(�Xq)

are its nonanswerable subgoals. Let Q0
1 be the answerable subquery of Q1 with the p

answerable subgoals. By Theorem 5.3.2, there is at least one nonanswerable subgoal (i.e.,

p < q), and Q0
1 6� Q1. Consider the canonical tuples t1; : : : ; tk of query Q1 (see Section 5.3

for the de�nition of canonical tuples). Let Q0
1 be the query with the head of Q1 and the

answerable subgoals of Q1. Let these tuples tuples turn the head of Q1 to a tuple th.

Following the same idea in the proof of Theorem 5.3.2, to prove Q is not stable, we

need to prove that given the obtainable tuples t1; : : : ; tp, the answer to Q (i.e., the answer

to Qm) does not include tuple th. Suppose that the answer to Qm includes tuple th. By

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 104

Theorem 5.3.2, th cannot come from query Q1, since otherwise there will be a containment

mapping from Q0
1 to Q1, contradicting the fact that Q1 6� Q0

1. Therefore, tuple th must be

derived from another query Qj in Qm. By the construction of the canonical tuples t1; : : : ; tp,

it is easy to argue that Qj produces th only if there is a symbol mapping from the arguments

of Qj to these p tuples. This mapping also serves as a containment mapping from Qj to Q
0
1.

Thus, Q0
1 v Qj , and Q1 v Q0

1 v Qj . Then Qm cannot be minimal, since it has a redundant

query Q1.

Theorem 5.5.2 gives an algorithm UCQstable for testing stability of UCQs, as shown in

Figure 5.7.

Algorithm UCQstable: Test stability of unions of conjunctive queries
Input: � Q: A �nite union of conjunctive queries.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute the minimal equivalent Qm of Q by deleting its redundant queries.
(2) For each Qi 2 Qm:

� Use the algorithm CQstable or algorithm CQstable* to test the stability of Qi;
� If Qi is not stable, then query Q is not stable.

(3) Query Q is stable.

Figure 5.7: Algorithm: UCQstable.

5.5.2 Algorithm: UCQstable*

Similar to Theorem 5.3.2, we have the following theorem.

Theorem 5.5.3 Let Q be a UCQ on relations with binding restrictions. Let Qs be the

union of all the stable queries in Q. Then Q is stable i� Q � Qs, i.e., Q and Qs are

equivalent as queries. 2

Proof: If: Straightforward. If each CQ in Qs is stable, for any database D, we can

compute ANS(Q; D) by computing ANS(Qi; D) for each query Qi 2 Qs, and taking the

union of these answers.

Only If: Suppose that Q 6� Qs, i.e., there is a nonstable query Qu in Q�Qs, such that

Qu is not contained in any query in Qs. Since containment between CQ's is transitive, there

must be a query Qi in Q�Qs, such that Qi is not contained in any query in Qs, and there

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 105

is no query Q in Q � Qs such that Qi < Q (i.e., Qi v Q but Qi 6� Q). (Qi can either be

Qu, or can be found by searching all the queries in Q � Qs that contain Qu, and choosing

the most containing one.)

Let Q0
i be the query with the answerable subgoals of Qi. Since Qi is not stable, by

Theorem 5.5.3, Q0
i 6� Qi. Consider the canonical tuples for the subgoals in Qi. Assume

that these tuples turn the head of Qi to a tuple th. Following the same idea in the proof of

Theorem 5.5.2, to prove that Q is not stable, we need to prove that given the obtainable

tuples for the answerable subgoals in Qi, we cannot compute the tuple th. Otherwise, there

can be three cases:

1. Tuple th is from Qi, which can not be true by Theorem 5.3.2.

2. th is from a query Qk in Qs. Then there is a symbol mapping from the arguments of

Qk to the obtainable tuples. This mapping also serves as a containment mapping from

Qk to Q
0
i. Therefore, Qi v Q0

i v Qk, contradicting the fact that Qi is not contained

in any CQ in Qs.

3. th is from a query Qj in Q�Qs. Then Qi < Q0
i v Qj , contradicting the fact that no

query in Q� Qs can properly contain Qi.

Theorem 5.5.3 gives another algorithm UCQstable* for testing stability of UCQs, as

shown in Figure 5.8. The advantage of this algorithm is that we might avoid testing the

equivalence between the query Qs and Q if all the queries in Q are stable.

Algorithm UCQstable*: Test stability of unions of conjunctive queries
Input: � Q: A �nite union of conjunctive queries.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute all the stable queries:
� Qs = �

� For each query Qi in Q:
(a) Call the algorithm CQStable or algorithm CQStable* to test the stability of Qi;
(b) If Qi is stable, add Qi to Qs;

(2) Test whether Q v Qs as queries;
(3) If Q v Qs, then query Q is stable; otherwise, query Q is not stable..

Figure 5.8: Algorithm: UCQstable*.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 106

One corollary of Theorem 5.5.2 and Theorem 5.5.3 is that stability of bounded data-

log queries [CGKV88] is decidable, because by de�nition, a bounded datalog program is

equivalent to a UCQ. We can test the stability of a bounded datalog query by testing the

stability its equivalent UCQ. It is known that boundedness of datalog programs is undecid-

able [GMSV93]. Several papers (e.g., [Ioa85, NS87, Sag85]) gave algorithms for detecting

boundedness in several classes of datalog queries. Another corollary of the two theorems is

that stability of a query with conjuncts and disjuncts is also decidable, since such a query

can be translated into an equivalent UCQ. For instance, suppose we have a query with a

condition

((Author = smith) _ (Y ear = 1999)) ^ (Subject = database)

we can rewrite the condition to a disjunctive form:

((Author = smith) ^ (Subject = database)) _ ((Y ear = 1999) ^ (Subject= database))

Therefore, we test the stability of the original query by testing the stability of its corre-

sponding UCQ.

5.6 Stability of Conjunctive Queries with Comparisons

In this section we study stability of CQ's with arithmetic comparisons (CQAC's for short).

Let Q be a CQAC. Let O(Q) be the set of ordinary (uninterpreted) subgoals of Q that do

not have comparisons. Let C(Q) be the set of its subgoals that are arithmetic comparisons.

We consider the following arithmetic comparisons: <, �, =, >, �, and 6=. In addition, we

make the following assumptions about the comparisons:

1. Values for the arguments in the comparisons are chosen from an in�nite, totally or-

dered set, such as the rationals or reals.

2. The comparisons are not contradictory, i.e., there exists an instantiation of the vari-

ables such that all the comparisons are true. All the comparisons safe, i.e., each

variable in the comparisons appears in some ordinary subgoal.

We might be tempted to generalize the algorithm CQstable to test the stability of a

CQAC. However, the following example from [Gup94] shows that a CQAC may not have a

minimal equivalent that has a subset of its subgoals.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 107

EXAMPLE 5.6.1 Consider the query

ans(X; Y) :- p(X; Y); X 6= Y;X � Y

Clearly the query is not equivalent to the query formed from any subset of its subgoals,

However,

ans(X; Y) :- p(X; Y); X < Y

is an equivalent query with fewer subgoals. 2

5.6.1 Answerable Subquery of a CQAC

De�nition 5.6.1 (answerable subquery of a CQAC) Let Q be a CQAC on relations

with binding restrictions. Its answerable subquery, denoted by Qa, is the query that includes

the head of Q, the answerable subgoals of Q, and all the comparisons of the bound variables

that can be derived from C(Q). 2

The answerable subquery Qa of a CQAC Q can be computed as follows. First derive

all the equalities from C(Q). That is, if Q contains equalities such as X = Y , or equalities

that can be derived from inequalities (e.g., if we can derive X � Y and X � Y , then we

know X = Y), then we substitute variable X by Y . Then using the binding restrictions

of the relations, compute all the answerable ordinary subgoals A(Q) of query Q using the

Inationary algorithm. Let V be the set of all the bound variables in A(Q). Derive all the

inequalities I among the variables in V from C(Q). Qa includes all the constraints of the

variables in V that can be derived from C(Q). For instance, assume variable X is bound,

and variable Y is not. If Q has comparisons X < Y and Y � 5, then variable X in Qa still

needs to satisfy the constraint X < 5.

We might want to generalize the algorithm CQstable* as follows. Given a CQAC Q, we

compute its answerable subquery Qa. We test the stability of Q by testing whether Qa v Q,

which can be tested using the algorithms in [GSUW94, ZO93] (\the GZO algorithm" for

short). However, the following example shows that this \algorithm" does not always work.

EXAMPLE 5.6.2 Consider query

P : ans(Y) :- p(X); r(X;Y); r(A;B); A < B;X � A;A � Y

where relation p has a binding pattern f , and relation r has a binding pattern bf . In the

�rst step of the algorithm, we �nd all the answerable subgoals p(X) and r(X; Y) of query

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 108

P . With variables X and Y bound, we derive all the possible constraints these two variables

must satisfy from the comparisons in P . The only derived comparison is X � Y . Thus we

get a new query

ans(Y) :- p(X); r(X;Y); X � Y

Using the GZO algorithm we know that Pa 6v P . Therefore, we may claim that query P is

not stable. However, actually query P is stable. As we will see in Section 5.6.3, query P is

equivalent to the union of the following two queries. (Note that all the ordinary subgoals

in these two queries are answerable.)

T1: ans(Y) :- p(X); r(X; Y); X < Y

T2: ans(Y) :- p(Y); r(Y; Y); r(Y;B); Y < B

2

The reason the above \algorithm" fails is that, the only case where Pa 6v P is when

X = Y . However, comparisons X � A and A � Y will then force A to be equal to X and

Y , and the subgoal r(A;B) becomes answerable. This example suggests that we need to

use the idea in [Klu88] to test stability of CQAC's. That is, we need to consider all the

total orders of the variables in the query.3

5.6.2 Algorithm: CQAC1stable

Before giving the algorithm for testing the stability of any CQAC, we �rst consider the

case where the above \algorithm" works. It turns out that the above \algorithm" is correct

when a CQAC does not include comparisons f�;�;=; 6=g. Figure 5.9 shows an algorithm

CQAC1stable that tests stability of CQAC's without nonstrict comparisons f�;�;=; 6=g,

i.e., their comparisons can only have f<;>g.

Before giving the proof of the correctness of the algorithm CQAC1stable, we review the

following theorem from [GSUW94]:

Theorem 5.6.1 Let Q1 and Q2 be two CQAC's. Assume that no variable appears twice

among their ordinary subgoals, and no constant appears in their ordinary subgoals. Let

O(Q1) (resp. O(Q2)) and C(Q1) (resp. C(Q2)) be the ordinary subgoals and comparisons of

3Formally, a total order of the variables in the query is an order with some equalities, i.e., all the variables
are partitioned to sets S1; : : : ; Sk , such that each Si is a set of equal variables, and for any two variables
Xi 2 Si and Xj 2 Sj , if i < j, then Xi < Xj.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 109

Algorithm CQAC1stable: Test stability of CQAC's with comparisons f<;>g
Input: � Q: A CQAC with comparisons f<;>g.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute the answerable subquery Qa of Q:
� Based on B, compute all answerable ordinary subgoals A using algorithm Inationary.
� Derive all the inequalities I among the bound variables in A from C(Q).
� Let Qa be the query with A, I, and the head of Q.

(2) Test whether Qa v Q using the GZO algorithm.
(3) If Qa v Q, then Q is stable; otherwise, Q is not stable.

Figure 5.9: Algorithm: CQAC1stable.

query Q1 (resp. Q2), respectively. Then Q2 v Q1 if and only if the following holds. Let H

be the set of all containment mappings from O(Q1) to O(Q2). Then H is nonempty, and

C(Q2) logically implies _h in Hh(C(Q1)). 2

Theorem 5.6.2 The algorithm CQAC1stable correctly decides the stability of a CQAC with

comparisons f<;>g. 2

extend

Q0 : H :- O1; : : : ; Ok; : : : ; On; C1; : : : ; Cm (instantiation f (database D2)

Q0
a : H :- O1; : : : ; Ok; C

0
1; : : : ; C

0
m (instantiation s (database D1)

Figure 5.10: Proof of the correctness of the algorithm CQAC1stable.

Proof: If query Qa is equivalent to query Q, clearly query Q is stable, since for any

database D, we can compute ANS(Q;D) by computing ANS(Qa; D), which is computable

since all the ordinary subgoals of Qa are answerable.

Now, we prove that if Qa 6v Q, query Q cannot be stable. We need to construct two

databases D1 and D2, such that ANS(Q;D1) 6= ANS(Q;D2), but these two databases

have the same observable tuples. Figure 5.10 shows the main idea of the construction. We

�rst rewrite the queries Q and Qa to queries Q0 and Q0
a that satisfy the assumptions in

Theorem 5.6.1. That is, no variable in Q0 (resp. Q0
a) appears twice among its ordinary

subgoals, and no constant appears in its ordinary subgoals. The rewriting can be done as

follows: (1) if a variable appears twice in the ordinary subgoals, we use distinct variables

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 110

and equate them by arithmetic equality contraints; (2) we replace constants in the ordinary

subgoals by new variables and equate those variables to the desired constants.

Assume that Q0 have n ordinary subgoals, O1; : : : ; On. Without loss of generality, let

O1; : : : ; Ok be the subgoals corresponding to the answerable subgoals ofQ. These k subgoals

are also all the ordinary subgoals of Q0
a. Since Qa 6v Q, we have Q0

a 6v Q0. By Theorem 5.6.1,

C(Q0
a) does not imply _h in Hh(C(Q0)), whereH includes all the containment mappings from

Q0 to Q0
a. Then there must be an instantiation s for the variables in Q0

a, such that s(C(Q
0
a))

is true, while no h in H can make s
�
h(C(Q0))

�
true.

Let database D1 include tuples t1; : : : ; tk under the instantiation s. Notice that: (1)

Qa does not include comparisons f�;�;=; 6=g, and (2) the comparisons in C(Q0
a) are all

the inequality constraints that the variables in Qa should satisfy. Therefore, we can always

extend the instantiation s to an instantiation f of the variables in Q0, by assigning new

distinct values to the unbound variables in Q. This instantiation f also turns the head of

Qa to a tuple th. Let database D2 include the tuples of Q under the instantiation f .

Since instantiation f uses new distinct values for the unbound variables in Q, the tuples

for the nonanswerable subgoals of Qa cannot be retrieved under D2 given the binding

restrictions of the relations. Therefore, tuples t1; : : : ; tk are all the observable tuples under

both databases D1 and D2. We only need to prove that th 62 ANS(Q0; D1). Otherwise we

can construct a containment mapping � from O(Q0) to O(Q0
a), such that s

�
�(C(Q0))

�
is

true, contradicting the fact that no h in H can make s
�
h(C(Q0))

�
true.

The algorithm CQAC1stable also shows how to compute the complete answer to a stable

CQAC Q without comparisons f�;�;=; 6=g. For any database D, we compute ANS(Q;D)

by computing ANS(Qa; D). To compute ANS(Qa; D), we �rst use a linear plan following

a feasible order of the subgoals O(Qa) to solve these subgoals. Then we �lter out the tuples

in the supplementary relation that do not satisfy the comparisons C(Qa).

EXAMPLE 5.6.3 Consider query

P : ans(B) :- p(B); r(A;B); r(A;C);A < C;C < B

where relation p has a binding pattern f , and relation r has a binding pattern fb. Since P

does not have comparisons f�;�;=; 6=g, we can use the algorithm CQAC1stable to test its

stability. Clearly subgoals p(B) and r(A;B) are answerable and the bound variables are A

and B. We derive all the inequalities of A and B from A < C and C < B. The only derived

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 111

inequality of the two variables is A < B. Thus the following is the answerable subquery of

Q:

Pa : ans(B) :- p(B); r(A;B); A < B

We then test whether Pa v P . We rewrite the queries P and Pa to the following queries P
0

and P 0
a that satisfy the assumptions in Theorem 5.6.1.

P 0: ans(B) :- p(B); r(A;X); r(Y;C);X = B; Y = A;A < C;C < B

P 0
a: ans(B) :- p(B); r(A;X);X = B;A < B

The comparisons in query P 0 (i.e., C(P 0)) are: X = B & Y = A & A < C & C < B; the

comparisons in query P 0
a (i.e., C(P

0
a)) are: X = B & A < B. There is only one containment

mapping � from P 0 to P 0
a:

�(B) = B;�(A) = A;�(X) = X ;�(Y) = A;�(C) = X:

Thus we need to verify whether C(P 0
a) logically implies �(C(P 0)):

X = B ^ A < B) X = B ^A = A ^A < X ^X < B

That is:

A < B) A < B ^B < B

which is false, and we have Pa 6v P . Therefore, query P is not stable. The nonstability

of query Q can also be proved by the following two databases: D1 = fp(3); r(1; 3); r(1; 2)g,

D2 = fp(3); r(1; 3)g. Clearly ANS(P;D1) = f3g, and ANS(P;D2) = �, but these two

databases have the same observable tuples fp(3); r(1; 3)g. Note that tuple r(1; 2) cannot be

retrieved because \2" represents any constant that is between 1 and 3, but not equivalent

to 1 and 3. 2

5.6.3 Algorithm: CQACstable

Now we show how to test stability of CQAC's by giving the following theorem.

Theorem 5.6.3 Let Q be a CQAC, and
(Q) be the set of all the total orders of the

variables in Q that satisfy the comparisons of Q. For each total order � 2
(Q), let Q�

be the corresponding query that includes the ordinary subgoals of Q and all the inequalities

and equalities of this order �. Then query Q is stable if and only if for all � 2
(Q), query

Q�
a v Q, where Q�

a is the answerable subquery of Q�. 2

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 112

Q �
[
8>>>>><
>>>>>:

Q�1 v Q�1
a v Q

Q�2 v Q�2
a v Q

...

Q�m v Q�m
a v Q

Figure 5.11: Proof of Theorem 5.6.3, \If" part.

A1

(A2; A3)

A4 (A5; A6; A7)

A8

A9

(A10; A11)

unbound variables

bound variables

Figure 5.12: Proof of Theorem 5.6.3, \Only If" part.

Proof: If: Assume that for each �i 2
(Q), Q�i
a v Q. As shown in Figure 5.11,

Q �
S
�2
(Q)Q

�. In addition, for each �i 2
(Q), Q�i v Q�i
a . Then we have Q �S

�2
(Q)Q
� v

S
�2
(Q)Q

�
a v Q. Thus Q �

S
�2
(Q)Q

�
a. For any database D, we can

compute ANS(Q;D) by computing ANS(Q�
a; D) for each total order � 2
(Q). This

answer is computable since all its subgoals are answerable. Then we take the union of these

answers as ANS(Q;D). Therefore, query Q is stable.

Only If: Assume there is a total order in
(Q), say �1, such that Q�1
a 6v Q. Figure 5.12

shows the main idea of a total order. The variables on the left side must be smaller than

the variables on the �ght side. Some variables must be equal to each other. For instance,

the variables in the �gure must satisfy:

A1 < A2 = A3 < A4 < A5 = A6 = A7 < A8 < A9 < A10 = A11

Some variables (i.e., variables A1, A4; A5; A6; A7; A9 in the �gure) are bound by the answer-

able subgoals. Notice that we need to consider the equalities to compute all the answerable

subgoals given the binding restrictions of the relations. That is because these equalities can

help bind more variables.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 113

Now we prove query Q cannot be stable. We need to construct two databasesD1 andD2,

such that ANS(Q;D1) 6= ANS(Q;D2), but D1 and D2 have the same observable tuples.

The construction is essential the same as the construction in the proof of Theorem 5.6.2.

That is, let s be the instantiation of the variables in Q�1
a that makes C(P�1

a)) C(P) false,

where P�1
a and P are the rewritten queries of Q�1

a and Q that satisfy the assumptions in

Theorem 5.6.1. These variables correspond to the bound variables in the total order �1.

Let D1 include the tuples under the instantiation s.

Since Q�1
a 6v Q, Q�1

a must have fewer subgoals than Q, and some subgoals in Q are not

answerable. In addition, some variables are not bound. For those unbound variables, we can

choose new distinct values for them. That is, the unbound variables and the bound variables

have di�erent values. Therefore, we can always extend instantiation s to a new instantiation

f for the variables in Q, such that f uses new distinct values for the unbound variables. Let

D2 include the tuples corresponding to the instantiation f . By the construction of D1 and

D2, they have the same observable tuples (i.e., the tuples in D1), since we chose new distinct

values for the unbound variables. Following the same idea in the proof of Theorem 5.6.2,

we can prove that ANS(Q;D1) does not include the tuple th = f(G), where G is the head

of Q. Therefore, query Q is not stable.

Theorem 5.6.3 gives an algorithm CQACstable (shown in Figure 5.13) that tests the

stability of any CQAC, even if the query has comparisons f�;�;=; 6=g. The algorithm

considers all the total orders of the variables, including those with equalities.

Algorithm CQACstable: Test stability of CQAC's
Input: � Q: A conjunctive query with arithmetic comparisons.

� B: Binding restrictions of the relations used in Q.
Output: Decision about the stability of Q.
Method:

(1) Compute all the total orders
(Q) of the variables in Q that satisfy the comparisons in Q.
(2) For each � 2
(Q):

� Compute the answerable subquery Q�
a of query Q�;

� Test Q�
a v Q by calling the GZO algorithm;

� If Q�
a 6v Q, then query Q is not stable.

(3) Query Q is stable.

Figure 5.13: Algorithm: CQACstable.

The algorithm CQACstable also shows how to compute the complete answer to a stable

CQAC Q for a database D. That is, let Q �
S
�2
(Q)Q

�. For each query Q�, we compute

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 114

ANS(Q�
a; D), where Q

�
a is the answerable subquery of Q�. Since Q�

a has a feasible order

of all its ordinary subgoals, we compute ANS(Q�
a; D) by using a linear plan following this

order, and �ltering out the results using the comparisons in Q�
a. We take the union of the

answers for all the total orders in
(Q) as ANS(Q;D).

EXAMPLE 5.6.4 Consider the query P in Example 5.6.2. It has the following 8 total

orders:

�1: X < A = Y < B �5: X = A = Y < B

�2: X < A < Y < B �6: X = A < Y < B

�3: X < A < Y = B �7: X = A < Y = B

�4: X < A < B < Y �8: X = A < B < Y

For each total order �i, we write its corresponding query P
�i . Here are all the 8 queries:

P�1 : ans(Y) :- p(X); r(X;Y); r(Y;B); X < Y; Y < B

P�2 : ans(Y) :- p(X); r(X;Y); r(A;B); X < A;A < Y; Y < B

P�3 : ans(Y) :- p(X); r(X;Y); r(A; Y); X < A;A < Y

P�4 : ans(Y) :- p(X); r(X;Y); r(A;B); X < A;A < B;B < Y

P�5 : ans(Y) :- p(Y); r(Y; Y); r(Y;B); Y < B

P�6 : ans(Y) :- p(X); r(X;Y); r(X;B); X < Y; Y < B

P�7 : ans(Y) :- p(X); r(X;Y); r(X; Y); X < Y

P�8 : ans(Y) :- p(X); r(X;Y); r(X;B); X < B;B < Y

For each total order �i, we construct its corresponding answerable subquery P�5
a . The

following are the 8 answerable subqueries:

P�1 : ans(Y) :- p(X); r(X; Y); r(Y;B); X < Y; Y < B

P�2 : ans(Y) :- p(X); r(X; Y); X < Y

P�3 : ans(Y) :- p(X); r(X; Y); X < Y

P�4 : ans(Y) :- p(X); r(X; Y); X < Y

P�5 : ans(Y) :- p(Y); r(Y; Y); r(Y;B); Y < B

P�6 : ans(Y) :- p(X); r(X; Y); r(X;B); X < Y; Y < B

P�7 : ans(Y) :- p(X); r(X; Y); X < Y

P�8 : ans(Y) :- p(X); r(X; Y); r(X;B); X < B;B < Y

Each of the 8 answerable subquery can be proved to be contained in P . Therefore,

query P is stable. Actually, if we combine queries P�1 , P�2
a , P�3 , P�4 , P�6 , P�7

a , P�8
a , and

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 115

we have query

P�1;2;3;4;6;7;8 : ans(Y) :- p(X); r(X; Y); r(A;B); X < Y;A < B;X � A;A � Y

and its answerable subquery is:

P
�1;2;3;4;6;7;8
a : ans(Y) :- p(X); r(X; Y); X < Y

which is the query T1 in Example 5.6.2. In addition, P
�5
a is equivalent to the query T2 in the

example. We can prove that P
�1;2;3;4;6;7;8
a v P�1;2;3;4;6;7;8 . Since query P � P�1;2;3;4;6;7;8 [P�5 ,

we have P � T1 [T2. 2

5.7 Stability of Datalog Queries

In this section we study stability of datalog queries, i.e., Horn-clause programs without

function symbols. We show that if a datalog query has a feasible rule/goal graph, then the

query is stable. We also show that stability of datalog queries is not decidable.

EXAMPLE 5.7.1 Let us repeat the example in Section 2.1.2. Suppose flight is a �nite

relation with a binding adornment bf , and flight(F; T) means that there is a nonstop ight

from airport F to airport T . An IDB relation reachable is de�ned by the following two

rules:

r1: reachable(X; Y) :- flight(X; Y)

r2: reachable(X; Y) :- flight(X;Z); reachable(Z;Y)

Let queries P1 and P2 be reachable(sfo;X) and reachable(X; sfo), respectively. That

is, query P1 asks for all the airports that are reachable from the airport sfo, while query P2

asks for all the airports from which the airport sfo is reachable. Although we cannot retrieve

all the ight facts, the answer to query P1 can still be computed as follows: we query the

relation to retrieve all the airports that are reachable from sfo via one nonstop ight. For

each of these airports, we query the relation to retrieve its one-nonstop reachable airports.

We repeat the process until no new airports are found. This process will terminate, since

the flight relation is �nite. The set of the retrieved airports is the complete answer to query

P1. That is because for any airport a in the answer, there exists a chain of distinct airports

a1 = sfo; a2; : : : ; an = a, such that for i = 1; : : : ; n � 1, tuple hai; ai+1i is in the flight

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 116

relation. Therefore, airport ai can be retrieved in the (i� 1)st step during the computation

above.

For query P2, we cannot compute its answer in the same way as P2, because the flight

relation does not allow us to retrieve its facts in a \forward" way. In fact, we cannot know

the complete answer to query P2 at all, since there can always be an airport from which

sfo is reachable, but this airport cannot be retrieved from the relation. 2

5.7.1 Rule/goal Graphs

Given a set of rules and a query goal p� with an adornment � (a string of b's and f 's), a

rule/goal graph (RGG for short) indicates the order in which subgoals are to be evaluated

in these rules, and indicates the way in which variable bindings pass from one subgoal to

another within a rule. (Details about rule/goal graphs are found in Chapter 12 in [Ull89].)

r
[XjZ;Y]
2;0r

[XjY]
1;0

r
[X;ZjY]
2;1flightbf flightbf

flightbf

r
[XjZ;Y]
2;0r

[X jY]
1;0

reachablebf

reachablebf

r
[X;Z;Y j]
2;1

r
[jX;Y]
1;0 flightbb

reachableff

flightff
r
[Z;Y jX]
2;1

flightfb
(b)(a)

r
[jX;Z;Y]
2;0

Figure 5.14: Two RGG's for the query goal reachablebf .

EXAMPLE 5.7.2 Consider the query P1 in Example 5.7.1. The query can be represented

as a goal reachablebf , i.e., the problem of determining, given a �xed value (i.e., sfo) for

the �rst argument, the set of Y such that reachable(sfo; Y) is true. Figure 5.14(a) shows

an RGG of the goal. In the graph, there are two di�erent kinds of nodes: goal nodes

and rule nodes. A goal node is a predicate with a binding adornment that speci�es which

arguments are bound and which are not. For instance, the root node reachablebf is a goal

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 117

node indicating that the �rst argument of predicate reachable has been bound, and the

second argument is not.

A rule node indicates the binding status of the variables in a rule. Its subscript indicates

the stage of processing the subgoals in the rule from left to right. Its superscript speci�es

what variables have been bound so far, either by a previous subgoal, or by the head of this

rule. The superscript also speci�es what variables have not been bound. For instance, the

node r
[XjY]
1;0 is a rule node. Its subscript \1; 0" means that it corresponds to the stage when

no subgoal of rule r1 has been processed. Its superscript \[X jY]" means that at this stage,

variable X is bound (by the head of the rule) and variable Y is not. Similarly, the rule

node r
[XjZ;Y]
2;0 speci�es that when no subgoal of rule r2 has been processed, variable X is

bound, and variables Y and Z are not. The rule node r
[X;ZjY]
2;1 means that after the �rst

subgoal of rule r2 is processed, variables X and Z are bound, and Y is not. The RGG in

Figure 5.14(a) is constructed respecting the order in which the subgoals are written. For a

di�erent order we may have a di�erent RGG. For instance, if we switch the two subgoals in

rule r2, we will have a new RGG, as shown in Figure 5.14(b). 2

We assume that a set of rules has the unique binding pattern property with respect to

a given adorned goal. That is, when we construct the RGG starting with the adorned goal

and following the order of the subgoals of the rules as written, no IDB predicate appears

with two di�erent adornments. If a set of rules does not have this property with respect

to a query goal, we can call the Algorithm 12.7 in [Ull89] to rewrite these rules and the

goal, and generate a revised set of rules that has the unique binding pattern property with

respect to the query goal.

5.7.2 Feasible Rule/goal Graphs

Given a set of rules on EDB relations with binding restrictions, an RGG of a goal node p�

is feasible if all its EDB goals in the RGG use only the adornments that are permitted by

the EDB relations. For instance, in Example 5.7.1, the RGG in Figure 5.14(a) is a feasible

RGG, since all the EDB goals in the graph (the two nodes of flightbf) are permitted by

the flight relation. However, the RGG in Figure 5.14(b) is not feasible, since it has two

EDB goals (flightff and flightfb) that are not permitted by the flight relation.

Theorem 5.7.1 If a set of rules on EDB relations with binding restrictions has a feasible

RGG with respect to a query goal, then the query is stable. 2

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 118

Proof: Assume that the set of rules and the query goal p� have a feasible RGG. We

apply the magic-sets transformation (as described in [Ull89, Chapter 13]) on the rules and

the goal, and get a new set of rules R such that the relation for p is the answer to the

query. For any instance of the EDB relations, consider the case where the relations did not

have restrictions. The complete answer to the query p can be computed using a bottom-up

evaluation of the rules R.

Since the EDB relations do have binding restrictions, we should consider whether the

bottom-up evaluation of R can be executed. Because G is a feasible RGG, during the

bottom-up evaluation of R, each time an EDB subgoal is evaluated, we have the necessary

bindings to query the relation. Therefore, we can still execute the bottom-up evaluation.

In addition, in each step of the evaluation, the facts we need to compute are the same as

the facts we computed in the bottom-up evaluation if the EDB relations did not have any

restrictions. Therefore, we can compute the complete answer to the query using a bottom-

up evaluation of R.

The proof of Theorem 5.7.1 also gives an algorithm for computing the complete answer

to a query goal if it has a feasible RGG. That is, we apply the magic-sets transformation

to the rules and the goal to get a set of rules R. We evaluate these rules using a bottom-

up evaluation. In each step, we evaluate a rule following the order in which the RGG is

constructed. By the construction of the rules R, each time we solve an EDB subgoal, we

have enough bindings to evaluate this subgoal.

[Mor88] gave an algorithm for testing the existence of a feasible RGG given a set of rules

and a query goal. The algorithm is inherently exponential in time. However, if there is a

bound on the arity of predicates, then the algorithm with this heuristic takes polynomial

time [UV88].

5.7.3 What If a Feasible RGG Does not Exist

In some cases, even though a set of rules do not has a feasible RGG with respect to a query

goal, the query may still be stable, since we may rewrite the rules to obtain a new set of

rules that has a feasible RGG with respect to the query goal. The following example is a

case in point.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 119

EXAMPLE 5.7.3 If we add another subgoal flight(W;Z) to rule r2. Then the new set of

rules does not have a feasible RGG with respect to the query goal of P1 , since the variable

W in the third subgoal flight(W;Z). However, the new rules are equivalent to the old ones,

and query P1 on the new rules is still stable. 2

Example 5.7.3 shows a similar phenomenon as CQ's; that is, we need to \minimize"

datalog rules before checking the existence of a feasible RGG. However, minimizing datalog

rules is much harder than minimizing CQ's and UCQ's. Shmueli [Shm93] showed that for a

datalog program P , whether P is equivalent to datalog program P 0, where P 0 is produced

by removing a subgoal from a rule of P , is undecidable. Not surprisingly, we have the

following theorem:

Theorem 5.7.2 Stability of datalog programs is undecidable. 2

Proof: Let P1 and P2 be two arbitrary datalog queries. We show that a decision procedure

for the stability of datalog programs would allow us to decide whether P1 v P2. Since

containment of datalog programs is undecidable, we prove the claim.4 Let all the EDB

relations in the two queries have an all-free binding pattern; i.e., there is no restriction of

retrieving tuples from these relations. Without loss of generality, we can assume that the

goal predicates in P1 and P2, named p1 and p2 respectively, have arity m. Let Q be the

datalog query consisting of all the rules in P1 and P2, and of the rules:

r1: ans(X1; : : : ; Xm) :- p1(X1; : : : ; Xm); e(Z)

r2: ans(X1; : : : ; Xm) :- p2(X1; : : : ; Xm)

where e is a new 1-ary relation with the binding pattern b, and Z is a new argument that

does not appear in X1; : : : ; Xm. We show that P1 v P2 if and only if query Q is stable.

\Only If": Assume P1 v P2. Hence Q = P2. Since the EDB relations in P2 can return

all their tuples for free, P2 (thus Q) is stable.

\If": Assume P1 6v P2, we prove that queryQ cannot be stable. Since P1 is not contained

in P2, there exists a databaseD of the EDB relations in P1 and P2, such that ANS(P1; D) 6v

ANS(P2; D). That is, there is a tuple t 2 ANS(P1; D), while t 62 ANS(P2; D). Now we

construct two databasesD1 and D2 of the EDB relations and the relation e, such that query

Q has the same observable tuples under D1 and D2, but ANS(Q; D1) 6= ANS(Q; D2).

4The idea of the proof is borrowed from [Dus97], Chapter 2.3.

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 120

Both D1 and D2 include D for the EDB relations in P1 and P2. However, in D1, relation

e is empty; in D2, relation e has one tuple hzi, while z is a new value that does not appear

in any tuple in D. For both D1 and D2, the observable tuples are those in D, while we

cannot get any tuple from relation e. Hence, rule r1 cannot yield any answer to Q, and

the retrievable answer to Q is ANS(P2; D) for both D1 and D2. For D1, since relation e

is empty, ANS(Q; D1) = ANS(P2; D), which does not include tuple t. However, for D2,

relation e has a tuple hzi, and ANS(Q; D1) = ANS(P1; D)[ANS(P2; D), which includes

tuple t. Therefore, ANS(Q; D1) 6= ANS(Q; D2), and query Q is not stable.

5.8 Conclusions and Related Work

In this chapter we studied the following problem of answering queries in the presence of

binding restrictions: can the complete answer to a query be computed given the restrictions?

If so, how to compute it? We �rst studied conjunctive queries, and showed that a conjunctive

query is stable if and only if its minimal equivalent query Qm has a feasible sequence of all

its subgoals. We proposed two algorithms for testing stability of conjunctive queries, and

proved this problem is NP-complete.

For a nonstable conjunctive query, whether its complete answer can be computed is

data dependent. We proposed a decision tree that guides the query planning process to

compute the complete answer to a conjunctive query, if it can be computed at all. Two

planning strategies | a pessimistic strategy and an optimistic strategy| can be taken while

traversing the decision tree. We also studied stability of unions of conjunctive queries, and

conjunctive queries with arithmetic comparisons. In both cases we proposed algorithms for

testing stability of queries. Finally, we studied datalog queries, and proved that if a set of

rules and a query goal have a feasible rule/goal graph, then the query is stable. We proved

that stability of datalog queries is undecidable.

Related Work

Several works consider binding restrictions in the context of answering queries using views

[DL97, LMSS95, Qia96]. Rajaraman, Sagiv, and Ullman [RSU95] proposed algorithms for

answering queries using views with binding patterns. In that paper all solutions to a query

compute the complete answer to the query; thus only stable queries are handled. Duschka

and Levy [DL97] solved the same problem by translating source restrictions into recursive

CHAPTER 5. COMPUTING COMPLETE ANSWERS TO QUERIES 121

rules in a datalog program to obtain the maximally-contained rewriting of a query, but the

rewriting does not necessarily compute the query's complete answer.

A query on relations with binding restrictions can be generated by a view-expansion

process at mediators as in TSIMMIS. [LYV+98] studied the problem of generating an exe-

cutable plan based on source restrictions. [FLMS99, YLUGM99] studied query optimization

in the presence of binding restrictions. [YLGMU99] considered how to compute mediator

restrictions given source restrictions. These four studies did not consider the possibility that

removing subgoals may make an infeasible query feasible. Thus, they regard the query Q2

in Example 5.1.2 as an unsolvable query, thus miss the chances of computing its complete

answer.

In Chapter 4, we studied how to compute the maximal answer to a conjunctive query

with binding restrictions by borrowing bindings from relations not in the query. We focused

on how to trim irrelevant relations that do not help in obtaining bindings. However, the

computed answer may not be the complete answer. As shown in Section 5.4, we can

sometimes use this exhaustive approach in that paper to compute the complete answer to

a nonstable conjunctive query.

The dynamic case of computing a complete answer to a nonstable query is di�erent

from the case of dynamic mediators discussed in [YLGMU99]. In [YLGMU99], source

descriptions can specify a set of values that can be bound to an attribute at a source. The

uncertainty of whether the mediator can answer a query comes from the fact that, before the

query is executed, it is unknown whether the intermediate bindings are allowed by a source.

In our case, as we saw in Section 5.4, the uncertainty comes from the fact that, before

executing a plan, we do not know whether the tuples for the nonanswerable subgoals can

join with all the tuples in the supplementary relations [BR87] of the answerable subgoals.

That is why the computability of the complete answer is data dependent.

Chapter 6

Using Mediator Caching to

Improve Performance

In information-integration systems, each access to a source could be expensive in terms of

network tra�c and delay, dynamic source availability, and possible source charges. Mediator

caching can be used to reduce the number of source accesses. That is, we store the results of

previous queries at the mediator, and then use the cached results to answer future queries.

Since the mediator has limited resources (e.g., storage space), we may not be able to store

all query results. Periodically we need replace some query results in the cache with new

query results.

In this chapter we study the problem of deciding what query results (views) should be

kept in the mediator cache, so that we can use the results to answer as many future queries

as possible. We show that the traditional query-containment concept in [CM77] is not a

good basis for deciding whether a view should be selected. Instead, we should minimize a

view set while losing as little query-answering power as possible. To formalize this notion,

we �rst introduce the concept of \p-containment." That is, a view set V is p-contained in

another view set W, if W can answer all the queries that can be answered by V . Here we

take the closed-world assumption (CWA) about views. We show that p-containment and

the traditional query containment are not related. We then discuss how to minimize a view

set while retaining its query-answering power. We develop the idea further by considering

p-containment of two view sets with respect to a given set of queries, and consider their

relationship in terms of maximally-contained rewritings of queries using the views.

122

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 123

Chapter Organization

Section 6.1 gives a motivating example to show what query results should be kept in a

mediator cache. Section 6.2 introduces the concept of p-containment, which captures the

fact that one view set is more powerful than another view set in terms of the possible queries

they can answer. We compare p-containment with traditional query containment. We also

discuss how to minimize a view set without losing its power to answer queries. Section 6.3

considers the relationship between two view sets with respect to a given set of queries. In

particular, we consider in�nite query sets de�ned by �nite, parameterized queries.

Section 6.4 introduces the concept of MCR-containment, which describes the relative

power of two view sets in terms of their maximally-contained rewritings of queries. Sur-

prisingly, MCR-containment is essentially the same as p-containment. Section 6.5 extends

the results to general queries, and proposes a framework for minimizing view sets without

losing their query-answering power. Section 6.6 concludes the chapter and discusses related

work.

6.1 Introduction

The following example shows that query results in a mediator cache can have redundancy.

When we replace these query results, traditional query containment is not a good basis for

deciding whether a view should be selected. Instead, we should consider the query-answering

power of the views.

EXAMPLE 6.1.1 Suppose a source has the following base relation about books:

book(Title; Author; Pub; Price)

For example, the tuple hdatabases; smith;prenhall; $60i at the source means that a book

titled databases has an author smith, is published by Prentice Hall (prenhall), and has a

current price of $60. Assume that the mediator has seen the following three queries on the

source, the answers of which have been cached locally. The cached data (or views), denoted

by the view set V = fV1; V2; V3g, are:

V1: v1(T;A; P) :- book(T;A;B; P)

V2: v2(T;A; P) :- book(T;A; prenhall; P)

V3: v3(A1; A2) :- book(T;A1; prenhall; P1); book(T;A2; prenhall; P2)

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 124

The view V1 has author-title-price information about all books in the relation, while the

view V2 includes this information only about books published by Prentice Hall. The view V3

has coauthor pairs for books published by Prentice Hall. Since the views have redundancy,

we might want to eliminate a view from the mediator to save the cost of its maintenance

and storage. At the same time, we want to be assured that such an elimination does not

cause increased server accesses in response to future queries.

Clearly, V2 v V1, that is, V1 includes all the tuples in V2, so we might be tempted to

select fV1; V3g, and eliminate V2 as a redundant view from the cache. However, with this

selection, we cannot answer the query:

Q1 : q1(T; P) :- book(T; smith; prenhall; P)

which asks for titles and prices of books written by smith and published by prenhall. The

reason is that even though V1 includes author-title-price information about all books in the

base relation, the publisher attribute is projected out in the head of the view V1. Thus,

using V1 only, we cannot tell which books are published by prenhall. On the other hand,

the query Q1 can be answered trivially using V2:

q1(T; P) :- v2(T; smith; P)

In other words, by dropping V2 we have lost some power to answer queries. In addition, note

that even though view V3 is not contained in V1[V2, it can be eliminated from V without

changing the query-answering power of V . The reason is that V3 can be computed from V2

as follows:

P1 : v3(A1; A2) :- v2(T;A1; P1); v2(T;A2; P2)

To summarize, we should not select fV1; V3g but fV1; V2g, even though the former includes

all the tuples in V, while the latter does not. The rationale is that the latter is as \powerful"

as V while the former is not. One might hypothesize from this example that only projections

in view de�nitions cause such a mismatch. We show in Section 6.2 that this hypothesis is

wrong. 2

In this chapter we discuss how to select query results in a mediator cache without losing

their query-answering power. We �rst introduce the concept of p-containment between two

sets of views, where \p" stands for query-answering power (Section 6.2). A view set V is

p-contained in another view set W, or W is at least as powerful as V , if W can answer

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 125

all the queries that can be answered using V. Two view sets are called equipotent if they

have the same power to answer queries. As shown in Example 6.1.1, two view sets may

have the same tuples, yet have di�erent query-answering power. That is, traditional view

containment [CM77, SY80] does not imply p-containment. The example further shows that

the reverse direction is not implied either.

Given a view set V on base relations, we show how to �nd a minimal subset of V that

is equipotent to V (Section 6.2.4). As one might suspect, a view set can have several

equipotent minimal subsets. In some scenarios, users are restricted in the queries they

can ask. In such cases, equipotence may be determined relative to the expected (possibly

in�nite) set of queries. In Section 6.3, we investigate the above questions of equipotence

testing given this extra constraint. In particular, we consider in�nite query sets de�ned by

parameterized queries, and develop algorithms for testing this relative p-containment.

In information integration, we often need to consider not only equivalent rewritings

of a query using views, but also maximally-contained rewritings (MCR's). Analogous to

p-containment, which requires equivalent rewritings, we introduce the concept of MCR-

containment that is de�ned using maximally-contained rewritings (Section 6.4). Surpris-

ingly, we show that p-containment implies MCR-containment, and vice-versa.

The di�erent containments between two view sets discussed in this chapter are summa-

rized in Table 6.1. We start our discussions with conjunctive queries, and generalize the

results to more general queries in Section 6.5.

Containment De�nition How to test

v-containment For any database, a tuple in a view in Check if each view in V is contained
V vv W V is in a view in W . in some view of W .

p-containment If a query is answerable by V , then it is Check if each view in V is
V �p W answerable by W. answerable by W.

relative p-containment For each query Q in a given set of Test by the de�nition if Q is �nite.
V �Q W queries Q, if Q is answerable by V , See Section 6.3.3 for in�nite set

then Q is answerable by W. of queries.
MCR-containment For each query Q, for any maximally Same as testing if V �p W ,

V �MCR W -contained rewriting MCR(Q;V) (resp. since V �p W , V �MCR W.
MCR(Q;W)) of Q using V (resp. W),
MCR(Q;V) vMCR(Q;W).

Table 6.1: Di�erent containments between two sets of conjunctive views: V and W .

Note that even though the results in this chapter are developed in the setting of mediator

caching, they are applicable in many applications where views are used. In general, views

are expensive to maintain: materialized views often compete for limited resources; views

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 126

need to be kept up to date since base relations can change from time to time. By selecting

an equipotent subset of views, we can reduce the maintanence cost of these views while

retaining the same query-answering power.

6.2 Comparing Query-Answering Power of View Sets

Before discussing how to minimize a view set without losing its query-answering power, we

�rst introduce the concept of p-containment. It captures the fact that one view set may

be more powerful than another view set, in terms of the possible queries they can answer.

We compare p-containment with traditional query containment. We also discuss how to

minimize a view set without losing its power to answer queries.

6.2.1 p-containment

De�nition 6.2.1 (p-containment and equipotence) A view set V is p-contained in

another view set W , or \W is at least as powerful as V ," denoted by V �p W, if any

query answerable by V is also answerable by W. Two view sets are equipotent, denoted by

V �p W , if V �p W , and W �p V . 2

In Example 6.1.1, the two view sets fV1; V2g and fV1; V2; V3g are equipotent, since the

latter can answer all the queries that can be answered by the former, and vice-versa. (We

will give a formal proof shortly.) However, the two view sets, fV1; V3g and fV1; V2; V3g, are

not equipotent, since the latter can answer the query Q1, which cannot be answered by the

former. The following theorem suggests an algorithm for testing p-containment.

Theorem 6.2.1 Let V andW be two view sets. V �p W i� for every view V 2 V, if treated

as a query, V is answerable by W. 2

Proof: \If": Clearly, each view V 2 V, if treated as a query, can be answered using the

view V itself. By the de�nition of V �p W , view V is also answerable by W. \Only If":

For any query Q that is answerable using V , assume Q can be written as

ans(�X) :- vi1(�X1); : : : ; vik(
�Xk)

where each vij is the head of a view Vij in V , which is equivalent to some conjunctive query

using the views in W . Unify vij (Xj) with the head of that conjunctive query to get a body

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 127

that replaces vij (Xj). Then Q is equivalent to the resulting conjunctive query using the

views in W.

The importance of this theorem is that given two view sets V and W , we can test

V �p W simply by checking if every view in V is answerable by W. That is, we can

just consider a �nite set of queries, even though V �p W means that W can answer all

the in�nite number of queries that can be answered by V. We can use the algorithms in

[DG97, GM99a, LRO96, Qia96] to do the checking. It can be shown that the problem of

checking p-containment is NP-hard. It is also easy to see that the relationship \�p" is

reexive, antisymmetric, and transitive.

EXAMPLE 6.2.1 As we saw in Example 6.1.1, view V3 is answerable by the view V2. By

Theorem 6.2.1, we have fV1; V2; V3g �p fV1; V2g. Clearly the other direction is also true, so

fV1; V2g �p fV1; V2; V3g. On the other hand, V2 cannot be answered using fV1; V3g, which

means fV1; V2; V3g 6�p fV1; V3g. 2

We are interested in the relationship between p-containment and the traditional concept

of query containment. Before making the comparisons, we �rst generalize the latter to a

concept called v-containment.

6.2.2 v-containment

We use v-containment to capture the fact that one view set stores a superset of tuples of

another view set. The motivation for introducing v-containment, rather than using the

traditional concept of query containment (as in De�nition 2.1.1), is to cover the cases where

the views in a set have di�erent schemas.

De�nition 6.2.2 (v-containment and v-equivalence) A view set V is v-contained in

another view set W , denoted by V vv W, if the following holds. For any database D of the

base relations, if tuple t is in V (D) for a view V 2 V, then there exists a view W 2 W, such

that t 2W (D). The two sets are v-equivalent, if V vv W , and W vv V. 2

In Example 6.1.1, the two view sets fV1; V2; V3g and fV1; V3g are v-equivalent, while

their views have di�erent schemas. The de�nition of v-containment allows the views in the

sets to have di�erent schemas as well, unlike conventional query containment. Given two

view sets V and W , we want to test V vv W. The following theorem shows that this test

can be conducted easily for conjunctive views.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 128

Theorem 6.2.2 Let V and W be two sets of conjunctive views. Then V vv W if and only

if for every view V 2 V, there is a view W 2 W, such that V v W . 2

Proof: The \If" part is obvious. To prove the \Only If" part, we partition the views of V

(resp.W) into subsets of views V1; : : : ;Vm (resp.W1; : : : ;Wn), such that the views in each

subset have the same schema, i.e., the same number of arguments. For each subset V i of V,

letW i be the subset ofW with the same schema as V i. Since V vv W , for any database, for

any tuple t in a view in Vi, there must exist a view W in W i that yields t, since W i includes

all the views in W with the schema of t. Therefore, as unions of conjunctive queries, V i is

contained in Wi. Based on the results in [SY80], for every view V in Vi, there is a view W

in W i, such that V v W .

For more complicated queries, such as conjunctive queries with arithmetic comparisons,

unions of conjunctive queries, and datalog queries, it becomes more challenging to test

v-containment. For example, [Gup94] shows that if conjunctive views with arithmetic com-

parisons are considered, two views can \team up" to contain one view, while neither of

them contains the view by itself.

6.2.3 Comparison Between p-containment and v-containment

Example 6.1.1 shows that v-containment does not imply p-containment, and vice-versa. One

might guess that if we do not allow projections in the view de�nitions (i.e., all the variables

in the body of a view appear in the head), then v-containment could imply p-containment.

However, the following example shows that this guess is incorrect.

EXAMPLE 6.2.2 Let e(X1; X2) be a base relation, where a tuple e(x; y) means that there

is an edge from vertex x to vertex y in a graph. Consider the following two view sets:

V = fV1g, V1: v1(A;B;C) :- e(A;B); e(B;C); e(A;C)

W = fW1g, W1: w1(A;B;C) :- e(A;B); e(B;C)

As illustrated by Figure 6.1, view V1 stores all the subgraphs shown in Figure 6.1(a),

while view W1 stores all the subgraphs shown in Figure 6.1(b). Although the two views do

not have projections in their de�nitions, still V vv W , and V 6�p W , since V1 cannot be

answered using W1. 2

The following example shows that p-containment does not imply v-containment, even if

the views in the sets have the same schemas.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 129

A B C

(a) View V1

Subgraph 1

A B C

(b) View W1

Subgraph 2

Figure 6.1: Diagram for the two views in Example 6.2.2.

EXAMPLE 6.2.3 Let r(X1; X2) and s(Y1; Y2) be two base relations on which two view

sets are de�ned:

V = fV1g, V1: v1(A;C) :- r(A;B); s(B;C)

W = fW1;W2g, W1: w1(A;B) :- r(A;B)

W2: w2(B;C) :- s(B;C)

Clearly V 6vv W, but V �p W , since there is a rewriting of V1 using W:

v1(A;C) :- w1(A;B); w2(B;C)

2

6.2.4 Minimizing View Set without Losing Power

De�nition 6.2.3 (equipotent minimal subsets) A subset M of a view set V is an

equipotent minimal subset (EMS for short) of V ifM �p V , and for any V 2M :M�fV g 6�p

V . 2

Informally, an equipotent minimal subset of a view set V is a minimal subset that is

as powerful as V . For instance, in Example 6.1.1, the view set fV1; V2g is an EMS of

fV1; V2; V3g. We can compute an EMS of V using the following Shrinking algorithm.

Algorithm Shrinking initially sets M = V . For each view V 2M , it checks if V

is answerable by the views M�fV g. If so, it removes V fromM . It repeats this

process until no more views can be removed from M , and returns the resulting

M as an EMS of V.

It can be shown that the problem of �nding an EMS is NP-hard. The following example

shows that, as suspected, a view set may have multiple EMS's.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 130

EXAMPLE 6.2.4 Suppose r(A;B) is a base relation, on which the following three views

are de�ned:

V1: v1(A) :- r(A;B)

V2: v2(B) :- r(A;B)

V3: v3(A;B) :- r(A;X); r(Y;B)

Let V = fV1; V2; V3g. As shown by the following rewritings, V has two EMS's: fV1; V2g,

and fV3g.

rewrite V1 using V3: P1: v1(A) :- v3(A;B)

rewrite V2 using V3: P2: v2(B) :- v3(A;B)

rewrite V3 using fV1; V2g: P3: v3(A;B) :- v1(A); v2(B)

For instance, P3 is an equivalent rewriting of V3 because its expansion:

v3(A;B) :- r(A;B
0); r(A0; B)

can be shown equivalent to V3. 2

In many applications, each view is associated with a cost, such as its storage space, or

the number of Web pages that need to be crawled for the view [CGM00]. We often need to

�nd an EMS that is optimal, i.e., the total cost of selected views is minimum. How to �nd

an EMS with the lowest cost is still an open problem.

6.3 Testing p-containment Relative to a Query Set

Till now, we have considered p-containment between two view sets with respect to a \uni-

versal" set of queries, i.e., users can ask any query on the base relations. However, in some

scenarios, users are restricted in the queries they can ask. In this section, we consider the

relationship between two view sets with respect to a given set of queries. In particular, we

consider in�nite query sets de�ned by �nite, parameterized queries.

6.3.1 Relative p-containment

De�nition 6.3.1 (relative p-containment) Given a (possibly in�nite) set of queries Q,

a view set V is p-contained in a view set W w.r.t. Q, denoted by V �Q W , if and only if

for any query Q 2 Q that is answerable by V , Q is also answerable by W . The two view

sets are equipotent w.r.t. Q, denoted by V �Q W , if V �Q W and W �Q V . 2

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 131

EXAMPLE 6.3.1 Assume we have two relations car(Make;Dealer) and loc(Dealer; City)

that store information about cars, their dealers, and located cities. Consider the following

queries and views:

Queries: Q1: q1(D;C) :- car(toyota;D); loc(D;C)

Q2: q2(D;C) :- car(honda;D); loc(D;C)

Views: W1: w1(D;C) :- car(toyota;D); loc(D;C)

W2: w2(D;C) :- car(honda;D); loc(D;C)

W3: w3(M;D;C) :- car(M;D); loc(D;C)

Let Q = fQ1; Q2g, V = fW1;W2g, and W = fW3g. Then V and W are equipotent w.r.t.

Q, since the following equivalent rewritings show that both Q1 and Q2 can be answered by

V as well as W, respectively.

Rewritings using V: Q1: q1(D;C) :- w1(D;C)

Q2: q2(D;C) :- w2(D;C)

Rewritings using W: Q1: q1(D;C) :- w3(toyota;D; C)

Q2: q2(D;C) :- w3(honda;D;C)

Note that V and W are not equipotent in general. 2

Given a view set V and a query set Q, we de�ne an equipotent minimal subset (EMS)

of V w.r.t. Q as follows. A subset M of V is an EMS of V w.r.t. Q if M �Q V , and

for any V 2 M : M � fV g 6�Q V . We can compute an EMS of V w.r.t. Q in the same

way as in Section 6.2.4, if we have a method to test relative p-containment. This testing is

straightforward when Q is �nite. By de�nition, we can check for each query Qi 2 Q that

is answerable by V , whether Qi is also answerable by W . However, if Q is in�nite, testing

relative p-containment becomes more challenging, since we cannot use this enumerate-and-

test paradigm for all the queries in Q. In the rest of this section, we consider ways to test

relative p-containment w.r.t. in�nite query sets generated by �nite parameterized queries.

6.3.2 Parameterized Queries

A parameterized query is a conjunctive query that contains placeholders in the argument

positions of its body, in addition to constants and variables. A placeholder is denoted by

an argument name beginning with a \$" sign. The following is an example.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 132

EXAMPLE 6.3.2 Consider the following parameterized query Q on the two relations in

Example 6.3.1:

Q : q(D) :- car($M;D); loc(D; $C)

This query represents all the following queries: a user gives a car makem for the placeholder

$M , and a city c for the placeholder $C, and asks for the dealers of the make m in the city

c. For instance, the following are two instances of Q:

I1: q(D) :- car(toyota;D); loc(D; sf)

I2: q(D) :- car(honda;D); loc(D; sf)

which respectively ask for the dealers of Toyota and Honda in San Francisco. 2

In general, each instance of a parameterized query Q is obtained by assigning a constant

from the corresponding domain to each placeholder. If a placeholder appears in di�erent

argument positions, then the same constant must be used in these positions. Let IS(Q)

denote the set of all instances of the query Q. We assume that the domains of placeholders

are in�nite (independent of an instance of the base relations), causing IS(Q) to be in�nite.

Thus we can represent an in�nite set of queries using a �nite set of parameterized queries.

EXAMPLE 6.3.3 Consider the following three views:

V1: v1(M;D;C) :- car(M;D); loc(D;C)

V2: v2(M;D) :- car(M;D); loc(D; sf)

V3: v3(M) :- car(M;D); loc(D; sf)

Clearly, view V1 can answer all instances of Q, since it includes information for cars and

dealers in all cities. View V2 cannot answer all instances, since it has only the information

about dealers in San Francisco. But it can answer instances of the following more restrictive

parameterized query, which replaces the placeholder $C by sf :

Q0 : q(D) :- car($M;D); loc(D; sf)

That is, the user can only ask for information about dealers in San Francisco. Finally, view

V3 cannot answer any instance of Q, since it does not have the Dealer attribute in its head.

2

Given a �nite set of parameterized queries Q and two view sets V and W , we want to

test V �IS(Q) W . The example above suggests the following test strategy:

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 133

1. Deduce all instances of Q that can be answered by V , represented by a �nite set of

parameterized queries.

2. Test if W can answer all such instances.

In the next two subsections we show how to perform each of these steps. We show that

all answerable instances of a parameterized query for a given view set can be represented

by a �nite set of parameterized queries. We give an algorithm for deducing this set, and

an algorithm for the second step. Although our discussion is based on one parameterized

query, the results can be easily generalized to a �nite set of parameterized queries.

6.3.3 Complete Answerability of Parameterized Queries

We �rst consider the problem of testing whether all instances of a parameterized query can

be answered by a view set. If all instances of a parameterized query Q can be answered by

a view set V, we say that Q is completely answerable by V.

De�nition 6.3.2 (canonical instance) Let Q be a parameterized query and V be a view

set. A canonical instance of Q (given V) is an instance of Q, in which each placeholder is

replaced by a new distinct constant that does not appear in Q and V . 2

Theorem 6.3.1 Let Q be a parameterized query, and V be a view set. Q is completely

answerable by V if and only if V can answer a canonical instance of Q (given V). 2

Proof: Let Qc be a canonical instance of Q given V . The \Only if" part is obvious,

since Qc is an instance of Q. To prove the \If" part, we need to show that if there exists

a rewriting Pc of the instance Qc using V , then for any instance I of query Q, there exists

a rewriting PI of I using V . As shown in Figure 6.2, the rewriting PI is constructed as

follows. For each placeholder $Ai in Q, suppose it is replaced by ai in Qc, and by bi in

the instance I . Replace each ai in the rewriting Pc with bi, and we do this replacement for

every placeholder in Q. Let PI be the new rewriting after the replacements.

Now we prove that PI is an equivalent rewriting of I using V. Consider the expansion

P exp
c of the rewriting Pc. Since P

exp
c is equivalent to Qc, there exists a containment mapping

� from Qc to P exp
c , and a containment mapping � of the other direction. Note that a

containment mapping must map a constant to the same constant, and map a variable to

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 134

��

Canonical instance Qc:

Rewriting Pc:

Expansion P exp
c :

Any instance I :

Rewriting PI :

Expansion P
exp
I :

�0

Parameterized query Q: ans() :- r1(); : : : ; rl(: : : ; $Ai; : : :); : : : ; rn()

ans() :- rj1(); : : : ; rjq (: : : ; ai; : : :); : : : ; rjk ()

ans() :- r1(); : : : ; rl(: : : ; ai; : : :); : : : ; rn()

ans() :- v1(); : : : ; vp(: : : ; ai; : : :); : : : ; vm()

ans() :- rj1(); : : : ; rjq (: : : ; bi; : : :); : : : ; rjk ()

ans() :- r1(); : : : ; rl(: : : ; bi; : : :); : : : ; rn()

�0ans() :- v1(); : : : ; vp(: : : ; bi; : : :); : : : ; vm()

Figure 6.2: Proof of Theorem 6.3.1.

either a constant, or another variable. In addition, the expansion P exp
I of PI can be obtained

from P exp
c by replacing every occurrence of ai with bi.

We can construct a new mapping �0 from I to P exp
I as follows. �0 is the same as � except

that for each constant bi in I that replaces a placeholder $Ai of Q, we let �
0(bi) = bi. By

the construction of Pc and PI , we can show that �0 is a containment mapping from I to

P exp
I . Similarly we can derive from � a containment mapping �0 from P exp

I to I . Thus PI

is an equivalent rewriting of I using V.

The theorem suggests an algorithm TestComp for testing whether all instances of a

parameterized query Q can be answered by a view set V .

Algorithm TestComp �rst constructs a canonical instance Qc of Q (given V).

Then it tests if Qc can be answered using V by calling an algorithm of answering

queries using views, such as those in [LRO96, GM99a, Qia96, DG97]. It outputs

\yes" if V can answer Qc; otherwise, it outputs \no."

EXAMPLE 6.3.4 Consider the parameterized query Q in Example 6.3.3. To test whether

view V1 can answer all instances of Q, we use two new distinct constantsm0 and c0 to replace

the two placeholders $M and $C, and obtain the following canonical instance:

Qc : q(D) :- car(m0; D); loc(D; c0)

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 135

Clearly Qc can be answered by view V1, because of the following equivalent rewriting of Qc:

Pc : q(D) :- v1(m0; D; c0)

By Theorem 6.3.1, view V1 can answer all instances ofQ. In addition, since V2 cannot answer

Qc (which is also a canonical instance of Q given V2), it cannot answer some instances of

Q. The same argument holds for V3. 2

6.3.4 Partial Answerability of Parameterized Queries

As shown by the view V2 and the query Q in Example 6.3.3, even if a view set cannot

answer all instances of a parameterized query, it can still answer some of its instances. In

general, we want to know what instances can be answered by the view set, and whether

these instances can also be represented as a set of more \restrictive" parameterized queries.

A parameterized query Q1 is more restrictive than a parameterized query Q if every instance

of Q1 is also an instance of Q. For example, query

q(D) :- car($M;D); loc(D; sf)

is more restrictive than query

q(D) :- car($M;D); loc(D; $C)

since the former requires the second argument of the loc subgoal to be sf , while the latter

allows any constant for its corresponding placeholder $C. For another example, query

q(M;C) :- car(M; $D1); loc($D1; C)

is more restrictive than query

q(M;C) :- car(M; $D1); loc($D2; C)

since the former has one placeholder in two argument positions, while the latter allows two

di�erent constants to be assigned to its two placeholders.

Clearly all the parameterized queries that are more restrictive than Q can be generated

by adding the following two types of restrictions:

1. Type I: Some placeholders are assigned the same constant. Let f$A1; : : : ; $Akg be

some placeholders in Q. We can put a restriction $A1 = � � � = $Ak on the query Q.

That is, we can replace all these k placeholders with one placeholder.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 136

2. Type II: For a placeholder $Ai in Q and a constant c in Q or V , we put a restriction

$Ai = c on Q. That is, the user can only assign constant c to this placeholder in an

instance.

Consider all the possible (�nite) combinations of these two types of restrictions. For

example, suppose Q has two placeholders, f$A1; $A2g, and Q and V have one constant c.

Then we consider the following restriction combinations: fg, f$A1 = $A2g, f$A1 = cg,

f$A2 = cg, and f$A1 = $A2 = cg. Note that we allow a combination to have restrictions

of only one type. In addition, each restriction combination is consistent, in the sense that

it does not have a restriction $A1 = $A2 and two restrictions $A1 = c1 and $A2 = c2, while

c1 and c2 are two di�erent constants in Q and V . For each restriction combination RCi,

let Q(RCi) be the parameterized query that is derived by adding the restrictions in RCi to

Q. Clearly Q(RCi) is a parameterized query that is more restrictive than Q. Let �(Q;V)

denote all these parameterized queries that are more restrictive than Q.

Suppose I is an instance of Q that can be answered by V . We can show that there

exists a parameterized query Qi 2 �(Q;V), such that I is a canonical instance of Qi. By

Theorem 6.3.1, Qi is completely answerable by V . Therefore, we have proved the following

theorem:

Theorem 6.3.2 All instances of a parameterized query Q that are answerable by a view

set V can be generated by a �nite set of parameterized queries that are more restrictive than

Q, such that all these parameterized queries are completely answerable by V. 2

We propose the following algorithm GenPartial. Given a parameterized query Q and a

view set V , the algorithm generates all the parameterized queries that are more restrictive

than Q, such that they are completely answerable by V, and they generate all the instances

of Q that are answerable by V.

Algorithm GenPartial �rst generates all the restriction combinations, and cre-

ates a parameterized query for each combination. Then it calls the algorithm

TestComp to check if this parameterized query is completely answerable by V .

It outputs all the parameterized queries that are completely answerable by V.

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 137

6.3.5 Testing p-containment Relative to Finite Parameterized Queries

Now we give an algorithm for testing p-containment relative to parameterized queries. Let

Q be a query set with only one parameterized query Q. Let V andW be two view sets. The

algorithm tests V �IS(Q) W as follows. First call the algorithm GenPartial to �nd all the

more restrictive parameterized queries of Q that are completely answerable by V. For each

of them, call the algorithm TestComp to check if it is also completely answerable byW . By

de�nition, V �IS(Q) W i� all these parameterized queries that are completely answerable

by V are also completely answerable by W . The algorithm can be easily generalized to the

case where Q is a �nite set of parameterized queries.

6.4 MCR-containment

So far we have considered the query-answering power of views with respect to equivalent

rewritings of queries. In information integration, we often need to consider maximally-

contained rewritings of a query using views. (See Section 2.5 for the de�nition of maximally-

contained rewritings.) In this section, we introduce the concept ofMCR-containment, which

describes the relative power of two view sets in terms of their maximally-contained rewritings

of queries. Surprisingly, MCR-containment is essentially the same as p-containment.

De�nition 6.4.1 (MCR-containment) A view set V is MCR-contained in another view

set W , denoted by V �MCR W , if for any query Q, we have MCR(Q;V) v MCR(Q;W),

where MCR(Q;V) and MCR(Q;W) are MCR's of Q using V and W , respectively. The

two sets are MCR-equipotent, denoted by V �MCR W, if V �MCR W, and W �MCR V . 2

The following theorem shows that MCR-containment is essentially the same as p-

containment.

Theorem 6.4.1 For two view sets V and W, V �p W if and only if V �MCR W. 2

Proof: \If": Suppose V �MCR W . Consider each view V 2 V. Clearly V itself is an

MCR of the query V using V , since it is an equivalent rewriting of V . Let MCR(V;W) be

an MCR of V using W. Since V �MCR W, we have V vMCR(V;W). On the other hand,

by the de�nition of MCR's, MCR(V;W) v V . Thus MCR(V;W) and V are equivalent,

and MCR(V;W) is an equivalent rewriting of V using W . By Theorem 6.2.1, V �p W .

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 138

\Only if": Suppose V �p W. By Theorem 6.2.1, every view has an equivalent rewriting

using W . For any query Q, let MCR(Q;V) and MCR(Q;W) be MCR's of Q using V

and W , respectively. We replace each view in MCR(Q;V) with its corresponding rewrit-

ing using W , and obtain a new rewriting MCR0 of query Q using W, which is equiva-

lent to MCR(Q;V). By the de�nition of MCR's, we have MCR0 v MCR(Q;W). Thus

MCR(Q;V) vMCR(Q;W), and V �MCR W .

6.5 Minimizing View Sets of General Queries

Until now, we have discussed minimizations of conjunctive views using the concept of p-

containment. In this section we extend the earlier results to more general queries, and

propose a framework for minimizing view sets without losing their query-answering power.

Let F be one of the following three families of queries: conjunctive queries with arith-

metic comparisons, unions of conjunctive queries, and datalog queries. Suppose Q 2 F is a

query on base relations, and V is a set of views in F on the same base relations.

De�nition 6.5.1 (general answerability) We say Q is answerable by V if there is a query

P 2 F that uses only the views in V, such that for any database D of the base relations,

the answer computed by P on the instance of the views V(D) is equivalent to the answer

computed by Q on the base relations. 2

De�nition 6.5.2 (general p-containment and equipotence) Let V andW be two sets

of views in F . We say V is p-contained in W , denoted by V �p W , if any query in F that

is answerable by V is also answerable by W. The two view sets are equipotent, denoted by

V �p W , if V �p W , and W �p V . 2

6.5.1 Testing General p-containment

Theorem 6.5.1 Under the de�nition of general p-containment, Theorem 6.2.1 holds. That

is, for two sets of views V and W, V �p W if and only if for every view V 2 V, V is

answerable by W. 2

Suppose we have an algorithm CheckF that can test the answerability of a query with

respect to a set of views in the family F . That is, given a query Q and a view set V , as

shown in Figure 6.3, the algorithm CheckF tests if Q is answerable by V. By Theorem 6.5.1,

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 139

query Q Yes: answerable

No: not answerable

a set of views V

CheckF

Figure 6.3: The algorithm CheckF for a family F of queries.

we can test V �p W as follows: for each view V 2 V , call the algorithm CheckF to test

whether V is answerable by W . V �p W is true i� all the views in V pass the test. It

should be observed that algorithm CheckF does not exist for the family of datalog queries

[Dus97].

6.5.2 Minimizing View Sets Using General Equipotence

Given a view set V , similarly to De�nition 6.2.3, an equipotent minimal subset (EMS) of V

is a minimal subset of V that is equipotent to V. To compute an EMS of V , we check for each

view V 2 V if V is answerable by V � fV g by calling the algorithm CheckF . If so, remove

V from V . We keep shrinking the view set until no views can be removed without changing

the query-answering power, and the �nal set is an EMS of V . As shown in Example 6.2.4,

a view set can have multiple EMS's.

In some scenarios we need to answer queries using views in the presence of constraints

(e.g., functional dependencies [Cod70], multivalued dependencies [Fag77, Del78]) and bind-

ing limitations on views [RSU95, DL97, Ull89, LC00, LYV+98, YLUGM99]. We can gen-

eralize our results by requiring that the algorithm CheckF take constraints and binding

limitations into consideration. [RSU95, Gry99] give algorithms for answering conjunctive

queries using conjunctive views in these scenarios; [Dus97] provides answers for rewriting

datalog queries using conjunctive views.

6.6 Conclusions and Related Work

In this chapter we studied how to use mediator caching to reduce the number of source

accesses. One problem is to decide what cached query results to keep so that we can answer

as many future queries as possible. We showed that when minimizing a set of query results

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 140

(views), we should consider the query-answering power of the views, rather than using the

traditional query-containment concept for view selection. We developed the concept of p-

containment, and showed that it is not related to the traditional query containment. We

discussed how to minimize a view set without losing its query-answering power. We also

considered p-containment of two view sets with respect to a given (possibly in�nite) set of

queries, and with respect to maximally-contained rewritings of queries using the views. We

developed algorithms for testing these containments, and discussed their relationships.

Related Work

There have been many studies on data caching (e.g., [ACPS96, Bas98, BCF+99]). One

key di�erence between our work and the earlier studies is that we focus on how to keep

query results in a mediator cache to maximize the chance of answering future queries at

the mediator. In addition, our problem is closely related to the problem of selecting views

to materialize. In [IK93, HGMW+95, Wid95, CW91], a data warehouse is modeled as a

repository of integrated information available for querying and analysis. The materialized

views are stored with an intention of making the frequent queries fast. The system accesses

base relations for a query that cannot be answered using the materialized views. Each

of the materialized views can be huge, resulting in the need for careful selection under

the constraint of limited disk space [HRU96, GHRU97, RSS96, YKL97, BPT97, TS97].

Moreover, base relations can change over time. The updates have to be propagated to

the materialized views, resulting in a maintenance cost [GHRU97, GM99b]. The study

in this setting has, therefore, emphasized on modeling the view-selection problem as cost-

bene�t analysis. Thus, for a given set of queries, various sets of sub-queries are considered

for materialization. Redundant views in a set that increase cost are deduced using query

containment, and an optimal subset is chosen.

Such a model is feasible when all queries can be answered in the worst case by accessing

the base relations, and not by views alone. This assumption is incorporated in the model

by replicating base relations at the warehouse, without taking the costs of such a step into

account. Thus, the base relations themselves are considered to be normalized, independent,

and minimal. However, when real-time access to base relations is prohibitive, such an

approach can lead to wrong conclusions, as was seen in Example 6.1.1. In such a scenario,

it is essential to ensure the computability of queries using only maintained views.

Our results are applicable in the scenarios where the following assumptions hold. (1)

CHAPTER 6. USING MEDIATOR CACHING TO IMPROVE PERFORMANCE 141

Real-time access to base relations is prohibitive, or possibly denied, and (2) cached views

are expensive to maintain over time, because of the high costs of propagating changes from

base relations to views. Therefore, while minimizing a view set, it is important to retain its

query-answering power. We believe the power of answering queries and the bene�t/costs of

a view set are orthogonal issues, and their interplay would make an interesting work in its

own right.

Recently, [CG00] has proposed solutions to the following problem of database reformu-

lation: given a query on base relations, how can we materialize views to answer the query?

The authors show that there can be in�nite number of view sets that can answer the same

query. Thus, their work starts with a given query but no views. In our framework, we

assume that a set of views (query results) are given, and user queries can be arbitrary. We

would like to deduce a minimal subset of views that can answer all queries answerable by

the original set.

Chapter 7

Generating E�cient Plans for

Queries Using Views

So far we have discussed query optimization in information-integration systems that take the

query-centric approach. For systems that take the source-centric approach, one fundamental

problem is: given a query on base relations and a set of views over the same relations, can

we answer the query using only the answers to the views? Several algorithms have been

proposed in the literature on this problem of answering queries using views.

In this chapter, we study the problem of generating e�cient, equivalent rewritings using

views to compute the answer to a query. We take the closed-world assumption, in which

views are materialized from base relations, rather than views describing sources in terms

of abstract predicates, as is common when the open-world assumption is used. In the

closed-world model, there can be an in�nite number of di�erent rewritings that compute

the same answer, yet have quite di�erent performance. Query optimizers take a logical plan

(a rewriting of the query) as an input, and generate e�cient physical plans to compute the

answer. Thus our goal is to generate a small subset of the possible logical plans without

missing an optimal physical plan.

We �rst consider a cost model that counts the number of subgoals in a physical plan,

and show a search space that is guaranteed to include an optimal rewriting, if the query

has a rewriting in terms of the views. We also develop an e�cient algorithm for �nding

rewritings with the minimum number of subgoals. We then consider a cost model that counts

the sizes of intermediate relations of a physical plan, without dropping any attributes, and

give a search space for �nding optimal rewritings. Our �nal cost model allows attributes

142

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS143

to be dropped in intermediate relations. We show that, by careful variable renaming, it

is possible to do better than the standard supplementary-relation approach by dropping

attributes that the latter approach would retain. Experiments show that our algorithm of

generating optimal rewritings has good e�ciency and scalability.

Chapter Organization

In Section 7.1 we give an example to show there can be several di�erent rewritings for a

query using the same set of views, and these rewritings could have quite di�erent e�ciency.

Section 7.2 discusses e�ciency of rewritings. In Section 7.3 we study how to �nd optimal

rewritings under cost modelM1, i.e., rewritings with the minimum number of view subgoals.

In Section 7.4 we develop an e�cient algorithm, called Corecover, for �nding rewritings with

the minimum number of view subgoals.

In Section 7.5 we study cost modelM2 that considers sizes of view relations and interme-

diate relations in a physical plan. We show that the space of all minimal rewritings that use

view tuples is guaranteed to include an optimal rewriting of a query under M2, if the query

has a rewriting. In Section 7.6 we study the search space for optimal rewritings under cost

model M3, and propose a heuristic that helps the optimizer drop more attributes without

changing the �nal answer of the evaluation, thus producing a more e�cient physical plan.

We show our experimental results in Section 7.7. In Section 7.8 we conclude the chapter

and discuss related work.

7.1 Introduction

The following example illustrates several issues in generating optimal rewritings using views

for a query under the closed-world assumption:1 (1) There can be an in�nite number of

rewritings for a query. (2) Traditional query-containment techniques [CM77] cannot �nd a

rewriting with the minimum number of joins. (3) Adding more view relations to a rewriting

could make the rewriting more e�cient to evaluate.

EXAMPLE 7.1.1 Suppose we have the following three base relations:

� car(Make,Dealer). A tuple car(m,d) means that dealer d sells cars of make m.

1We will refer to this example as the \car-loc-part example" throughout the chapter.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS144

� loc(Dealer,City). A tuple loc(d,c) means dealer d has a branch in the city c.

� part(Store,Make,City). A tuple part(s,m,c) means that store s in city c sells

parts for cars of make m.

Assume we have �ve sources, whose contents are de�ned by the following �ve views on

the base relations:

V1: v1(M;D;C) :- car(M;D); loc(D;C)

V2: v2(S;M;C) :- part(S;M;C)

V3: v3(S) :- car(M; anderson); loc(anderson; C); part(S;M;C)

V4: v4(M;D;C;S) :- car(M;D); loc(D;C); part(S;M;C)

V5: v5(M;D;C) :- car(M;D); loc(D;C)

Under CWA, these �ve views are computed from the three base relations. In particular,

views V1 and V5 have the same de�nition, thus their view relations always have the same

tuples for any base relations. Under OWA, however, we would only know that V1 and V5

contain only tuples in car(M;D) ./ loc(D;C); either or both could even be empty.

A user submits the following query:

Q : q1(S;C) :- car(M; anderson); loc(anderson; C); part(S;M;C)

asking for cities and stores that sell parts for car makes in the anderson branch in this city.

We want to answer the query using the views. The following are some rewritings for

the query. Notice that there is an in�nite number of rewritings for the query, since each

rewriting P has an in�nite number of rewritings that are equivalent to P as queries.

P1: q1(S;C) :- v1(M; anderson; C1); v1(M1; anderson; C); v2(S;M;C)

P2: q1(S;C) :- v1(M; anderson; C); v2(S;M;C)

P3: q1(S;C) :- v3(S); v1(M; anderson; C); v2(S;M;C)

P4: q1(S;C) :- v4(M; anderson; C; S)

P5: q1(S;C) :- v1(M; anderson; C1); v5(M1; anderson; C); v2(S;M;C)

We can show that all of these rewritings compute the answer to the query Q. However, some

of them may lack an e�cient physical plan. For instance, rewriting P2 needs one access to

the view relation V1, while P1 needs two accesses and also a join operation. In addition, we

cannot easily minimize P1 to generate P2 using traditional query-containment techniques

[CM77], since neither of the �rst two subgoals of P1 is redundant. Furthermore, although

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS145

P3 uses one more view V3 than P2, the former can still produce a more e�cient execution

plan if the view relation V3 is very selective. That is, if there are very few stores that sell

parts for cars that dealer anderson sells, and are located in the same city as anderson, then

view V3 can be used as a �ltering relation. Rewriting P4 could be an optimal rewriting,

since it requires only one access to view V4. 2

In general, given a query at a mediator and a set of views that de�ne the contents of

sources, the following questions arise:

1. In what space should we search for optimal rewritings?

2. How do we �nd optimal rewritings e�ciently?

3. How does an optimizer generate an e�cient physical plan from a logical plan by

considering the view de�nitions?

In this chapter we answer these questions by considering several cost models. We de�ne

search spaces for �nding optimal rewritings, and develop e�cient algorithms for �nding

optimal rewritings in each search space.

7.2 E�ciency of Rewritings

In this section, we introduce the three cost models used in this chapter. Recall Section 2.5

reviewed some concepts on answering queries using views. In this chapter, unless otherwise

speci�ed, the term \rewriting" means an \equivalent rewriting" of a query using views. For

instance, in our car-loc-part example, both

P1: q1(S;C) :- v1(M; anderson; C1); v1(M1; anderson; C); v2(S;M;C)

P2: q1(S;C) :- v1(M; anderson; C); v2(S;M;C)

are two rewritings for the query

Q : q1(S;C) :- car(M; anderson); loc(anderson; C); part(S;M;C)

because their expansions

P exp
1 : q1(S;C) :- car(M; anderson); loc(anderson; C1);

car(M1; anderson); loc(anderson; C); part(S;M;C)

P exp
2 : q1(S;C) :- car(M; anderson); loc(anderson; C); part(S;M;C)

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS146

can be shown to be equivalent to Q. This example shows that two equivalent rewritings of

the same query might not be equivalent as queries. That is, P exp
1 � P exp

2 , but P1 6� P2.

Notice that the test for P1 � P2 involves containment mappings in views, while the test for

P exp
1 � P exp

2 involves containment mappings in base relations. We say that two rewritings

P1 and P2 are equivalent as queries if P1 � P2. Whereas, we say that two rewritings P1 and

P2 are equivalent as expansions if P
exp
1 � P exp

2 .

Let P be a rewriting of a query Q using views V . We de�ne three cost models, as shown

in Table 7.1. For each of them, we de�ne a physical plan for P and a cost measure on this

physical plan.

Cost model Physical plan Cost measure
M1 a set of subgoals number of subgoals: n
M2 a list of subgoals

Pn

i=1(size(gi) + size(IRi))
M3 a list of subgoals annotated with projected attributes

Pn

i=1(size(gi) + size(GSRi))

Table 7.1: Three cost models.

Under cost model M1, a physical plan of P is a set of the view subgoals in P , and the

cost measure is the number of subgoals in the set. That is, the cost of a physical plan F is:

costM1
(F) = number of subgoals in F

The main motivation of cost model M1 is to minimize the number of join operations, which

tend to be expensive when a rewriting is evaluated.

Under cost model M2, a physical plan F of rewriting P is a list g1; : : : ; gn of the view

subgoals in P . The views corresponding to these subgoals are joined in the order listed.

After joining the �rst i subgoals in the list, the intermediate relation IRi is the join result

with all attributes retained [GMUW00]. The cost measure for F under M2 is the sum of

the sizes of the views joined, plus the sizes of the intermediate relations computed during

the multiway join. More formally, The cost measure of F under M2 is:

costM2
(F) =

nX
i=1

(size(gi) + size(IRi))

where size(gi) is the size of the relation for the subgoal gi, and size(IRi) is the size of the

intermediate relation IRi. The motivation of cost modelM2 is that, as shown in [GMUW00],

the time of executing a physical plan is usually determined by the number of disk IO's, which

is a function of the sizes of those relations used in the plan.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS147

Cost model M3 is motivated by the supplementary-relation approach [BR87], whose

main idea is to drop attributes during the evaluation of a sequence of subgoals. Under M3,

a physical plan of rewriting P is a list g
�X1

1 ; : : : ; g
�Xn
n of the view subgoals in P , with each

subgoal gi annotated with a set �Xi of nonrelevant attributes. All the attributes in �Xi can be

dropped after the �rst i subgoals are processed, while still being able to compute the answer

to the original query after the evaluation terminates. The generalized supplementary relation

(\GSR" for short) after the �rst i subgoals are processed, denoted GSRi, is the intermediate

relation IRi with the attributes in �Xi dropped.

The cost measure forM3 is the sum of the sizes of the views joined, plus the sizes of the

generalized supplementary relations computed during the multiway join. More formally, for

a physical plan F = g
�X1

1 ; : : : ; g
�Xn
n , its cost under M3 is:

costM3
(F) =

nX
i=1

(size(gi) + size(GSRi))

where size(gi) is the size of the relation for the subgoal gi, and size(GSRi) is the size of

the generalized supplementary relation GSRi.

Notice that a special case of cost model M3 is when the nonrelevant attributes in �Xi

are de�ned as the attributes in the join that are not used in either the query's head, or any

subsequent subgoals after subgoal gi. Then we get the supplementary relation as de�ned

in the literature [BR87, Ull89]. However, as we will see in Section 7.6, by careful variable

renaming, it is possible to drop more attributes than the traditional supplementary-relation

approach.

De�nition 7.2.1 (e�ciency of rewritings) Under a cost model M , a rewriting P1 of a

query Q is more e�cient than another rewriting P2 of Q if the cost of an optimal physical

plan of P1 under cost model M is less than the cost of an optimal physical plan of P2. A

rewriting P is an optimal rewriting if it has a physical plan with the lowest cost in all the

physical plans of rewritings of Q under M . 2

7.3 Cost Model M1: Number of View Subgoals

In this section we study how to �nd optimal rewritings under cost modelM1, i.e., rewritings

with the minimum number of view subgoals. We �rst show, given a rewriting, how to

minimize its view subgoals. However, this minimization step might miss optimal rewritings

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS148

if it uses only traditional query-containment techniques. Then we analyze the internal

structure of the space of rewritings, and give a space that is guaranteed to include a rewriting

with the minimum number of subgoals, if the query has a rewriting.

7.3.1 Minimizing View Subgoals in a Rewriting

Suppose we are given a rewriting P of a query Q using views V , and we want to minimize

its number of subgoals while retaining its equivalence to Q. The �rst step to take is to �nd

the minimal equivalent query of P (not P exp) by removing its redundant subgoals. Let Pm

be this minimal equivalent. However, even for the minimal rewriting Pm, we might still

be able to remove some of its view subgoals while retaining its equivalence to Q, because

we are really interested in rewritings after expansion of the views. For instance, P3 in

the car-loc-part example is a minimal rewriting, but we can still remove its subgoal v3(S)

and obtain rewriting P2 with fewer subgoals. Notice that P2 and P3 are not equivalent as

queries, although they both compute the same answer to the query. Thus in the second

minimization step, we keep removing subgoals from the minimal rewriting Pm, until we

get a locally-minimal rewriting (\LMR" for short), denoted PLMR. That is, PLMR is a

rewriting from which we cannot remove any subgoals and still retain equivalence to the

query Q. For instance, the rewritings P1 and P2 are two LMRs of the query. The rewriting

P3 is a minimal rewriting, but not an LMR.

For the obtained rewriting PLMR, we cannot remove further subgoals while retaining its

equivalence to the query Q. For instance, neither of the �rst two subgoals in the rewriting

P1 can be removed and still retain its equivalence to the query Q. However, as we will

see shortly, we can still reduce the number of view subgoals in an LMR by proper variable

renaming. In addition, our goal is to �nd globally-minimal rewritings (\GMR" for short),

i.e., rewritings with the minimum number of subgoals. For this goal we analyze the structure

of the rewriting space of a query.

7.3.2 Structure of Rewriting Space

Consider the two LMRs P1 and P2 in the car-loc-part example. Notice that rewriting P2

is properly contained in P1 as queries (i.e., P2 v P1), while P2 has fewer subgoals than

P1. Surprisingly, we can generalize this relationship between containment of two LMRs and

their numbers of subgoals as follows.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS149

Lemma 7.3.1 Let P1 and P2 be two LMRs of a query Q. If P1 v P2 as queries, then the

number of subgoals in P1 is not greater than the number of subgoals in P2. 2

Proof: Since P1 v P2, there is a containment mapping � from P2 to P1. Suppose that

the number of subgoals in P1 is greater than the number of subgoals in P2. Then there

is at least one subgoal of P1 is not used in �. Consider the expansions P exp
1 and P exp

2

of P1 and P2, respectively. The mapping � implies a mapping from P exp
2 to P exp

1 . This

mapping, together with a containment mapping from Q to P exp
2 , implies a mapping from

Q to P exp
1 . The latter leads to a rewriting that uses only a proper subset of the subgoals in

P1, contradicting the fact that P1 is an LMR.

We say an LMR is a containment-minimal rewriting (\CMR" for short) if there is no

other LMR that is properly contained in this rewriting as queries. For instance, the rewriting

P2 in the car-loc-part example is a CMR, while rewriting P1 is not. However, a GMR might

not be a CMR, as shown by the following query, views, and rewritings:

Query: Q: q(X) :- e(X;X)

Views: V : v(A;B) :- e(A;A); e(A;B)

Rewritings: P1: q(X) :- v(X;B)

P2: q(X) :- v(X;X)

The rewriting P1 is a GMR, but it is not a CMR, since there is another rewriting P2 (also a

GMR) that is properly contained in P1. We will give a space that is guaranteed to include

a GMR of a query, if the query has a rewriting.

rewritings

2

1

1. Minimal rewritings.

3 4
5. Region 3 \ region 4.

6. Region 3 - region 4.

56

2. Locally-minimal rewritings.

3. Containment-minimal rewritings.

4. Globally-minimal rewritings.

Figure 7.1: Relationship of rewritings of a query.

The relationship of di�erent rewritings of a query Q is shown in Figure 7.1. It can be

summarized as follows:

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS150

1. A minimal rewriting P does not include any redundant subgoals as a query.

2. A locally-minimal rewriting (LMR) is a minimal rewriting whose subgoals cannot be

dropped and still retain equivalence to the query. As we will see shortly, all LMRs form

a partial order in terms of their number of subgoals and containment relationship.

3. A containment-minimal rewriting (CMR) P is a locally-minimal rewriting with no

other locally-minimal rewritings properly contained in P as queries.

4. A globally-minimal rewriting (GMR) is a rewriting with the minimum number of

subgoals. A globally-minimal rewriting is also locally minimal. The subtlety here is

that by Lemma 7.3.1, each GMR P has at least one CMR contained in P with the

same number of subgoals. Thus, for each GMR in region 6 in Figure 7.1, there exists

a GMR in region 5 that has the same number of subgoals. Therefore, we can just

limit our search space to all CMRs for �nding GMRs.

More formally, the following two propositions are corollaries of Lemma 7.3.1.

Proposition 7.3.1 Each GMR P has at least one CMR that (1) is contained in P and (2)

has the same number of subgoals as P . 2

Proposition 7.3.2 The set of CMRs contains at least one GMR. 2

EXAMPLE 7.3.1 Consider the following query, view, and three rewritings.

Query: Q: q(X; Y; Z) :- e1(X; c); e2(Y; c); e3(Z; c)

View: V : v(X; Y; Z;W) :- e1(X;W); e2(Y;W); e3(Z;W)

Rewritings: P1: q(X; Y; Z) :- v(X; Y; Z; c)

P2: q(X; Y; Z) :- v(X; Y; Z1; c); v(X1; Y1; Z; c)

P3: q(X; Y; Z) :- v(X; Y1; Z1; c); v(X2; Y; Z2; c); v(X3; Y3; Z; c)

Clearly, LMR P1 is properly contained in LMR P2 as queries, which is properly contained

in LMR P3 as queries. Rewriting P1 is a CMR. Notice we can generalize this example to m

base relations e1; e2; : : : ; em in the query, and get a partial order of LMRs that is a chain

of length m. 2

Since containment mapping is transitive, all the locally-minimal rewritings of a query

form a partial order in terms of their containment relationships. The bottom elements in

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS151

this partial order are the CMRs. In addition, by Lemma 7.3.1, the containment relationship

between two LMRs also implies that the contained rewriting has no more subgoals than the

containing rewriting. Figure 7.2(a) shows the partial order of the four LMRs (P1, P2, P4,

and P5) in the car-loc-part example. Figure 7.2(b) shows the partial order of the rewritings

in Example 7.3.1. Each edge in the �gure represents a proper containment relationship: the

upper rewriting properly contains the lower rewriting.

number of
subgoals

3

2

1

(b)(a)

P1

P2

P3

P4

P2

P1 P5

Figure 7.2: Partial order of locally-minimal rewritings of a query.

7.3.3 A Space Including Globally-Minimal Rewritings

The conclusion of the previous subsection is that we can search in the space of CMRs for

a GMR, if the query has a rewriting. Now we de�ne a search space in a more constructive

way. We need �rst de�ne several notations. Given a query Q, a canonical database DQ of Q

is obtained by turning each subgoal into a fact by replacing each variable in the body by a

distinct constant, and treating the resulting subgoals as the only tuples in DQ. Let V(DQ)

be the result of applying the view de�nitions V on database DQ. For each tuple in V(DQ),

we restore each introduced constant back to the original variable of Q, and obtain a view

tuple of the query given the views. Let T (Q;V) denote the set of all view tuples after the

replacement.

In our car-loc-part example, a canonical database for the query Q is:

DQ = fcar(m; anderson); loc(anderson; c); part(s;m; c)g

where the variables M , C, and C are replaced by new distinct constants m, c, and s,

respectively. By applying the �ve view de�nitions V on DQ, we have

V(DQ) = fv1(m; anderson; c); v2(s;m; c); v3(s); v4(m; anderson; c; s); v5(m; anderson; c)g

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS152

Thus the set of view tuples T (Q;V) is

fv1(M; anderson; C); v2(S;M;C); v3(S); v4(M; anderson; C; S); v5(M; anderson; C)g

The following lemma, which is a rephrasing of a result in [LMSS95], helps us restrict

the search space for �nding globally-minimal rewritings for a query.

Lemma 7.3.2 For any rewriting P

q(�X) :- p1(�Y1); : : : ; pk(�Yk)

of a query Q using views V, there is a rewriting P 0 of Q such that P 0 is in the form:

q(�X) :- p1(�Y
0
1); : : : ; pk(�Y

0
k)

In addition, each pi(�Y
0
i) is a view tuple in T (Q;V), and P 0 v P . 2

The main idea of the proof in [LMSS95] is to consider a containment mapping � from

P exp to Q, and replace each variable X in P by its target variable �(X) in Q. For instance,

let us see how to transform P1 in the car-loc-part example to the LMR P2 that uses the

view tuples only. Consider the containment mapping from P
exp
1 to Q: fM1 ! M;M !

M; anderson! anderson; C1 ! C;C! C; S ! Sg. Under this mapping, we transform P1

to:

P 0
1 : q1(M;C) :- v1(M; anderson; C); v1(M; anderson; C); v2(S;M;C)

After removing one duplicate subgoal from P 0
1, we have the rewriting P2.

In Section 7.3.2, we showed that the set of CMRs contains a GMR. Below we de�ne a

search space for GMRs in a more constructive fashion. The following lemma shows that

CMRs are contained in a set of rewritings de�ned constructively, hence we can regard this

set as a search space for optimal rewritings under cost model M1.

Lemma 7.3.3 All LMRs of a query using views that use only view tuples of the query

include all CMRs of the query.2 2

Proof: For any CMR P of a query Q, by Lemma 7.3.2, there is a CMR P 0 that uses

only view tuples, such that P 0 v P . By the de�nition of CMR, P cannot have any locally-

minimal rewriting that is properly contained in P . Thus P must be equivalent to P 0 as

2We assume two rewritings are the same if the only di�erence between them is variable renamings.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS153

queries. In addition, since both P and P 0 are minimal, they must be isomorphic to each

other; i.e., the only di�erence between them is variable renamings.

An immediate consequence is the following theorem that de�nes a restricted space for

searching globally-minimal rewritings of a query.

Theorem 7.3.1 By searching in the space of a query's LMRs that use only view tuples in

T (Q;V), we guarantee to �nd a globally-minimal rewriting, if the query has a rewriting. 2

Theorem 7.3.1 suggests a naive algorithm that �nds a globally-minimal rewriting of a

query Q using views V as follows. We compute all the view tuples for the query. We start

checking combinations of view tuples. We �rst check all combinations containing one view

tuple, then all combinations containing two view tuples, and so on. Each combination could

be a rewriting P . We test whether there is a containment mapping from Q to P exp. (By

the construction of the view tuples, there is always a containment mapping from P exp to

Q.). If so, then P is a GMR. It is known [LMSS95] that if there is a rewriting for the query,

then there is one with at most n subgoals, where n is the number of subgoals in the query.

Thus we stop after having considered all combinations of up to n view tuples.

7.4 An Algorithm for Finding Globally-Minimal Rewritings

In this section we develop an e�cient algorithm, called Corecover, for �nding optimal rewrit-

ings of a query under the cost model M1, i.e., globally-minimal rewritings. The algorithm

searches in the space of rewritings using view tuples for GMRs of the query. Intuitively,

the algorithm considers each view tuple to see what query subgoals can be covered by this

view tuple. The set of query subgoals covered by the view tuple is called tuple-core. The

algorithm then uses the minimum number of view tuples to cover all query subgoals, and

each cover yields a GMR of the query.

7.4.1 Tuple-Core: Query Subgoals Covered by a View Tuple

The algorithm Corecover �rst �nds the set of query subgoals that can be \covered" by a

view tuple, called tuple-core. Before giving the de�nition of tuple-core, we show a nice

property of rewritings using view tuples for a minimal query. Note that for the rewritings

we consider in this section, we may think as follows: All the variables of rewriting P (recall

that P is generated out of view tuples) are also variables of Q, i.e., V ar(P) � V ar(Q).

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS154

Lemma 7.4.1 If Q is a minimal CQ, and � is a containment mapping from Q to Q, then:

1. � is one-to-one, i.e., di�erent arguments are mapped to di�erent arguments;

2. � is onto, i.e., every subgoal in Q is an image of �;

3. � maps a variable to a variable.

Therefore, � can be reversed to yield another containment mapping from Q to Q. 2

Proof: (1) If � is not onto, the unused subgoals in Q��(Q) are redundant, contradicting

the fact that Q is minimal. (2) If � is not one-to-one, then there is a variable not used in

�(Q). Thus one subgoal in �(Q) is not mapped to. Then �(Q) has fewer subgoals than Q,

but is still equivalent to Q, contradicting the fact that Q is minimal. (3) By de�nition, �

maps constants to constants, and maps variables to either variables to constants. If � maps

a variable to a constant, then there must be some left-over variables that are not in the

image �(Q), contradicting the fact that � is onto.

Lemma 7.4.2 For a minimal query Q and a set of views V, let P be a rewriting of Q that

uses only view tuples in T (Q;V). There is a containment mapping � from Q to P exp, such

that (1) � is a one-to-one mapping, i.e., di�erent arguments in Q are mapped to di�erent

arguments in P exp; (2) For all arguments in Q that appear in P , they are mapped by � as

is the identity mapping on arguments, i.e., �(X) = X for all X 2 V ar(P).3 2

Proof: Consider a minimal equivalent query P exp
m of P exp. Notice that both Q and

P exp
m are minimal equivalents of the expansion P exp. Thus their only di�erence is variable

renamings. By the construction of the view tuples, there is a containment mapping from

P exp to Q, such that it maps each argument in P exp that appears in P to itself. Let � be

the corresponding containment mapping from from P exp
m to Q.

Since Q and P exp
m are equivalent, there is a containment mapping � from Q to P exp

m .

This mapping, together with �, implies a containment mapping from Q to Q. Since Q is

minimal, by Lemma 7.4.1, the composed containment mapping �� should be one-to-one

and onto. Thus � should also be one-to-one and onto. Then we can reverse the mapping

�, and obtain a containment mapping � = ��1 from Q to P exp
m , such that � is one-to-one,

and maps the arguments in Q that appear in P under identity.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS155

minimal query Q

expansion P exp

rewriting P using view tuples

answer() : � p1(); p2(); : : : ; pn()

answer() : � v1(); v2(); : : : ; vr()

�

answer() : � p11; : : : ; p1k1 ; : : : ; pr1; : : : ; prkr

Figure 7.3: Proof of Lemma 7.4.2.

For instance, the rewriting P2 in the car-loc-part example uses view tuples only. We

have a containment mapping from the query Q to P exp
2 :

M !M; anderson! anderson; C ! C; S! S

This containment mapping maps the arguments fM; anderson; C; Sg in Q that appear in

P2 to themselves.

In general, there can be di�erent containment mappings from a minimal query to the

expansion of a rewriting using view tuples. By Lemma 7.4.2, it turns out that we can

just focus on a containment mapping that has the two properties in the lemma, and decide

what query subgoals are covered by the expansion of each view tuple under this containment

mapping. The expansion of a view tuple tv , denoted t
exp
v , is obtained by replacing tv by the

base relations in this view de�nition. Existentially quanti�ed variables in the de�nition are

replaced by fresh variables in texpv . Clearly this expansion texpv will appear in the expansion

of any rewriting using tv .

De�nition 7.4.1 (tuple-core) Let tv be a view tuple of view v for a minimal query Q.

A tuple-core of tv is a maximal collection G of subgoals in the query Q, such that there

is a containment mapping � from G to the expansion texpv of tv , and � has the following

properties:

1. � is a one-to-one mapping, and it maps the arguments in G that appear in tv as is

the identity mapping on arguments.

3The de�nition of rewriting P guarantees a containment mapping from Q to P exp, but this containment
mapping might not have the two properties.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS156

2. Each distinguished variable X in G is mapped to a distinguished variable in texpv

(moreover, by Property (1), �(X) = X).

3. If a nondistinguished variable X in G is mapped under � to an existential variable in

tv's expansion, then G includes all subgoals in Q that use this variable X .

2

The purpose of these properties is to make sure when we construct a rewriting using

view tuples whose tuple-cores cover all query subgoals, the containment mappings of these

core-tuples can be combined seamlessly to form a containment mapping from the query to

the rewriting's expansion. In particular, Property (1) is based on Lemma 7.4.2. Properties

(2) and (3), which are satis�ed by any containment mapping from the query to a rewriting

expansion, are also used in the MiniCon algorithm. A view tuple can have an empty tuple-

core. As expected, we have:

Lemma 7.4.3 A view tuple for a minimal query has a unique tuple-core. 2

expansion of view tuple

texp
v

X

�1

subgoals in Q
G1 G2

Figure 7.4: Uniqueness of tuple-core of a view tuple.

Proof: (Convention: We use the same names in Q and in texpv for the distinguished

variables of texpv that are targets under �1 or �2.) Suppose a view tuple tv for a minimal

query Q has two distinct tuple-cores G1 and G2, with the corresponding mappings �1 and

�2 in De�nition 7.4.1. Let H1 = �1(G1) and H2 = �2(G2) be the targets (sets of subgoals in

texpv) respectively. Either G1�G2 or G2�G1 is not empty (otherwise G1; G2 are identical).

Suppose G1 � G2 is not empty. As suggested by Figure 7.4, for each variable X used in

G1 �G2, one of two cases applies:

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS157

1. �1(X) = X . We will show that either X is not used in G2, or �2(X) = X .

2. �1(X) 6= X . We will show that X cannot be used in G2.

3. The mapping �02 is one-to-one.

The �rst two points show that the mappings �1 and �2 do not conict with each other on

their source variables in Q. Thus we can de�ne a mapping �02 from G1[G2 = G2[(G1�G2)

onto H 0
2 = �1(G1 � G2) [�2(G2) as follows: if X is used in G2, �

0
2(X) = �2(X); if X is

used in G1 � G2, �
0
2(X) = �1(X).

Therefore, we have a larger set G1 [G2 of query subgoals that satis�es the conditions

in De�nition 7.4.1, contradicting the fact that G2 is maximal.

We �rst prove case (1). Suppose X appears in G2, and �2(X) 6= X . Then X = �1(X) is

a nondistinguished variable in texpv , and �2(X) is a nondistinguished variable in the query.

By G2's de�nition, G2 includes all query subgoals that use X , contradicting the fact that

X appears in G1�G2. Now we prove case (2). Suppose X is in G2. By G1's de�nition, X

cannot be a variable in tv , since �1(X) 6= X . Then �2 can only mapX to a nondistinguished

variable in tv's expansion. By G2's de�nition, G2 should include all the query subgoals that

use X , contradicting the fact that X appears in G1 �G2.

In the rest of the proof, we prove claim (3). Since tv is a view tuple, there is a mapping

� from texpv to Q. Suppose mapping �02 is not one-to-one. Then, mapping �
0
2� is a mapping

from G1 [G2 to Q that is not one-to-one either. We show that we can extend �02� to a

mapping from Q to Q that is not one-to-one, contradicting the fact that Q is minimal. For

this extension to be feasible, we need to show: (i) No distinguished variable of Q is mapped

to another distinguished variable of Q under �02� and (ii) If G1 [G2 shares a variable X

with a subgoal not in G1 [G2, then �02(X) = X If (i) and (ii) hold, then we easily extend

�02� by having the variables not in G1 [G2 mapped each on itself.

We prove (i): If mapping �02 is not one-to-one, then, there exist variables X used in

G1�G2 and not used in G2 and, X
0 used in G2 such that �1(X) = �2(X

0). Then either X

or X 0 is a nondistinguished variable of Q.

We prove (ii): If G1 [G2 shares a variable X with a subgoal not in G1 [G2, then X is

a variable in the view tuple tv . Hence �
0
2(X) = X .

The unique tuple-core of a view tuple tv is denoted by C(vt).

EXAMPLE 7.4.1 Consider the following query and views:

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS158

Query Q: q(X; Y) :- a(X;Z); a(Z;Z); b(Z;Y)

Views V1: v1(A;B) :- a(A;B); a(B;B)

V2: v2(C;D) :- a(C;E); b(C;D)

A canonical database of the query is DQ = fa(x; z); a(z; z); b(z; y)g. By applying the

view de�nitions on DQ, we have V(DQ) = fv1(x; z); v1(z; z); v2(z; y)g. Thus the set of view

tuples is T (Q;V) = fv1(X;Z); v1(Z; Z); v2(Z; Y)g. The table shows the tuple-cores for the

three view tuples.

view tuple tv expansion texpv tuple-core C(tv) mapping � from C(tv) to t
exp
v

v1(X;Z) a(X;Z); a(Z;Z) a(X;Z); a(Z;Z) X ! X;Z ! Z

v1(Z;Z) a(Z;Z); a(Z;Z) a(Z;Z) Z ! Z

v2(Z; Y) a(Z;E); b(Z; Y) b(Z; Y) Z ! Z; Y ! Y

Table 7.2: Tuple-cores for the three view tuples in example 7.4.1.

By using the three tuple-cores, the only minimum cover of the query subgoals is the

union of the tuple-cores of v1(X;Z) and v2(Z; Y), which yields the following GMR of the

query:

q(X; Y) :- v1(X;Z); v2(Z; Y)

2

For another example, let us derive the tuple-cores of the �ve view tuples in the car-loc-

part example. The tuple-cores for v1(M; anderson; C), v2(S;M;C), v4(M; anderson; C; S),

and v5(M; anderson; C) are identical to the body of the corresponding rules, with variable

D replaced by constant anderson. View tuple v3(S), though, has an empty tuple-core,

since the only possible mapping from a collection of subgoals of Q to v3(S)exp that satis�es

property (3) of De�nition 7.4.1, is: M !M3; a! a; C ! C3; S ! S. (To avoid confusion,

in the de�nition of v3, we replace variable M by variable M3, and variable C by variable

C3.) However, this mapping does not satisfy property (2), since it maps a distinguished

variable C in Q to a nondistinguished variable C3 in v3(S)
exp.

7.4.2 Using Tuple-Cores to Cover Query Subgoals

The second step of Corecover �nds a minimum number of view tuples to cover query sub-

goals. This problem can be modeled as a classic set-covering problem [CLR90]. Notice by

the construction of the tuple-cores, a containment-mapping check is not needed in this step.

This step is based on the following theorem:

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS159

Theorem 7.4.1 For a minimal query Q and a set of views V, let P be a query that has

the head of Q and uses only view tuples in T (Q;V) in its body. P is a rewriting of Q if and

only if the union of the tuple-cores of its view tuples includes all the query subgoals in Q. 2

Proof: Let t1; : : : ; tk be the view tuples used in P . For the \If" part, consider each ti.

Let C(ti) be its tuple-cores, and �i be the containment mapping from C(ti) to texpi that

de�nes the tuple-core. Assume C(t1) [: : :[C(tk) includes all query subgoals in Q. By the

de�nitions of these tuple-cores, these containment mappings can be combined to form a

containment mapping � from C(t1)[: : :[C(tk), which includes all query subgoals in Q, to

the body of P exp. The mapping � also maps the head variables in Q under identity. By

the construction of these view tuples, there is also a mapping from P exp to Q. Thus P exp

is equivalent to Q as queries, and P is a rewriting of Q using V .

\Only If": Assume P is a rewriting of Q using V. By Lemma 7.4.2, there is a one-to-one

containment mapping � from Q to P exp, which maps all arguments in Q that appear in P

under identity. Notice that the body of P exp is the union of texp1 ; : : : ; texpk , thus � partitions

the query subgoals into k groups G1; : : : ; Gk, such that each Gi is mapped by � to texpi . The

subgoal set Gi and the \local" mapping � satis�es the three properties in De�nition 7.4.1,

except that Gi might not be maximal. According to Lemma 7.4.3, the tuple core is unique,

hence Gi � C(ti). Thus the union of the k tuple-cores includes all query subgoals in Q.

Corollary 7.4.1 For a minimal query Q and a set of views V, each GMR of Q using view

tuples in T (Q;V) corresponds to a minimum cover of the query subgoals using the tuple-cores

of the view tuples. 2

For instance, consider the tuple cores of the view tuples in car-loc-part example. The

minimum cover of the query subgoals uses the tuple core of view tuple v4(M; anderson; C; S),

which yields the GMR P4 of the query. Figure 7.5 summarizes the Corecover algorithm.

The complexity of the algorithm Corecover is exponential, since the problem of �nding

whether there exists a rewriting is NP-hard [LMSS95]. The running time of the algorithm,

though, depends mostly on the number of view tuples produced in the �rst step. Since this

number tends to be small in practice, the algorithm performs e�ciently in the later steps,

as shown by our experimental results in Section 7.7.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS160

Algorithm CoreCover: Find rewritings with minimum number of subgoals.
Input: � Q: A conjunctive query.

� V : A set of conjunctive view.
Output: A set of rewritings using view tuples with minimum number of subgoals.
Method:

(1) Minimize Q by removing its redundant subgoals. Let Qm be the minimal equivalent.
(2) Construct a canonical database DQm for Qm. Compute the view tuples T (Qm;V) by
applying the view de�nitions Vm on the database.
(3) For each view tuple t 2 T (Qm;V), compute its tuple-core C(t).
(4) Use the nonempty tuple-cores to cover the query subgoals in Qm with minimum number
of tuple-cores. For each cover, construct a rewriting by combining the corresponding view tuples.

Figure 7.5: The algorithm Corecover.

7.4.3 Comparison with the MiniCon Algorithm

Corecover and MiniCon [PL00] share the same observation of the Properties (2) and (3)

in De�nition 7.4.1, which should be satis�ed by any mapping from query subgoals to a

view subgoal that can be used in a rewriting. Since we want to �nd equivalent rewritings,

rather than contained rewritings, the di�erent goal gives us the chance to develop a more

e�cient algorithm. In particular, given the fact that there is a containment mapping from

the expansion of an equivalent rewriting to the query, Corecover limits the search space for

useful view literals by applying the view de�nitions on the canonical database of the query.

In other words, this containment mapping helps Corecover not to consider all possible \head

homomorphisms" (de�ned in [PL00]) on the views, which could be a huge set.

Another advantage that the new goal gives Corecover is that, each tuple-core of a view

tuple includes the maximal subset of query subgoals that satisfy the three properties in

De�nition 7.4.1. Correspondingly, the \MCD" concept used in MiniCon includes a minimal

subset of query subgoals. The reason MCD �nds a minimal subset of query subgoals is

that it tries to �nd maximally-contained rewritings, and each MCD should be as relaxing

as possible, so that all MCDs can be combined. In our case, since we are �nding equivalent

rewritings, we are more aggressive to cover as many query subgoals as possible using a view

tuple. As a consequence, in the last step of Corecover, the tuple-cores of a set of view

tuples that form a rewriting can overlap. That is, a query subgoal can be covered by two

tuple-cores. In the second step of MiniCon, the MCDs that form a contained rewriting do

not overlap.

Since MiniCon does not aim at generating e�cient rewritings, it may produce some

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS161

rewritings with redundant subgoals, as shown by the following example.

EXAMPLE 7.4.2 Consider the following query and views:

Query: Q: q(X; Y) :- a1(X;Z1); b1(Z1; Y);
...

ak(X;Zk); bk(Zk; Y):

Views: V : v(X; Y) :- same as the body above

V1: v1(X; Y) :- a1(X;Z1); b1(Z1; Y)
...

Vk�1: vk�1(X; Y) :- ak�1(X;Zk�1); bk�1(Zk�1; Y)

For view V , algorithm Corecover computes only one view tuple V (X; Y), whose tuple-

core includes all the 2k subgoals in Q. In addition, Corecover also computes a view tuple

vi(X; Y) for each of the rest k� 1 views. Thus Corecover creates only one rewriting P with

the minimum number of subgoals:

P : q(X; Y) :- v(X; Y)

Correspondingly, for view V , MiniCon generates k di�erent MCDs, each MCD covering

two query subgoals ai(X;Zi); bi(Zi; Y). In addition, MiniCon also produces an MCD for

each of the rest k � 1 views. Thus it produces rewritings with redundant subgoals.

[PL00] describes a minimization step that removes some subgoals in the generated rewrit-

ings. Di�erent from our algorithm, this minimization step cannot guarantee to generate a

rewriting with the minimum number of subgoals. One observation is that MiniCon may

produce many ine�cient rewritings with redundant subgoals. In particular, an implemen-

tation of the algorithm could have two choices that might not be e�cient: (1) generate all

rewritings and then look for P (we do not want this approach, since the space is too big);

or (2) generate a single rewriting arbitrarily (then it is not good either, because we cannot

produce P starting from an arbitrary rewriting, even if we use the minimization step). 2

7.5 Cost Model M2: Counting Sizes of Relations

In this section we study cost modelM2 that considers sizes of view relations and intermediate

relations in a physical plan. We show that the space of all minimal rewritings that use view

tuples is guaranteed to include an optimal rewriting of a query under M2, if the query has

a rewriting.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS162

7.5.1 A Search Space for Optimal Rewritings under M2

The following lemma helps us �nd a search space for optimal rewritings under M2.

Lemma 7.5.1 Under cost model M2, for any rewriting P of a query Q using views V, there

is a minimal rewriting P 0 that uses only view tuples in T (Q;V), such that P 0 is at least as

e�cient as P . 2

Proof: Let F be an optimal physical plan of the rewriting P . By the proof of Lemma 7.3.2,

there is a minimal rewriting P 0 that only uses view tuples in T (Q;V), and P 0 v P . In

addition, all the subgoals in P 0 are images of �. Let � be a containment mapping from P to

P 0. Now we construct a physical plan F 0 of P 0, such that costM2
(F 0) � costM2

(F). Suppose

F = [g1; : : : ; gn]. Let IRi denote the intermediate relation after the �rst i subgoals in F , i.e.,

IRi = g1 ./ � � � ./ gi. We construct the physical plan F 0 of P 0 that processes the subgoals

of P 0 in the sequence of �(g1); : : : ; �(gn). If a subgoal �(gk) in the sequence has been

processed earlier, we only keep its �rst occurrence in F 0. Let IR0
i = �(g1) ./ � � � ./ �(gi) be

the corresponding intermediate relation in plan F 0, with the duplicated subgoals dropped.

Because of the mapping � from P to P 0, we have IR0
i � IRi, thus size(IR

0
i) � size(IRi).

Also since all the subgoals P 0 are images of �, plan F 0 includes all view subgoals in P 0. In

addition, all the view relations used in F are also used in F 0. Thus F 0 is a physical plan of

P 0, and costM2
(F 0) � costM2

(F).

Under cost model M2, plan P2 in the car-loc-part example is at least as e�cient as plan

P1, since there is a containment mapping from P1 to P2, such that all the subgoals of P 0
2

are images under the mapping. By Lemma 7.5.1, we have the following theorem.

Theorem 7.5.1 For a query Q and a set of views V, the space of minimal writings using

view tuples in T (Q;V) is guaranteed to include an optimal rewriting under cost model M2,

if the query has a rewriting. 2

By Theorem 7.4.1 in Section 7.4, we can modify the algorithm Corecover to get another

algorithm Corecover* that �nds all minimal rewritings using view tuples for a query. The

only di�erence between these two algorithms is that in the last step, Corecover �nds all

minimum sets of view-tuples whose tuple-cores cover query subgoals, while Corecover*

considers all sets of view-tuples to cover the query subgoals. The view tuples with an

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS163

empty tuple-core are also used by Corecover*. By Theorem 7.5.1, these minimal rewritings

guarantee to include an optimal rewriting under cost modelM2, if the query has a rewriting.

As shown by the minimal rewriting P3 in the car-loc-part example, subgoal v3(S) can

be used to improve the e�ciency of the plan, although it does not cover any query subgoal.

In general, some view subgoals in a minimal rewriting may be removed without changing

the equivalence to the original query, but these view subgoals can serve as �ltering subgoals

to reduce the sizes of intermediate relations. The optimizer can do a cost-based analysis,

and decide whether adding some �ltering subgoals to a rewriting can make the rewriting

more e�cient.

7.5.2 Concise Representation of Minimal Rewritings

In the case where there are many views that can be used to answer a query, the number of

view tuples could be large. For instance, consider the case where we have n views that are

exactly the same as the query. Then there can be n view tuples, and each has a tuple-core

that includes all the query subgoals. Then there can be 2n � 1 minimal rewritings of the

query.

We propose the following solution to the problem. First, we partition all views into

equivalence classes, such that all the views in each class are equivalent as queries. When

we run the Corecover algorithm, we only select a view from each class as a representative.

Second, after the view tuples are computed, we also partition these view tuples into equiva-

lence classes, such that all the view tuples in each class have the same tuple-core, i.e., they

cover the same set of query subgoals.

Our solution has several advantages. (1) There is a small number of groups of rewritings,

with each group having speci�c properties that might facilitate a more e�cient algorithm

for the optimizer. (2) The number of view tuples that need to be considered by Corecover

to cover the query subgoals is bounded by the number of query subgoals, thus it becomes

independent from the number of views. (3) The optimizer can �nd e�cient physical plans

by considering the \representative rewritings," and then decide whether each rewriting can

become more e�cient by adding view tuples as �ltering subgoals. The optimizer uses the

information about the sizes of relations and selectivity of joins to make this decision. (4)

The optimizer can replace a view tuple in a rewriting with another view tuple in the same

equivalence view-tuple class, and yet get a new rewriting to the query. Our experiments

in Section 7.7 will show that this solution helps the Corecover algorithm achieve good

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS164

performance.

7.5.3 Generalization of Cost Model M2

The key reason that cost model M2 allows us to restrict the search space in minimal rewrit-

ings using view tuples is that M2 has what we called the property of containment mono-

tonicity. That is, a cost model M is containment monotonic if for any two rewritings P1

and P2, if the following two conditions

1. There is a containment mapping from P1 to P2;

2. All subgoals in P2 are images under the mapping;

can imply costM (P2) � costM (P1). Theorem 7.5.1 can be generalized to any cost model

that is containment monotonic.

7.6 Cost Model M3: Dropping Nonrelevant Attributes

Cost model M3 improves M2 by considering the fact that after computing an intermediate

relation in a physical plan, some attributes can be dropped. In this section, we �rst give an

example to show that if the optimizer uses the traditional supplementary-relation approach

to decide what attributes to drop, the rewritings using view tuples might not yield an

optimal physical plan under M3. Then we propose a heuristic that can be taken by the

optimizer to drop more attributes without changing the �nal answer of the evaluation, thus

producing a more e�cient physical plan.

7.6.1 Dropping Attributes Using Supplementary-Relation Approach

Recall that in cost model M3, a physical plan F of a rewriting P is a list g
�X1

1 ; : : : ; g
�Xn
n of the

subgoals in P , with each subgoal gi annotated with a set of attributes �Xi that can be dropped

after subgoal gi is processed in the sequence. Given a rewriting P , the optimizer considers

all possible orderings of the subgoals, and decides the dropping strategy for each ordering.

By taking the supplementary-relation approach, for an order of subgoals g1; : : : ; gn, after

subgoal gi is processed, the optimizer drops the nonrelevant arguments that are not used

in subsequent subgoals or in the head of P . The corresponding supplementary relation SRi

is the SRi�1 ./ gi with the nonrelevant arguments dropped.

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS165

The following example shows that by taking this approach, the optimizer might miss

an optimal physical plan under cost model M3, if the rewriting generator passes to it only

rewritings using view tuples.

EXAMPLE 7.6.1 Consider the following query, views, and rewritings:

Query: Q: q(A) :- r(A;A); t(A;B); s(B;B)

Views: V1: v1(A;B) :- r(A;A); s(B;B)

V2: v2(A;B) :- t(A;B); s(B;B)

Rewritings: P1: q(A) :- v1(A;B); v2(A;C)

P2: q(A) :- v1(A;B); v2(A;B)

3 4 5 6 7 81 2

r

s s s s

t t t t

Figure 7.6: Base relations.

Rewriting P2 is the only minimal rewriting of Q using the two view tuples v1(A;B) and

v2(A;B), while rewriting P1 uses a fresh variable C in its second subgoal. Consider the

database shown in Figure 7.6. The three base relations (r, s, and t) and two view relations

(v1 and v2) are:

r s t v1 v2

h1; 1i h2; 2i h1; 2i h1; 2i h1; 2i

h4; 4i h3; 4i h1; 4i h3; 4i

h6; 6i h5; 6i h1; 6i h5; 6i

h8; 8i h7; 8i h1; 8i h7; 8i

By taking the supplementary-relation approach, the physical plans of P1 are more e�-

cient than those of P2. To see why, consider an order O2 = [v1(A;B); v2(A;B)] of subgoals

in P2, and a corresponding order O1 = [v1(A;B); v2(A;C)] of P1. Order O2 yields a physical

plan F2 = [v1(A;B)
fg; v2(A;B)

fBg]. In particular, its �rst supplementary relation needs to

keep attributes A and B, since both will be used later. This supplementary relation includes

all the four tuples in v1. Order O1 yields a physical plan F1 = [v1(A;B)fBg; v2(A;C)fCg],

and its �rst supplementary relation does not keep attribute B, since B is not used by the

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS166

second subgoal or the head. This supplementary relation has only one tuple h1i. The rest

costs of F1 and F2 are the same. Thus, costM3
(F1) < costM3

(F2). If we reverse the two

subgoals in the two orderings, the new physical plan of P1 is still more e�cient than that

of P2. 2

A minimal rewriting using view tuples may fail to generate an optimal physical plan

under M3, because the variables in the rewriting are made as restrictive as possible by only

using the variables in the query. Then view literals in a rewriting might be removed while

obtaining the equivalence to the query. However, if the optimizer takes the supplementary-

relation approach to decide what attributes to drop, these restrictive variables might not

be dropped, since some may be used later in a sequence of subgoals.

The reason that P1 is more e�cient than P2 is that a physical plan of P1 has the

freedom to drop the second argument after processing its �rst subgoal. However, P2 needs

to keep the argument, since this argument will be used later in the second subgoal to do a

comparison. Now we show that if the optimizer can be \smarter" by using the information

about the query and views, it can do better than the supplementary-relation approach.

7.6.2 A Heuristic to Drop Attributes

We give a heuristic that helps the optimizer drop more attributes than the supplementary-

relation approach. Intuitively, given a rewriting P of a query Q, the optimizer considers

all orderings of the subgoals in P . For each ordering O = g1; : : : ; gn, it considers what

attributes can be dropped after subgoal gi is processed without changing the �nal result of

the computation.

For a variable Y that appears in the intermediate relation IRi, let us consider in

what case we can drop Y without changing the result of the computation. As in the

supplementary-relation approach, if Y does not appear in subsequent subgoals or the head,

it can be dropped. However, even if Y appears in a subsequent subgoal, it might still be

dropped, as shown by the variable B in rewriting P2 in Example 7.6.1. Notice:

Dropping Y will not change the result of the computation if and only if, should

we rename Y in g1; : : : ; gi with a fresh variable, the corresponding new query P 0

is still an equivalent rewriting of Q.

Therefore, for each variable Y that appears in g1; : : : ; gi, the optimizer adds Y to the

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS167

annotation Xi (i.e., the set of attributes that can dropped) if one of the following conditions

is satis�ed:

1. If Y does not appear in subsequent subgoals or the head of P (as in the supplementary-

relation approach);

2. If Y appears in a subsequent subgoal, but after replacing the Y instances in g1; : : : ; gi

with a fresh variable Y 0, the new query P 0 using views is still an equivalent rewriting

of the original query Q. (This equivalence is done by testing the equivalence between

P 0exp and Q.)

In the second case, by dropping a variable Y that appears in a subsequent subgoal

gk(: : : ; Y; : : :), we might remove an equality comparison between GSRk�1 and gk(: : : ; Y; : : :),

which could increase the size of GSRk . Thus the optimizer needs to make the tradeo�

between dropping Y and removing this comparison by using the information about the

sizes of view relations and generalized supplementary relations.

7.7 Experimental Results

We did experiments to study the search spaces for optimal rewritings under cost models

M1 and M2, and evaluate the performance of the Corecover algorithm. We studied di�er-

ent shapes of queries, such as chain queries, star queries, and randomly generated queries

[SMK97]. We implemented a query generator that takes as input parameters such as: (1)

number of base relations; (2) number of attributes in a base relation; (3) number of views;

(4) number of subgoals in a view; (5) number of subgoals in a query; (6) shape of queries

and views. In the experiments, queries and views were set to have the same parameters,

except that they might have di�erent numbers of subgoals. For the same number of views,

we ran 40 queries and computed their average measures. The algorithm Corecover was im-

plemented in Java. The experiments were run on a dual-processor Sun Ultra 2 workstation,

running SunOS 5.6 with 256 MB memory.

7.7.1 Star Queries

We �rst considered star queries. Each query had 8 subgoals, and each view randomly had 1,

2, or 3 subgoals. We ignored queries that did not have rewritings. Figure 7.7 (a) shows the

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS168

running time for Corecover to get all globally-minimal rewritings (GMRs) as the number

of views increased, if all variables were distinguished. As the number of views increased,

the time of �nding all GMRs did not increase steadily. Instead, the time was bound in the

range from 0ms to 1 second. On the average, it took Corecover about 500ms to generate

all GMRs for a query. Even if there were 1000 views, the time was still less than 1 second.

Figure 7.7 (b) shows the running time for Corecover to generate GMRs if one variable was

distinguished.

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

tim
e
 o

f
g
e
n
e
ra

tin
g
 a

ll
G

M
R

s
(m

s)

number of views

8 query subgoals

(a) All variables are distinguished.

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900 1000

tim
e
 o

f
g
e
n
e
ra

tin
g
 a

ll
G

M
R

s
(m

s)

number of views

8 query subgoals

(b) 1 variable is nondistinguished.

Figure 7.7: Time for Corecover to generate all GMRs for star queries.

The reason Corecover has good e�ciency and scalability is that we can group views and

view tuples into equivalence classes respectively. From each equivalence class of views, we

selected only one representative that was equivalent as queries to other views in the class.

Similarly, from each equivalence class of view tuples, we also selected one representative

that had the same tuple-core as others. Therefore, the number of representative view tuples

depends on the number of query subgoals only, and it is independent from the number of

views. Notice that the running time includes the time of grouping views and view tuples

into equivalence classes. Although in the early stage of Corecover, we paid extra cost to

test view equivalence by testing query containments, this extra cost paid o� later when the

number of views was more than 100.

For instance, consider the case where all variables were distinguished. Figure 7.8 (a)

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS169

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
re

p
re

se
n
ta

tiv
e
 v

ie
w

s

number of views

all variables are distinguished

(a) Views.

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
vi

e
w

s
tu

p
le

s

number of views

all variables are distinguished

all view tuples
representative view tuples

(b) View tuples.

Figure 7.8: Number of equivalence classes for star queries.

shows that as the number of views increased, the number of view equivalence classes also

increased, but with a decreasing slope. When there were 1000 views, there were only about

350 equivalent view classes. Figure 7.8 (b) shows that the number of equivalence classes of

view tuples was almost a constant (less than 10) as the number of views increased, while

the number of view tuples increased to more than 200.

7.7.2 Chain Queries

We then considered chain queries, and had the similar results. Each query had 8 subgoals,

and each view had 1, 2, or 3 subgoals randomly. All relations were binary. If we only kept

the head and tail variables of the chain as the head arguments of the query and views, then

there are very few rewritings generated. Thus, we ran our experiments by �rst considering

all variables as distinguished, and then let a few variables be nondistinguished. For the

views that had only one subgoal, both variables were still distinguished. We ignored queries

that did not have rewritings. Figure 7.9 (a) shows the running time of Corecover if all

variables were distinguished, and Figure 7.9 (b) shows the running time if one variable was

nondistinguished.

Again, the Corecover algorithm showed good e�ciency and scalability. For instance, in

the case where all variables were distinguished, it took the algorithm less than 2 seconds to

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS170

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

tim
e
 o

f
g
e
n
e
ra

tin
g
 a

ll
G

M
R

s
(m

s)

number of views

8 query subgoals

(a) All variables are distinguished.

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

tim
e
 o

f
g
e
n
e
ra

tin
g
 a

ll
G

M
R

s
(m

s)

number of views

8 query subgoals

(b) 1 variable is nondistinguished.

Figure 7.9: Time of generating all GMRs of chain queries.

generate all GMRs for a query when there were 1000 views. In the case where one variable

was distinguished, it took the algorithm less than 1:4 seconds to generate all GMRs for a

query when there were 1000 views. To illustrate the reason, Figure 7.10 (a) shows that

as the number of views increased, the number of equivalence view classes increased with a

decreasing slope. Figure 7.10 (b) shows that as the number of views increased, the number

of representative view tuples was almost a constant.

In summary, our experiments illustrated two points. (1) The Corecover algorithm has

good e�ciency and scalability. (2) By grouping views and view tuples into equivalence

classes respectively, we can reduce the number of views and view tuples used in the algo-

rithm, thus the algorithm can perform e�ciently.

7.8 Conclusions and Related Work

In this chapter, we studied the following important problem for mediators that take the

query-centric approach to information integration: given a query on base relations and a

set of source views over the same relations, how can we answer the query using the views

e�ciently? In other words, we want to know how to generate e�cient rewritings using

views to answer a query. We studied three cost models. Under the �rst cost model M1 that

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS171

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
re

p
re

se
n
ta

tiv
e
 v

ie
w

s

number of views

all variables are distinguished

(a) Views.

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f
vi

e
w

s
tu

p
le

s

number of views

all variables are distinguished

all view tuples
representative view tuples

(b) View tuples.

Figure 7.10: Number of equivalence classes for chain queries.

considers the number of subgoals in a plan, we gave a search space for optimal rewritings

for a query. We analyzed the internal relationship of all rewritings of a query using views,

and developed an e�cient algorithm, Corecover, for �nding rewritings with the minimum

number of subgoals.

We then considered a cost modelM2 that counts the sizes of relations in a physical plan.

We also gave a search space for �nding optimal rewritings under M2. Surprisingly, we need

to consider the fact that introduction of more view subgoals might make a rewriting more

e�cient. Finally, we considered a cost modelM3 that allows some nonrelevant attributes to

be dropped during the evaluation of a plan without changing the result of the computation.

We proposed a heuristic for an optimizer to drop more attributes than the traditional

supplementary-relation approach. Experiments showed that the Corecover algorithm has

good e�ciency and scalability. Among other subtleties, this good result is also due to the

fact that the algorithm (1) considers only a small number of relevant view tuples for the

rewritings, and (2) uses a concise representation of these view tuples.

Related Work

The problem of �nding whether there exists an equivalent rewriting for a query using views

was studied in [LMSS95]. Recently, several algorithms have been developed for �nding

CHAPTER 7. GENERATING EFFICIENT PLANS FOR QUERIES USING VIEWS172

rewritings of queries using views, such as the bucket algorithm [GM99a, LRO96], the inverse-

rule algorithm [DG97, Qia96, AGK99], the MiniCon algorithm [PL00], and the Shared-

Variable-Bucket algorithm [Mit01]. (See [Lev00] for a survey.) These algorithms aim at

generating contained rewritings for a query that compute a subset of the answer to the

query, while we want to �nd equivalent rewritings that compute the same answer to a

query. Another di�erence is that they take the open-world assumption, thus they have no

optimization considerations, since two equivalent rewritings for a query can still produce

di�erent answers under the assumption. We take the closed-world assumption, under which

two equivalent rewritings produce the same answer for any instance of the view database.

Our algorithms for generating optimal rewritings share some observations with the Mini-

Con algorithm. In addition, as we saw in Section 7.4, since we want to generate equivalent

rewritings rather than contained rewritings, this di�erent goal helps us develop more e�-

cient algorithms by considering a containment mapping from the expansion of an equivalent

rewriting to the query.

Another related work is [CKPS95], which also considers generating e�cient plans using

materialized views by replacing subgoals in a query with view literals. There are two

di�erences between our work and that work. (1) We take a two-step approach by separating

the rewriting generator and optimizer into two modules, while [CKPS95] combines them

into one module. (2) [CKPS95] does not consider the possibility that introduction of new

view literals can make a rewriting more e�cient, as shown by the rewritings P2 and P3 in

the car-loc-part example. Our work considers this possibility.

Chapter 8

Conclusions and Future Work

In this chapter we summarize the results of this thesis, and discuss future work on informa-

tion integration.

8.1 Summary of Thesis Results

The motivation of information integration is to allow users to access heterogeneous databases

just like accessing one large database. In this thesis we studied research problems on

e�cient query processing in information integration. We �rst addressed several problems

on answering queries when relations have limited access patterns. Then we discussed how

to use mediator caching to reduce the number of source accesses to answer a query. Finally

we studied the problem of generating e�cient plans for queries using views.

8.1.1 Query Processing in the Presence of Binding Patterns

In Chapters 3, 4, and 5 we studied optimization problems when relations have limited access

patterns (i.e., binding patterns). Chapter 3 addressed the problem of generating feasible

and e�cient query plans for conjunctive queries when relations have binding patterns. One

di�erence between this problem and traditional query-optimization problems is that we

need to take the relation restrictions into consideration when generating plans.

We �rst considered a simple cost model that counts the number of source accesses in

a physical plan, since each source access could be very expensive in mediation systems.

Under this cost model, we developed two e�cient algorithms for �nding good plans. The

�rst algorithm, called CHAIN, is based on a greedy strategy. We showed a linear bound

173

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 174

on its worst-case performance compared to optimal plans. The second algorithm, called

PARTITION, uses a partitioning scheme. It generates optimal plans in more scenarios

than CHAIN, even though it has no bound on the margin by which it misses optimal plans.

Our experimental results showed that both algorithms can �nd good plans very e�ciently.

We also discussed how to extend the results under this cost model to general cost models.

In Chapter 4 we showed how to compute the maximal answer to a query by borrowing

bindings from other source relations not mentioned in the query. We focused on a special

class of conjunctive queries, called \connection queries." We studied two optimization

problems to trim useless source accesses. The �rst problem is to decide which relations

should be accessed to compute the maximal answer to a query. We developed a polynomial-

time algorithm for �nding all relevant relations for a query. The second problem is to

test query containment when relations have binding patterns. We proved this problem is

decidable by using decidability results of monadic programs. We then proposed an e�cient

algorithm for testing the boundedness of the plan for computing the maximal answer to

a query. If one program in the containment test is bounded, the test can be performed

e�ciently.

In Chapter 5 we answered the following question: given a query on relations with binding

patterns, is there a plan that can compute the complete answer to the query by accessing

the relations using legal patterns? If so, the query is called \stable." Since we cannot

retrieve all tuples from relations due to their binding restrictions, we need to reason about

whether the answer computed by a plan is complete or not. We studied this problem

for a variety of queries. For conjunctive queries, we showed that testing the stability of

a conjunctive query is NP-complete. We then proposed two algorithms for testing the

stability of a conjunctive query. Similarly, we developed two algorithms for testing the

stability of a union of conjunctive queries, and an algorithm for conjunctive queries with

arithmetic comparisons. Finally, we showed that stability of datalog queries is undecidable,

and give a su�cient condition for computing the complete answer to a datalog query.

8.1.2 Mediator Caching

In Chapter 6 we studied how to use mediator caching to reduce the number of source

accesses to answer a query. When the mediator has limited resources, we need to decide

what query results (views) to keep in the mediator cache. Our goal is to use the cached

results to answer as many future queries as possible. We introduced a new concept, called

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 175

\query-answering power" of a view set, and discussed how to minimize a view set without

losing its power to answer queries. We also studied the problem when there is a prede�ned

set of queries a user can ask.

8.1.3 Using Views to Generate E�cient Plans for Queries

In Chapter 7 we discussed how to use views to generate e�cient, equivalent plans to answer

a conjunctive query. We take the closed-world assumption, under which views are materi-

alized from base relations. Most previous algorithms on answering queries using views take

the open-world assumptions, under which views describing sources are de�ned in terms of

abstract predicates. We �rst considered a cost model that counts the number of subgoals

in a physical plan, and showed a search space that is guaranteed to include an optimal

rewriting. We also developed an e�cient algorithm, called \CoreCover," for �nding rewrit-

ings with the minimum number of subgoals. We then considered a cost model that counts

the sizes of intermediate relations of a physical plan, and gave a search space for �nding

optimal rewritings. Our third cost model allows attributes to be dropped in intermediate

relations. We showed that, by careful variable renaming, it is possible to do better than the

standard supplementary-relation approach by dropping attributes that the latter approach

would retain. Experiments showed that our algorithm of generating optimal rewritings has

good e�ciency and scalability.

8.2 Future Work

Now we discuss several research areas for future work.

8.2.1 Compute Maximal Answers to General Queries

Chapter 4 focused on how to compute maximal answers to connection queries. Section 4.7.3

extended some results to conjunctive queries. There are still several open problems on

computing maximal answers to general queries that cannot be represented as connection

queries (e.g., conjunctive queries). (1) For the datalog program of a conjunctive query

that computes the maximal answers (see Section 4.3), it is still not clear how to decide

which relations are relevant to the program. The \kernel" concept in Section 4.5 might give

us a hint on how to trim useless source relations. (2) We want to know how to test the

boundedness of the program of a conjunctive query. (3) In addition, it is an open problem

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 176

how to evaluate the program of a query e�ciently. We might use existing algorithms for

evaluating datalog programs [BR86], such as the magic-sets techniques [BR87]. Finding

e�cient algorithms for evaluating the program of a query deserves investigation.

8.2.2 Finer-Granularity Mediator Caching

In Chapter 6 we assumed that the basic unit of mediator caching is the answer to a query.

Some query results can overlap. For instance, query \�nding Palo Alto car dealers" and

query \�nding Toyota dealers" share the Toyota dealers in Palo Alto. By considering �ner-

granularity mediator caching, we can avoid storing multiple copies of the same information.

For example, we can cache each tuple in a relation, or cache common subexpressions [Fin82]

that are shared by many queries. The �ner the granularity is, the more e�ectively we can

use the cache space. However, we may also need more cost to maintain the results, such

as the meta information about these results. The cache replacement policy can be more

complicated. We need to consider the tradeo� between the cache maintenance cost and

cache storage e�ectiveness to decide the appropriate granularity.

8.2.3 Generating E�cient Plans Using Views for General Queries

Chapter 7 studied how to generate e�cient rewritings using views for conjunctive queries.

One future direction is to extend the results to general queries. For instance, it is still not

clear how to extend the results to the case where queries and views have built-in predicates,

and the case where we want to �nd maximally-contained rewritings of a query. In both

cases, it is known that a rewriting of a query can be a union of conjunctive queries. Thus

the challenge is how to evaluate the performance of a union of conjunctive queries, as shown

by the following example borrowed from [LMSS95]. Consider the query and views:

Query Q: q(X; Y; U;W) :- p(X; Y); r(U;W); r(W;U)

Views: v1(A;B;C;D) :- p(A;B); r(C;D); C � D

v2(E; F) :- r(E; F)

The following rewriting P1 of Q using the two views is a union of two conjunctive queries,

and it uses only the variables in Q:

P1: q(X; Y; U;W) :- v1(X; Y; U;W); v2(W;U)

q(X; Y; U;W) :- v1(X; Y;W; U); v2(U;W)

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 177

However, the following rewriting P2 has only one conjunctive query, and it uses new

variables C and D that are not in the query.

P2 : q(X; Y; U;W) :- v1(X; Y; C;D); v2(U;W); v2(W;U)

Notice that P2 uses fewer conjunctive queries than P1. However, this fact does not

imply that P2 is always more e�cient than P1, since P2 uses three view subgoals, while each

conjunctive query in P1 uses only two view subgoals. It is an open problem how to compare

the e�ciency of two unions of conjunctive queries, and how to �nd e�cient rewritings under

certain cost models.

8.2.4 Extraction from Web Pages

In many data-integration applications such as comparison shopping, it is critical to write

wrappers to extract data from Web pages. Even though several techniques (e.g., [Raj01])

have been proposed to do the extraction from HTML pages semi-automatically, it is an

open issue how to reduce the e�orts of human beings in this process. One possible direction

is to use the similarity and di�erence among the pages from the same Web site, such as the

book pages from AMAZON.COM and the electronic pages from EGGHEAD.COM. These

pages are generated from a back-end database using the same template. By analyzing the

di�erence of these pages, we might be able to extract the data while minimizing the amount

of human e�orts.

8.2.5 Dealing with Source Heterogeneity

In the thesis we assume that using wrapper technologies, data from di�erent sources is

translated into a uniform model. For the same information, di�erent sources could have

di�erent representations. For example, the actor name \Keanu Reeves" can be represented

as \Keanu Reeves," \Reeves, Keanu," \K. Reeves," or \Reeves" in di�erent databases.

How to use wrappers to deal with the heterogeneity of di�erent sources still deserves future

research. In addition, this thesis assumes that source data is translated into the relational

data model. A future direction is to integrate di�erent information sources that use semi-

structured data model or XML.

Bibliography

[ACPS96] Sibel Adali, K. Sel�cuk Candan, Yannis Papakonstantinou, and V. S. Subrah-

manian. Query caching and optimization in distributed mediator systems. In

SIGMOD, pages 137{148, 1996.

[AD98] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries

using materialized views. In PODS, pages 254{263, 1998.

[AGK99] Foto N. Afrati, Manolis Gergatsoulis, and Theodoros G. Kavalieros. An-

swering queries using materialized views with disjunctions. In ICDT, pages

435{452, 1999.

[AHU83] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures

and Algorithms. Addison-Wesley Publishing Company, 1983.

[AHY83] Peter M. G. Apers, Alan R. Hevner, and S. Bing Yao. Optimization algo-

rithms for distributed queries. IEEE Transactions on Software Engineering

(TSE), 9(1):57{68, 1983.

[ALU01] Foto Afrati, Chen Li, and Je�rey D. Ullman. Generating e�cient plans using

views. In SIGMOD, pages 319{330, 2001.

[ASU79a] Alfred V. Aho, Yehoshua Sagiv, and Je�rey D. Ullman. E�cient optimization

of a class of relational expressions. ACM Transactions on Database Systems

(TODS), 4(4):435{454, 1979.

[ASU79b] Alfred V. Aho, Yehoshua Sagiv, and Je�rey D. Ullman. Equivalences among

relational expressions. SIAM Journal on Computing, 8(2):218{246, 1979.

178

BIBLIOGRAPHY 179

[Bas98] Julie Basu. Associative caching in client-server databases. Ph.D. Thesis,

Computer Science Dept., Stanford Univ., 1998.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web

caching and Zipf-like distributions: Evidence and implications. In Proceedings

of the INFOCOM'99 conference, 1999.

[BGW+81] Philip A. Bernstein, Nathan Goodman, Eugene Wong, Christopher L. Reeve,

and James B. Rothnie Jr. Query processing in a system for distributed

databases (SDD-1). ACM Transactions on Database Systems (TODS),

6(4):602{625, 1981.

[BPT97] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized view

selection in a multidimensional database. In Proc. of VLDB, 1997.

[BR86] Fran�cois Bancilhon and Raghu Ramakrishnan. An amateur's introduction to

recursive query processing strategies. In SIGMOD, pages 16{52, 1986.

[BR87] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In PODS,

pages 269{283, 1987.

[C+94] Sudarshan S. Chawathe et al. The TSIMMIS project: Integration of hetero-

geneous information sources. IPSJ, pages 7{18, 1994.

[CDSS98] Sophie Cluet, Claude Delobel, Jerome Simeon, and Katarzyna Smaga. Your

mediators need data conversion! In SIGMOD, pages 177{188, 1998.

[CG00] Rada Chirkova and Michael R. Genesereth. Linearly bounded reformulations

of conjunctive databases. DOOD, 2000.

[CGKV88] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y.

Vardi. Decidable optimization problems for database logic programs. STOC,

pages 477{490, 1988.

[CGM00] Junghoo Cho and Hector Garcia-Molina. Synchronizing a database to improve

freshness. SIGMOD, 2000.

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and Kyuseok

Shim. Optimizing queries with materialized views. In ICDE, pages 190{200,

1995.

BIBLIOGRAPHY 180

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction

to Algorithms. MIT Presss, 1990.

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of con-

junctive queries in relational data bases. STOC, pages 77{90, 1977.

[CM95] Sophie Cluet and Guido Moerkotte. On the complexity of generating optimal

left-deep processing trees with cross products. In ICDT, pages 54{67, 1995.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. CACM,

13(6):377{387, 1970.

[CV92] Surajit Chaudhuri and Moshe Y. Vardi. On the equivalence of recursive and

nonrecursive datalog programs. In PODS, pages 55{66, 1992.

[CW91] Stefano Ceri and Jennifer Widom. Deriving production rules for incremental

view maintenance. In Proc. of VLDB, 1991.

[Del78] Claude Delobel. Normalization and hierarchical dependencies in the relational

data model. TODS, 3(3):201{222, 1978.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries

using views. In PODS, pages 109{116, 1997.

[DL97] Oliver M. Duschka and Alon Levy. Recursive plans for information gathering.

In IJCAI, 1997.

[Dus97] Oliver M. Duschka. Query planning and optimization in information integra-

tion. Ph.D. Thesis, Computer Science Dept., Stanford Univ., 1997.

[ES80] Robert S. Epstein and Michael Stonebraker. Analysis of distributed data base

processing strategies. In Proc. of VLDB, pages 92{101, 1980.

[Fag77] Ronald Fagin. Multivalued dependencies and a new normal form for relational

databases. TODS, 2(3):262{278, 1977.

[Fin82] Sheldon J. Finkelstein. Common subexpression analysis in database applica-

tions. In SIGMOD, pages 235{245, 1982.

BIBLIOGRAPHY 181

[FLMS99] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query op-

timization in the presence of limited access patterns. In SIGMOD, pages

311{322, 1999.

[GHRU97] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Je� Ullman.

Index selection in olap. In ICDE, 1997.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability : A

Guide to the Theory of Np-Completeness. Freeman, San Francisco, 1979.

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster:

An information integration system. In SIGMOD, pages 539{542, 1997.

[GLPK94] C�esar A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten. Fast,

randomized join-order selection - why use transformations? In VLDB, pages

85{95, 1994.

[GM99a] G�osta Grahne and Alberto O. Mendelzon. Tableau techniques for querying

information sources through global schemas. In ICDT, pages 332{347, 1999.

[GM99b] Himanshu Gupta and Inderpal Mumick. Selection of views to materialize

under a maintenance-time constraint. In ICDT, 1999.

[GMSV93] Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi.

Undecidable optimization problems for database logic programs. Journal of

the ACM, pages 683{713, 1993.

[GMUW00] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. Database

System Implementation. Prentice Hall, 2000.

[Gry99] Jarek Gryz. Query rewriting using views in the presence of functional and

inclusion dependencies. Information Systems, 24(7):597{612, 1999.

[GSUW94] Ashish Gupta, Yehoshua Sagiv, Je�rey D. Ullman, and Jennifer Widom. Con-

straint checking with partial information. In PODS, pages 45{55, 1994.

[Gup94] Ashish Gupta. Partial information based integrity constraint checking. Ph.D.

Thesis, Computer Science Dept., Stanford Univ., 1994.

BIBLIOGRAPHY 182

[HGMN+97] Joachim Hammer, Hector Garcia-Molina, Svetlozar Nestorov, Ramana Yer-

neni, Markus M. Breunig, and Vasilis Vassalos. Template-based wrappers in

the TSIMMIS system. SIGMOD, pages 532{535, 1997.

[HGMW+95] Joachim Hammer, Hector Garcia-Molina, Jennifer Widom, Wilburt Labio,

and Yue Zhuge. The Stanford Data Warehousing Project. In IEEE Data

Eng. Bulletin, Special Issue on Materialized Views and Data Warehousing,

1995.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.

Optimizing queries across diverse data sources. In Proc. of VLDB, pages

276{285, 1997.

[HRU96] Venky Harinarayan, Anand Rajaraman, and Je� Ullman. Implementing data

cubes e�ciently. In SIGMOD, 1996.

[IK84] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for com-

puting n-relational joins. TODS, 9(3):482{502, 1984.

[IK90] Yannis E. Ioannidis and Younkyung Cha Kang. Randomized algorithms for

optimizing large join queries. In SIGMOD, pages 312{321, 1990.

[IK93] W. H. Inmon and Chuck. Kelley. Rdb/VMS: Developing the Data Warehouse.

QED Publishing Group, Boston, Massachussetts, 1993.

[Ioa85] Yannis E. Ioannidis. A time bound on the materialization of some recursively

de�ned views. In Alain Pirotte and Yannis Vassiliou, editors, Proc. of VLDB,

pages 219{226. Morgan Kaufmann, 1985.

[IW87] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated

annealing. In Umeshwar Dayal and Irving L. Traiger, editors, SIGMOD,

pages 9{22. ACM Press, 1987.

[JK83] David S. Johnson and Anthony C. Klug. Optimizing conjunctive queries

that contain untyped variables. SIAM Journal on Computing, 12(4):616{640,

1983.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of non-

recursive queries. In VLDB, pages 128{137, 1986.

BIBLIOGRAPHY 183

[Klu88] Anthony Klug. On conjunctive queries containing inequalities. Journal of the

ACM, 35(1):146{160, January 1988.

[LBU01] Chen Li, Mayank Bawa, and Je�rey D. Ullman. Minimizing view sets without

losing query-answering power. In ICDT, pages 99{113, 2001.

[LC99] Chen Li and Edward Chang. Testing query containment in the presence of

limited access patterns. Technical report, Computer Science Dept., Stanford

Univ., http://dbpubs.stanford.edu:8090/pub/1999-12, 1999.

[LC00] Chen Li and Edward Chang. Query planning with limited source capabilities.

In ICDE, pages 401{412, 2000.

[LC01a] Chen Li and Edward Chang. Answering queries with useful bindings. In

ACM Transactions on Database Systems (TODS), 2001.

[LC01b] Chen Li and Edward Chang. On answering queries in the presence of limited

access patterns. In ICDT, pages 99{113, 2001.

[Lev00] Alon Levy. Answering queries using views: A survey. Technical report, Com-

puter Science Dept., Washington Univ., 2000.

[LMSS95] Alon Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.

Answering queries using views. In PODS, pages 95{104, 1995.

[LRO96] Alon Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous

information sources using source descriptions. In Proc. of VLDB, pages 251{

262, 1996.

[LYV+98] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis

Papakonstantinou, Je�rey D. Ullman, and Murty Valiveti. Capability based

mediation in TSIMMIS. In SIGMOD, pages 564{566, 1998.

[Mit01] Prasenjit Mitra. An algorithm for answering queries e�ciently using views.

In Proceedings of the Australasian Database Conference, 2001.

[MKW00] Prasenjit Mitra, Martin Kersten, and Gio Wiederhold. Graph-oriented model

for articulation of ontology interdependencies. In EDBT, 2000.

BIBLIOGRAPHY 184

[MLF00] Todd Millstein, Alon Levy, and Marc Friedman. Query containment for data

integration systems. In PODS, 2000.

[Mor88] Katherine A. Morris. An algorithm for ordering subgoals in NAIL! In PODS,

pages 82{88, 1988.

[MW97] David A. Maluf and Gio Wiederhold. Abstraction of representation for inter-

operation. International Syposium on Methodologies for Intelligent Systems

(ISMIS), pages 441{455, 1997.

[NS87] Je�rey F. Naughton and Yehoshua Sagiv. A decidable class of bounded re-

cursions. In PODS, pages 227{236. ACM, 1987.

[OL90] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enu-

meration in query optimization. In Proc. of VLDB, pages 314{325. Morgan

Kaufmann, 1990.

[PGH96] Yannis Papakonstantinou, Ashish Gupta, and Laura M. Haas. Capabilities-

based query rewriting in mediator systems. In Proceedings of the Fourth

International Conference on Parallel and Distributed Information Systems,

December 18-20, 1996, Miami Beach, Florida, USA, pages 170{181. IEEE

Computer Society, 1996.

[PGLK97] Arjan Pellenkoft, C�esar A. Galindo-Legaria, and Martin L. Kersten. The

complexity of transformation-based join enumeration. In Proc. of VLDB,

pages 306{315. Morgan Kaufmann, 1997.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Ob-

ject exchange across heterogeneous information sources. In ICDE, pages 251{

260, 1995.

[PL00] Rachel Pottinger and Alon Levy. A scalable algorithm for answering queries

using views. In Proc. of VLDB, 2000.

[PS82] Christos H. Papadimitriou and Ken Steiglitz. Combinatorial optimization:

algorithms and complexity. Prentice-Hall, 1982.

[Qia96] Xiaolei Qian. Query folding. In ICDE, pages 48{55, 1996.

BIBLIOGRAPHY 185

[Raj01] Anand Rajaraman. Constructing virtual databases on the World-Wide Web.

Ph.D. Thesis, Computer Science Dept., Stanford Univ., 2001.

[RSS96] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized view

maintenance and integrity constraint checking: Trading space for time. In

SIGMOD, 1996.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering

queries using templates with binding patterns. In PODS, pages 105{112,

1995.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a relational

database management system. In SIGMOD, pages 23{34, 1979.

[Sag85] Yehoshua Sagiv. On computing restricted projections of representative in-

stances. In PODS, pages 171{180. ACM, 1985.

[Sar91] Yatin Saraiya. Subtree elimination algorithms in deductive databases. Ph.D.

Thesis, Computer Science Dept., Stanford Univ., 1991.

[SG88] Arun N. Swami and Anoop Gupta. Optimization of large join queries. In

SIGMOD, pages 8{17, 1988.

[Shm93] Oded Shmueli. Equivalence of datalog queries is undecidable. Journal of

Logic Programming, 15(3):231{241, 1993.

[SM97] Wolfgang Scheufele and Guido Moerkotte. On the complexity of generating

optimal plans with cross products. In PODS, pages 238{248. ACM Press,

1997.

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and

randomized optimization for the join ordering problem. VLDB Journal,

6(3):191{208, 1997.

[Swa89] Arun N. Swami. Optimization of large join queries: Combining heuristic and

combinatorial techniques. In SIGMOD, pages 367{376, 1989.

BIBLIOGRAPHY 186

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational ex-

pressions with the union and di�erence operators. Journal of the ACM,

27(4):633{655, 1980.

[TS97] Dimitri Theodoratos and Timos Sellis. Data warehouse con�guration. In

Proc. of VLDB, 1997.

[Ull89] Je�rey D. Ullman. Principles of Database and Knowledge-base Systems, Vol-

umes II: The New Technologies. Computer Science Press, New York, 1989.

[Ull97] Je�rey D. Ullman. Information integration using logical views. In ICDT,

pages 19{40, 1997.

[UV88] Je�rey D. Ullman and Moshe Y. Vardi. The complexity of ordering subgoals.

In PODS, pages 74{81, 1988.

[Var99] Moshe Vardi. Personal communication, 1999.

[VM96] Bennet Vance and David Maier. Rapid bushy join-order optimization with

cartesian products. In SIGMOD, pages 35{46, 1996.

[VP97] Vasilis Vassalos and Yannis Papakonstantinou. Describing and using query

capabilities of heterogeneous sources. In Proc. of VLDB, pages 256{265, 1997.

[Wid95] Jennifer Widom. Research problems in data warehousing. In Proc. of the

Intl. Conf. on Information and Knowledge Management, 1995.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems.

IEEE Computer, 25(3):38{49, 1992.

[YKL97] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materialized

view design in data warehousing environment. In Proc. of VLDB, 1997.

[YLGMU99] Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Je�rey D. Ullman.

Computing capabilities of mediators. In SIGMOD, pages 443{454, 1999.

[YLUGM99] Ramana Yerneni, Chen Li, Je�rey D. Ullman, and Hector Garcia-Molina.

Optimizing large join queries in mediation systems. In ICDT, pages 348{364,

1999.

BIBLIOGRAPHY 187

[ZO93] Xubo Zhang and Meral Ozsoyoglu. On e�cient reasoning with implication

constraints. In DOOD, pages 236{252, 1993.

