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Strategies for Dynamic Load Balancing
on Highly Parallel Computers

Marc H. Willebeek-LeMair, Member, IEEE, and Anthony P. Reeves, Senior Member, IEEE

Abstract— Dynamic load balancing strategies for minimizing
the execution time of single applications running in parallel on
multicomputer systems are discussed. Dynamic load balancing
(DLB) is essential for the efficient use of highly parallel systems
when solving non-uniform problems with unpredictable load
estimates. With the evolution of more highly parallel systems,
centralized DLB approaches which make use of a high degree
of knowledge become less feasible due to the load balancing
communication overhead. Five DLB strategies are presented
which illustrate the tradeoff between 1) knowledge—the accuracy
of each balancing decision, and 2) overhead — the amount of
added processing and communication incurred by the balancing
process. The Sender (Receiver) Initiated Diffusion (SID/RID) strate-
gies are asynchronous schemes which only use near-neighbor
information. The Hierarchical Balancing Method (HBM) organizes
the system into a hierarchy of subsystems within which balancing
is performed independently. The Gradient Model (GM) employs
a gradient map of the proximities of underloaded processors in
the system to guide the migration of tasks between overloaded
and underloaded processors. Finally, the Dimension Exchange
Method (DEM) requires a synchronization phase prior to load
balancing and then balances iteratively. All five strategies have
been implemented on an Intel iPSC/2 hypercube. Our results
indicate that the RID approach performs well, and can most
easily be scaled to support highly parallel systems.

Index Terms— Distributed control, dynamic load balancing,
highly parallel systems, hypercube multicomputer, multicom-
puter synchronization, nonuniform problems.

1. INTRODUCTION

ULTIPROCESSOR systems have been shown to be

very efficient at solving problems that can be parti-
tioned into tasks with uniform computation and communica-
tion patterns. However, there exists a large class of nonuniform
problems with uneven and unpredictable computation and
communication requirements. Dynamic load balancing (DLB)
schemes are needed to efficiently solve non-uniform problems
on multiprocessor systems [1]. Many load balancing tech-
niques designed to support distributed systems (e.g., Local
Area Networks) have been proposed and reviewed in the
literature [2]-[7]. However, only a few strategies have been
designed, or are scalable, to support highly parallel multi-
computer systems (e.g., tightly coupled message-passing and
shared memory systems) [8]-[10], [1], [12], [13]. We are
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interested in dynamic load balancing schemes which seek to
minimize total execution time of a single application running
in parallel on a multicomputer system. To do so, an optimal
tradeoff between the processing and communication overhead
and the degree of knowledge used in the balancing process
must be sought.

We have developed a general model for dynamic load bal-
ancing [14]. This model is organized as a four phase process:
1) processor load evaluation, 2) load balancing profitability
determination, 3) task migration strategy, and 4) task selection
strategy. The first and fourth phases of the model are problem
dependent and purely distributed; that is, both of these phases
can be executed independently on each individual processor.
The second and third phases of the load balancing process
can be performed in either a distributed or centralized fashion.
Centralized approaches tend to be more accurate yet more
time consuming and less feasible as the number of Processors
in the system becomes large. We are primarily interested in
distributed approaches which can be scaled to support highly
parallel multicomputer systems.

The tradeoff between knowledge and overhead is illustrated,
by example, with five different DLB schemes. The schemes
presented vary in the amount of processing and communication
overhead and in the degree of knowledge used in making
balancing decisions. The load balancing overhead includes
the communication costs of acquiring load information and
of informing processors of load migration decisions, and the
processing costs of evaluating load information to determine
task transfers.

Sender Initiated Diffusion (SID)" is a highly distributed local
approach which makes use of near-neighbor load information
to apportion surplus load from heavily loaded processors to
underloaded neighbors in the system. Global balancing is
achieved as tasks from heavily loaded neighborhoods diffuse
into lightly loaded areas in the system.

Receiver Initiated Diffusion (RID) is the converse of the SID
strategy, where underloaded processors requisition load from
heavily loaded neighbors.

Hierarchical Balancing Method (HBM) is an asynchronous,
global, approach which organizes the system into a hierarchy
of subsystems. Load balancing is initiated at the lowest levels
in the hierarchy with small subsets of processors and ascends
to the highest level which encompasses the entire system. This
scheme centralizes the balancing process at different levels of
the tree with increasing degrees of knowledge at higher levels.

! Diffusion schemes are well known and are discussed in [15], [16].
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Gradient Model (GM) [8] employs a gradient map of the
proximities of underloaded processors in the system to guide
the migration of tasks between overloaded and underloaded
Processors.

Dimension Exchange Method (DEM) [15], [17] is a global,
fully synchronous, approach. Load balancing is performed in
an iterative fashion by “folding” an N processor system into
log N dimensions and balancing one dimension at a time.

We have categorized the issues concerning DLB strategies
for highly parallel systems into the following areas: sender
or receiver initiation of the balancing, size and type of bal-
ancing domains, degree of knowledge used in the decision
process, aging of information in the decision process, and
overhead distribution and complexity. All five schemes are
compared in terms of these points. Another important issue
is the effectiveness of the strategies on systems with different
interconnection topologies. The HBM strategy, for example,
due to its hierarchical nature, is most efficiently mapped
to systems which are based on a tree or other hierarchical
topology. Similarly, the DEM strategy is designed for a
hypercube topology and is implemented much less efficiently
on a simpler configuration such as a mesh. A final point
of comparison concerns the locality of tasks. Applications
comprised of tasks with a high measure of locality (local
communication dependencies between tasks) would be more
efficiently processed using a DLB strategy which maintains
the locality of tasks. The local balancing strategies such as the
SID and RID approaches do this.

All five strategies have been implemented on an Intel iPSC/2
hypercube multicomputer. Section II presents a general load
balancing model upon which our strategies are based. This
also includes a model of the problem decomposition and
the processor loading. Section Il contains an outline and
complexity analysis of the five DLB strategies. The different
techniques are compared in Section IV and load balancing
results using sample applications are summarized in Section
V.

II. A GENERAL DYNAMIC LOAD BALANCING MODEL

The dynamic load balancing schemes we are proposing are
based on a general four-phase load balancing model. A detailed
description of the model is given in [14]. The four phases are
described as follows.

1) Processor Load Evaluation: A load value is estimated
for each processor in the system. These values are used
as input to the load balancer to detect load imbalances
and make load migration decisions.

2) Load Balancing Profitability Determination: The imbal-
ance factor quantifies the degree of load imbalance
within a processor domain. It is used as an estimate
of potential speedup obtainable through load balancing
and is weighed against the load balancing overhead to
determine whether or not load balancing is profitable at
that time.

3) Task Migration Strategy: Sources and destinations for
task migration are determined. Sources are notified of
the quantity and destination of tasks for load balancing.

4) Task Selection Strategy: Source processors select the
most suitable tasks for efficient and effective load bal-
ancing and send them to the appropriate destinations.

The first and fourth phases of the model are application
dependent and purely distributed. Both of these phases can
be executed independently on each individual processor. For
the purpose of this paper, we assume a simple problem
characterization in which the problem is partitioned into a
fixed number of tasks. All tasks are independent and may
be executed on any processor in any sequence. Furthermore,
due to the unpredictable nature of the task requirements, each
task is estimated to require equal computation time. The initial
task distribution is made based on the estimated requirements.
Hence, the Processor Load Evaluation Phase is reduced to
a simple count of the number of tasks pending execution.
Similarly, the Task Selection Strategy is simplified since no
distinction is made between tasks, and the issue of locality
is ignored. For the case where tasks are created dynamically,
if the arrival rate is predictable then this information can be
incorporated into the load evaluation [18], if not predictable,
then the potential arrival of new tasks can effectively be
ignored.

Our focus is on the Profitability Determination and Task
Migration phases, the second and third phases, of the load
balancing process. As the program execution evolves, the
inaccuracy of the task requirement estimates leads to un-
balanced load distributions. The imbalance must be detected
and measured (Phase 2) and an appropriate migration strategy
devised to correct the imbalance (Phase 3). These two phases
may be performed in either a distributed or centralized fashion.
Centralized approaches tend to be more accurate since the
entire system’s state information is accumulated to a single
point, and a high degree of knowledge is used in the decision
process. However, the accumulation of information requires
synchronization which incurs an overhead and a delay. This
overhead may become prohibitively large for highly parallel
systems and the delay may increase to a point where the
information accumulated ages and loses validity. Alternatively,
distributed approaches, although less accurate since they op-
erate with less information, incur a smaller synchronization
overhead.

During the Profitability Determination Phase (triggered by
a processor’s load estimate or timer expiration) a decision is
made as to whether or not to invoke the load balancer. The load
imbalance factor ¢(t) is an estimate of the potential speedup
obtainable through load balancing at time ¢ [14]. It is defined
as the difference between the maximum processor loads before
and after load balancing, L,,,, and Lpq, respectively.

d)(f) = LmaI - Lbal- (1)

A decision on whether or not to load balance is made based
on the value of ¢(¢) relative to the balancing overhead,
Loverhead, required to perform the load balancing. In general,
load balancing is profitable if the savings is greater than the
overhead, i.e.,

(P(f) > Lo1~€r}1€ad~ (2)
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This may be simplified by setting L,yerhead 10 a constant
threshold, K,yerheqq, rather than calculating L, .crheqq as a
function of the system state,

¢(t) > Kouerhsad- (3)
A further simplification is to assume that once a processor’s

load, L,, drops below a preset threshold, Ko.crhead, any
balancing will improve system performance.

Lp < Kunderload- (4)
This eliminates the need to acquire any information regarding
other processor loads.

The responsibility of invoking the balancer may either be
authorized to all processors in the system or only to designated
processors containing the necessary information. For highly
parallel systems it is desirable to distribute the responsibility
to multiple points in the system. This may be accomplished by
partitioning the system into independent groups of processors
called balancing domains. The size of a balancing domain may
range anywhere from a few processors to the entire system.
Load balancing decisions are based solely on information
pertaining to those processors within each domain. The notion
of balancing domains is a way of distributing the balancing
process. Furthermore, by decreasing the number of processors
being considered in the balancing process, balancing domains
reduce the complexity of calculating the imbalance factor
as well as the complexity of phase 3, the Load Migration
Strategy.

The role of the Task Migration Phase is first, to balance the
load within each domain by identifying source and destination
processor pairs and determining the amount of load to be
transferred between them, and second, to balance the load
across the entire system. The concept of balancing domains
reduces the overhead of the balancing process, but does
not ensure a balanced load for the entire system. This is
accomplished by either overlapping domains, whereby excess
load can diffuse from more heavily loaded domains into lightly
loaded ones, or through the use of variable domains, whereby
the set of processors belonging to a domain periodically
changes to encompass a different subset of processors within
the system. Potentially more accurate migration strategies
are made possible by larger balancing domains. However,
larger domains may increase the aging period of information
and cause the load balancing overhead to be more unevenly
distributed. These tradeoffs are illustrated by the different
strategies to be discussed.

III. DYNAMIC LOAD BALANCING STRATEGIES

The following DLB strategies are designed to support highly
parallel systems. For highly parallel systems, the inclination
is towards distributed approaches which incur small over-
heads both in the communication costs for load updates,
task transfers, etc., as well as in the computational costs of
profitability determination, task migration decisions, etc. The
five DLB strategies presented illustrate the tradeoff between
1) knowledge—the accuracy of each balancing decision, and

2) overhead—the amount of added processing and communi-
cation incurred by the balancing process. The load balancing
overhead includes the communication costs of acquiring load
information and of informing processors of load migration de-
cisions, and the processing costs of evaluating load information
to determine task transfers. Typically, the more information
accumulated to be used in the decision process, the more
accurate the decisions become. However, other factors, such
as the aging of information and the rate at which the load is
changing must also be considered.

A level of compromise between the degree of knowledge
and the overhead of the load balancing process is sought to
minimize the runtime for any given application. The DEM
strategy, the only synchronized strategy, arrives at optimal load
balancing decisions at the expense of high synchronization
costs. Every time the load balancer is invoked the entire
system is balanced. It serves as a good comparison to the
other strategies which all execute asynchronously and load
balance in small steps. The GM strategy incurs a relatively
low overhead, but requires the fine tuning of several threshold
parameters which contribute to the degree of knowledge used
in the decision process. The SID and RID strategies are
uniformly distributed diffusion approaches, which only use
near-neighbor information in the balancing process. Finally,
the HBM strategy can be thought of as an asynchronous
version of the DEM approach, where balancing decisions are
centralized at different levels of the hierarchy. The strategies,
to be discussed, pertain to the second (Load Balancing Prof-
itability Determination) and third (Task Migration) phases of
the general load balancing model.

A. The Gradient Model (GM)

The gradient model is a demand driven approach [8].
The basic concept is that underloaded processors inform
other processors in the system of their state, and overloaded
processors respond by sending a portion of their load to the
nearest lightly loaded processor in the system. The resulting
effect is a form of relaxation where tasks migrating through
the system are guided by the proximity gradient and gravitate
towards underloaded points. The scheme is based on two
threshold parameters: the Low-Water-Mark (LWM) and the
High-Water-Mark (HWM). A processor’s state is considered
light if its load is below the LWM, heavy if above the HWM,
and moderate otherwise. A node’s proximity is defined as the
shortest distance from itself to the nearest lightly loaded node
in the system. All nodes are initialized with a proximity of
Wmax, 4 constant equal to the diameter of the system. The
proximity of a node is set to O if its state becomes light. All
other nodes p with near-neighbors n; compute their proximity
as

proximity(p) = min (proximity(n;)) + 1. )
A node’s proximity may not exceed wmax. A system is
saturated, and does not require load balancing if all nodes
report a proximity of wy,q.. If the proximity of a node
changes it must notify its near-neighbors. Hence, the balancing
process is initiated by lightly loaded processors reporting
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a proximity of 0. A gradient map of the proximities of
underloaded processors in the system serves to route tasks
between overloaded and underloaded processors.

Load balancing profitability determination is controlled by
the LWM and HWM thresholds. In order for load balancing
to take place, there must be at least one overloaded processor
and one underloaded processor in the system. No measure of
the degree of imbalance is made, only that one exists. This
criterion is characterized by the simplified version of the load
balancing profitability determination phase (3), where, given
an overloaded processor p and an underloaded processor ¢,

L, ~ L, > HWM — LWM. (6)

The proximity map is used to perform the migration phase.
If a processor’s state is heavy and any of its near-neighbors
report a proximity less than w,y,., then it sends a unit of its
load to the neighbor of lowest proximity. Tasks are routed
through the system in the direction of the nearest underloaded
processors. A task continues to migrate until it reaches an
underloaded processor or it reaches a node for which no
neighboring nodes report a lower proximity. The scheme is
illustrated in Fig. 1. In this example, there are two overloaded
nodes in the system and one underloaded node. The overloaded
nodes are at different proximities from the underloaded node,
but both send a fraction of load, 4, in the direction of the
underloaded processor. The value of § can be determined as
either a percentage of the initial load, or as a fixed number of
tasks. The scheme may perform inefficiently when either too
much or too little work is sent to an underloaded processor.

1) GM Complexity: The overhead incurred by the GM strat-
egy includes the updating of the proximity map and the
routing of tasks from overloaded processors to underloaded
ones. The proximity map is constructed in an iterative fashion
as the existence of an underloaded processor is propagated
through the system. The number of messages required to
update the proximity map is dependent on the interconnection
network topology, the number of underloaded processors, their
locations, and the order in which they become underloaded.
All but one of these factors are application dependent, making
it very difficult to model the complexity. Given N processors
interconnected using a hypercube topology, in the worst case,
an update of the gradient map, to recognize the presence of a
new underloaded processor, would require,

C'ot(update) = N log Nmessages. @)

The worst case occurs when there are no other underloaded
processors in the system. Normally, the presence of other
underloaded processors will halt the propagation of update
messages to processors closer to the existing underloaded
processors than to the new one.

The migration of tasks from overloaded to underloaded
processors incurs added overhead due to the asynchronous
nature of the algorithm. An overloaded processor sends a fixed
portion of load in the direction of the nearest underloaded
processor. Since the ultimate destination of migrating tasks is
not explicitly known, intermediate processors in the migration
path must be interrupted to perform the routing. Furthermore,

proximity

. Overloaded

O Moderate

O Underloaded

Fig. 1. The gradient model. In this example two overloaded processors
release an amount of load (&) in the direction of the nearest underloaded
processor. The load migrates to the underloaded processor via the gradient
map of proximity values.

the proximity map may change during a task’s migration,
altering its destination. This may occur since the quantity of the
imbalances is not known and multiple overloaded processors
may send tasks towards the same destination, creating a
migration overflow and a sudden change in the proximity
gradient. At the other extreme, an overloaded processor, in
transferring a preset portion of load, may not send enough to
solve the imbalance. Hence, the degree of information used
in the balancing process may lead to inefficient migration
decisions.

B. Sender Initiated Diffusion (SID)

The SID strategy is a, local, near-neighbor diffusion ap-
proach which employs overlapping balancing domains to
achieve global balancing. A similar strategy, called Neigh-
borhood Averaging, is proposed in [12]. The scheme is purely
distributed and asynchronous. Each processor acts indepen-
dently, apportioning excess load to deficient neighbors. It has
been shown in [16], that for an /N processor system with a
total system load L unevenly distributed across the system, a
diffusion approach, such as the SID strategy, will eventually
cause each processor’s load to converge to L/N.

Balancing is performed by each processor whenever it
receives a load update message from a neighbor indicating
that the neighbors load, {; < Lpow, where Lrow is a
preset threshold. Each processor is limited to load information
from within its own domain, which consists of itself and
its immediate neighbors. All processors inform their near-
neighbors of their load levels and update this information
throughout program execution. Details of the update strategy
are discussed in Section III-E. The profitability of load bal-
ancing is determined by first computing the average load in

the domain, L,,

K

= 1

L=%3 (l,, +3 :zk> ®)
k=1
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where K is the number of neighboring processors and I
their respective loads. Next, if a processor’s load exceeds
the average load by a prespecified amount, Lipreshora, it
proceeds to implement the third phase of the load balancing
process. This closely resembles the profitability determination
characterized by (3).

Lp — .Zp > Lthreshold' (9)

Task migration is performed by apportioning excess load to
deficient neighbors. Each neighbor & is assigned a weight hj
according to the following formula,

hy = Ep—lk, iflk<Ep,
0 otherwise.
These weights are summed to determine the total deficiency,

K
Hy = hy.
k=1

Finally, the portion of processor p’s excess load that is
assigned to neighbor k, 6, is defined as

_ . h
L,,)F’;.

(10)

1n

be=(lp - (12)
Once the quantity of load to be migrated has been determined,
the appropriate number of tasks are dispatched (note that &5, >
6min). Balancing continues throughout program execution
whenever a processor’s load exceeds the local average by more
than a certain amount [(9)]. The scheme is illustrated in Fig. 2,
where K = 4 and the average load in the domain, L = 10.
The processor in question has a surplus load of S = 21 and the
domain deficiency is H = 20. The amount of load apportioned
to each neighbor is represented by &.

1) SID Complexity: The SID near-neighbor balancing
scheme distributes the load balancing overhead uniformly
across all processors. For a K-connected (K neighbors) system
of N processors, a complete system load update can be
expressed in terms of the number of messages sent,

Ciot(update) = K N messages, (13)
and the overhead incurred by each processor is
C dat KN
Cp(update) = Cior(update) = —— = K messages. (14)

N N

The number of task transfers occurring in a given balancing
iteration is dependent on a particular load distribution as well
as the topology of the communication network. In the worst
case, for a single task migration iteration, the communication
overhead to transfer load would entail

Ciot(migration) = %K transfers (15)
where each transfer could require multiple messages to com-
plete. Finally, the total number of iterations required to achieve
global balancing is also dependent on the particular load
distribution and the system topology. In the worst case, say
for a spiked load distribution, where all the load is located on
a single node, it would require O(K N) transfers to balance in

processor Joad

L=10
H=20
S=21

Fig. 2. An example of the SID strategy, where surplus load is apportioned
to neighboring underloaded processors in the domain.

O(diameter( N )) iterations. However, these distributions rarely
occur in practice and, in general, the number of required
iterations is much lower.

C. Receiver Initiated Diffusion (RID)

The RID strategy can be thought of as the converse of
the SID strategy in that it is a receiver initiated approach as
opposed to a sender initiated approach. However, besides the
fact that in the RID strategy underloaded processors request
load from overloaded neighbors, certain subtle differences
exist between the strategies. First, the balancing process is
initiated by any processor whose load drops below a prespeci-
fied threshold (L Low ). Second, upon receipt of a load request,
a processor will fulfill the request only up to an amount equal
to half of its current load (this reduces the effect of the aging
of the data upon which the request was based). Finally, in the
receiver initiated approach the underloaded processors in the
system take on the majority of the load balancing overhead,
which can be significant when the task granularity is fine.

As with the SID strategy, each processor is limited to load
information from within its own domain, which consists of
itself and its immediate neighbors. All processors inform their
near-neighbors of their load levels and update this information
throughout program execution. Details of the update strategy
are discussed in Section II-F. When a processor’s load drops
below the prespecified threshold Lpow, the profitability of
load balancing is determined by first computing the average
load in the domain, L, [(8)].

If a processor’s load is below the average load by more than
a prespecified amount, Lypreshotd, it proceeds to implement the
third phase of the load balancing process,

Ep - Lp > Lthreshold~

(16)

Task migration is performed by requesting proportionate
amounts of load from overloaded neighbors. Each neighbor
k is assigned a weight hj according to the following formula,

e = { =Ly, i1y > Ly,
* =0 otherwise.

a7

These weights are summed to determine the total surplus, H,

(An).
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L=10
ocessor timated

H=9 oad neighbor

- load
D=L-lp=8

i delivered \\
Ok requested
Fig. 3. An example of the RID strategy, where surplus load is requested

from neighboring overloaded processors in the domain.

Finally, the amount of load requested by processor p from

neighbor k,6y, is computed as,

= h

(Lo = o) 7 (18)
Once the quantity of load to be migrated has been determined,
load requests are sent to appropriate neighbors (6 > darrn).
However, upon receipt of a load request, a processor will fulfill
the request only up to an amount equal to half of its current
load. Balancing is activated whenever a processor’s load drops
below a prespecified threshold and there are no outstanding
load requests.

The scheme is illustrated in Fig. 3, where K = 4 and the
average load in the domain, I = 10. The processor in question
has a load deficiency of D = 8 and the domain surplus is
H = 9. A record of pending requests is kept in order to avoid
sending duplicate requests to the same neighbor. The amount
of load delivered from each neighbor is represented by 6%
delivered. Notice that in the example, the East neighbor’s load
was estimated to be more than it actually is, and consequently
it delivers less load than is requested.

1) RID Complexity: The RID near-neighbor balancing
scheme distributes the load balancing overhead uniformly
across all processors. For a K -connected (K neighbors) system
of N processors, a complete system load update can be
expressed in terms of the number of messages sent,

Ciot(update) = K N messages, (19)
and the overhead incurred by each processor is
C'ot(updat KN
Cp(update) = Ctor(update) = —— = K messages. (20)

N N

The RID strategy differs from its counterpart SID in the task
migration phase. Here, an underloaded processor first sends out
requests for load and then receives acknowledgment for each
request. Hence, two additional messages are sent for each task
transfer. In the worst case, for a single task migration iteration,
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level 3

}CGSSOI' D

level 2

Fig. 4. Hierarchical organization of an eight-processor system with hyper-
cube interconnections, where hj is the connection to the neighbor at the
kth level. The processor IDs at intermediate nodes in the tree represent those
processors delegated to manage the balancing of corresponding lower-level
domains.

the communication overhead to transfer load would entail

N
Ciot(migration) = N K'messages + EK transfers  (21)

where each transfer could require multiple messages to com-
plete. The total number of iterations needed to achieve global
balancing is application and topology dependent as with the
SID approach.

D. Hierarchical Balancing Method (HBM)

The HBM strategy organizes the multicomputer system
into a hierarchy of balancing domains, thereby decentralizing
the balancing process. Specific processors are designated to
control the balancing operations at different levels of the
hierarchy. A binary-tree hierarchical organization is illustrated
in Fig. 4. In this case, processors in charge of the balancing
process at a level, [;, receive load information from both
lower level, /;_;, domains. Global balancing is achieved by
ascending the tree and balancing the load between adjacent
domains at each level in the hierarchy. This procedure is
asynchronous, however, where balancing is invoked within a
domain whenever an imbalance is detected by the domain’s
designated controller. For a binary hierarchical configuration,
the size of the balancing domains double from one level to
the next. The tree structure minimizes the communication
overhead and can be scaled to accommodate large systems.

The hierarchical balancing scheme functions asynchro-
nously. The balancing process is triggered at different levels in
the hierarchy by the receipt of load update messages indicating
an imbalance between lower level domains. All load levels are
initialized with each processor sending its load information
up the tree. The update policy is described in Section III-F.
Subtree load information is computed at intermediate nodes
and propagated to the root. The update policy for intermediate
nodes is the same as that of leaf processors. Load imbalances
at different levels of the hierarchy are detected at intermediate
nodes. If the load imbalance between two lower level domains
is greater than a prespecified amount, Lipreshotd, then one
domain is considered overloaded and the other underloaded.
The absolute value of the difference between the left domain
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load, Ly, and the right domain load, Lpg, is compared to
Lthreshold-

|Lr — Lr| > Linreshota- (22)

This closely resembles the profitability determination (3). Load
balancing profitability is evaluated at each level of the tree.

Task migration is controiled by intermediate nodes which,
upon detecting an imbalance, notify all processors belonging
to the overloaded subtree of the amount of the imbalance
and at what level it occurs. Processors within the overloaded
branch transfer a designated amount of their load to their
“matching” neighbor in the adjacent underloaded subtree. For
each processor in the left subtree at a given level, there is a
corresponding processor in the right subtree, and visa-versa.
Given a hypercube interconnection scheme, these processors
are directly linked to one another.

In theory, the hierarchical balancing strategy guarantees
that having reached a level A in the balancing hierarchy, all
processors belonging to the left, level A — 1, subtree have
equal loads and all processors within the right, level A — 1,
subtree have equal loads. In practice, this may not quite be
true due to the aging of information as well as the inaccuracy
of load estimates, but, so long as the load is not fluctuating too
rapidly (6(task) >> balancing delay), the assumption is valid.
Hence, as the balancing process moves up the tree to higher
levels in the hierarchy, in order to correct imbalances between
adjacent subtrees, all processors within an overloaded subtree
may be directed to transfer an equivalent amount of load to
their “matching” neighbor in the underloaded subtree. This
simplifies the balancing process.

Given an imbalance, A;, at a level 7 in the hierarchy, each
processor p in the overloaded subtree is directed to transfer
a load amount &; to its corresponding neighbor g in the
underloaded subtree, where

A;

b; 23)
For a hypercube interconnection scheme, the identity of pro-
cessor p’s level ¢ neighbor, g, can be determined as a function
of ¢ and p,

g=p®2! (24

where & is a bit-wise exclusive-OR operator. The hierarchical
organization of an eight-processor hypercube is shown in Fig.
4.

The hierarchical scheme distributes the load balancing re-
sponsibilities to all processors in the system. It is effective for
balancing local load imbalances as well as excessive global
imbalances. Different imbalance thresholds can be specified at
different levels of the tree. This can limit balancing domains
to independent subtrees if load imbalances between subtrees
do not exceed a preset threshold. Distant load transfers may
then only be instituted to satisfy severe global imbalances.

1) Hierarchical Scheme Complexity: When dealing with
highly parallel systems it is desirable to distribute the load
balancing overhead across all processors. The load balancing
overhead of the hierarchical scheme is distributed across the
system, but the distribution is not uniform. The complexity

of the balancing process can be analyzed in terms of the
communication overhead or number of messages sent.

For a system of N processors with an embedded binary-tree
communication structure (Fig. 4), a full system load update
from the leaves to the root requires N — 1 update messages
that may be completed in log N stages.

At a level 4, in the hierarchical structure there are N/2° do-
mains. If all detect imbalances, there are 2¢! communicating
pairs of processors per domain, yielding a maximum of

. , N\, .. N
Crequest () = Ctransfer(i) = (E) (@)= D)

load transfer request messages and an equal number of load
transfers (each load transfer may involve multiple messages).

Hence, for a system of N processors, organized into a
hierarchy of log N levels, a maximum of

(25)

Ciot(traversal) = N(log N + 1) (26)
messages are required to balance the entire system load
(assuming a single message is sufficient to complete a load
transfer). This may be performed with an average parallelism
of N/2, or a maximum time complexity of O(log N).
The average cost per processor p is given by
~ Cior(t 1 N(logN +1
Cp(traversal) = tot( r]z\lfversa ) = ( OgN +1)
=log N + 1 send and receives.

@7

This cost is not, however, distributed evenly across all proces-
sors. The minimum cost per node (at the leaves of the tree)
is given by

Comin(traversal) = 1 send + log N receives. (28)

The maximum cost per node is at the root. For the worst case,

Chax(traversal) =log N receives + N — 1 sends

+ log N receives (29)

where the first log N receives are update messages, the N — 1
sends are load transfer request messages, and the final log N
receives are load transfers. Given a broadcast mechanism, the
N — 1 sends may be reduced to log N sends—one occurring
at each level in the hierarchy.

E. The Dimension Exchange Method (DEM)

The DEM strategy [15], [17] is similar to the HBM scheme
in that small domains are balanced first and these then combine
to form larger domains until ultimately the entire system is
balanced. This differs from the HBM scheme in that it is a
synchronized approach. The DEM strategy was conceptually
designed for a hypercube system but may be applied to other
topologies with some modifications. In the case of an N
processor hypercube configuration, balancing is performed
iteratively in each of the log N dimensions. All processor
pairs in the first dimension, those processors whose addresses
differ in only the least significant bit, balance the load between
themselves. Next, all processor pairs in the second dimension
balance the load between themselves, and so forth, until each
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(a) (b) (c)

Fig. 5. DEM strategy. All processors balance in order, in each dimension. In
the example shown, a three-dimensional cube of eight processors, balancing
is performed between neighbors in each dimension (a), (b), and (c). Due to
synchronization requirements, the balancing between each pair of nodes must
follow the order shown.

processor has balanced its load with each of its neighbors.
The scheme is illustrated in Fig. 5 for an eight-processor
hypercube. The strategy could be extended to an M x M mesh
topology by “folding” the mesh in each dimension [log M]
times. In this case, processor pairs would no longer be directly
linked to one another and communication costs would be
higher.

Performing the balancing steps in a synchronized manner
ensures that the entire system will achieve a balanced load.
Balancing is initiated by any underloaded processor which has
a load that drops below a preset threshold [(4)],

Lp < Lthreshold- (30)

This processor broadcasts a load balancing request to all other
processors in the system. Global synchronization is particularly
difficult in highly parallel systems where a global broadcast
from a single point may be costly. Large systems equipped
with special broadcast mechanisms may, however, be suited
to this approach. This scheme has theoretically been shown
to outperform a synchronous diffusion approach in terms of
the overhead incurred to reach a uniform distribution from an
unbalanced state [15]. The theoretical analysis does not include
the synchronization overhead to initiate the balancing process.

1) DEM Complexity: The DEM strategy overhead is dis-
tributed uniformly across all processors in the system. Once
synchronized, each processor, in an NN processor system,
is involved in log N balancing operations. Each of these
operations includes a load update message, a load transfer
request message, and a load transfer (which may require
multiple messages). Each processor will incur 2 sends and
1 receive or 1 send and 2 receives depending on whether or
not they are designated to compute the imbalance between the
pair. In any case, the balancing process is evenly distributed
with a total communication overhead, Cj,;,

Ctot = 3N log N(messages). (31)

The communication overhead incurred by each processor is,

C, = 3log N(messages). 32)

F. The Load Update Strategy

An important mechanism in most dynamic load balancing
schemes is the load update strategy. Many dynamic load
balancing strategies, like the ones proposed here, make load
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balancing decisions based on the load levels of a subset of pro-
cessors in the system. This subset may include anywhere from
a single neighbor to all processors in the system. Although the
degree of knowledge may vary from one strategy to another,
the quality of information governs the intelligence of the load
balancing decisions. The quality of information depends on
three primary factors: 1) the accuracy of processor load esti-
mates, 2) the aging of information due to the communication
latency of the interconnection network and the destination of
load information, and finally, 3) the frequency of the load
update messages. The first factor is application dependent and
may involve a tradeoff between the quality of the estimate
and the complexity of the estimation process. For example, a
processor’s queue length is a rough and simple load measure, a
possibly more accurate yet more complex load measure might
distinguish between the types of tasks within a processor’s
queue. The second factor is dependent on machine architecture
and the load balancing strategy. The third factor, regarding the
frequency of update messages, is the focus of the remainder
of this section.

The interval between update messages may be computed
as a function of time or as a function of the load level. If
computed as a function of time, the time intervals most likely
need to be adjusted for different applications. Alternatively,
intervals between updates can be determined by a change in
the load level, independent of the application. The updates
may be sent at constant intervals, AL, of a processor’s load,
L,. In this case, processor p must send on the order of
L, /AL update messages. This strategy would contribute an
error margin of +AL to the accuracy of the load evaluation.
Hence, smaller values of AL yield more accurate information,
but also increase the frequency of update messages. Note also,
however, that while L,, is large (L, > AL) the percentage of
error in a neighbor’s load information, AL/L,, is very small,
but the error percentage increases when L, decreases (100%
when L, =~ AL).

Using a variable update interval, that is computed as a
function of the load level, yields a constant error percentage
in the load information and decreases the number of required
update messages. Let the variable u be defined as the load
update factor, such that updates are sent whenever a load, L,,
increases to (1/u)L,, or drops to uL,. If, for example, u = 1/2
then, a processor must send update messages whenever its load
relative to that sent in its last update message has doubled
or is cut in half. Processor p will send on the order of
log, (L,) update messages. The maximum error margin of
load information will be 1/u of the processor load L,. The
frequency of update messages will increase as the processor
loads decrease and the possibility of a processor becoming
idle increases. Hence, the accuracy of load information does
not degrade as it becomes more critical to the load balancing
process.

The load update factor expresses a tradeoff between the
quality of load information and the overhead to achieve this.
The larger the update factor is, the shorter the update interval
becomes, and consequently, the more current or accurate the
load information. Our results have indicated that the same load
update factor, v = 9/10, is most effective for the SID and
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TABLE |
SUMMARY OF COMPARISON ANALYSIS

Category GM SID RID HBM DEM
Initiation receiver sender receiver designated designated
Balancing Domain variable overlapped overlapped variable variable
Knowledge globalx local local global global
Aging Period O(diameter( V) f(u.K) flu. K) flu, N) constant
Overhead Distribution _uniform uniform uniform nonuniform uniform

Recall, NV is the number of processors,  is the update factor, and A’ is the number of near-neighbors.
* global knowledge of the locations of underloaded processors, but limited knowledge concerning the quantity of the imbalance.

t statistically uniform for a random load distribution.

RID near-neighbor schemes and that u = 1/2 works best for
the HBM scheme. The difference is primarily due to the fact
that the aging of information in the hierarchical scheme is
significant in comparison to the update interval. Therefore,
shorter update intervals only add communication overhead to
the balancing process and sometimes create instability when
out-dated messages arrive.

IV. COMPARISON ANALYSIS

The differences between the five schemes are categorized
into the following areas: sender or receiver initiation of the
balancing, type of balancing domain, degree of knowledge
used in the decision process, aging of information in the
decision process, and overhead distribution and complexity.
This comparison is summarized in Table I.

A. Balancing Initiation

Our results indicate that the receiver initiated diffusion ap-
proach (RID) outperforms the sender initiated approach (SID)
over the entire range of task granularities tested. We attribute
this difference in performance to the following reasons:

1) Implementation. In theory, both approaches should yield
similar results. Practical implementation issues, how-
ever, distinguish these approaches from one another.
In particular, in our implementations, the SID Strategy
triggers balancing operations upon the receipt of load
update messages from neighbors with changing loads.
The RID strategy, receives load update messages from
neighbors as in the SID strategy, but balancing opera-
tions are triggered by changes in the processor’s own
load (i.e., when it drops below a preset threshold).

2) Stability. Both the SID and the RID strategies make
load balancing decisions based on the load status of
their near-neighbors. This load information suffers from
the aging process (discussed in Section IV-D) and can
at times be quite inaccurate. As a consequence, the
SID strategy may transfer an excessive or insufficient
amount of tasks to an “underloaded” neighbor. The RID
strategy, on the other hand, may request an excessive
or insufficient number of tasks from a neighbor, but the
neighbor will never give out more than half of its tasks.
This helps to stabilize the balancing process and reduce
the effects of information aging.

3) Overhead. In minimizing total execution time it is bene-
ficial to spare overloaded processors the burden of load

balancing responsibilities. The extent of the overhead
is dependent on the task granularity, and may become
significant if tasks are small.

These results differ with those achieved in [19], where a
distributed system is simulated using an analytical model.
In [19] the load model assumes a continuous arrival of
new tasks into the system, based on an average arrival rate.
The measure used to evaluate the relative performance of
different load sharing policies is the average service time of a
task. Consequently, their objective of load sharing—assigning
tasks to lightly loaded processors in the system, differs from
our objective of load balancing in which we attempt to balance
processor queues system wide in order to reduce the total job
completion time.

Finally, the Sender and Receiver policies modeled in [19]
differ from those studied here. In their Sender policy when a
new task arrives at an “overloaded” node (a node with more
than T tasks already in service or waiting for service) it probes
other nodes in the system at random. A node is selected if the
transfer of the task to that node would not place the node above
the threshold T'. If no suitable node is located after a fixed
number of probes, the task is processed locally. In the Receiver
policy, a node attempts to replace a task that has completed
processing if there are less than T tasks remaining at that
node. Nodes are probed at random (as in the Sender policy)
until a suitable “overloaded” node (a node whose load exceeds
T) is located. If the number of probes exceeds the predefined
limit the node must wait for another task to complete before
reattempting to initiate a transfer.

The study in [19] concludes that the Receiver Initiated
Policy is preferable to the Sender Initiated Policy at high
system loads when the transfer of tasks under the two strategies
are comparable. This is understandable since in a heavily
loaded system there will be fewer "underloaded" nodes that
are hard to find and a Receiver initiated approach would be
more effective. However, if the cost of a task transfer under the
receiver initiated policy is significantly greater than under the
Sender-initiated policy (due to the added cost of transferring an
executing task?), then the Sender-initiated policy is preferable.

Our load model assumes a fixed number of tasks all present
in the system at initialization time, and performance is mea-
sured as the total time required to complete all tasks. Second,
the distributed system they assume consists of identical nodes
connected by a local area broadcast channel (e.g., an Ethernet).

2In our load model there is no time-sharing of tasks and only nonexecuting
tasks are considered for transfer.
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Hence, communication between any two nodes in the system
is of equal cost, and a random probing of any node for load
balancing purposes as opposed to near-neighbor nodes makes
more sense.

The GM and DEM strategies are also receiver initiated,
but migration decisions are not the sole responsibility of the
receiver. In the DEM scheme, once the balancer is invoked,
migration decisions are made synchronously by designated
processors. The GM scheme is slightly more difficult to
characterize since underloaded processors (receivers) alert the
system of their presence, but no explicit request is made to
any particular overloaded processor (sender). Senders simply
release tasks into the system in the presence of an underloaded
node. Finally, in the HBM scheme migration decisions are
made by designated processors in the system.

B. Balancing Domains

The notion of balancing domains was introduced in Section
I1-B. The use of balancing domains is a means of decentral-
izing the balancing process and reducing its complexity. Two
types of domains exist; overlapping domains which achieve
global balancing through the process of diffusion and variable
domains which change shape and/or members in subsequent
balancing iterations. It has been shown in [11], where they
refer to the balancing domains as buddy sets, that for a
hypercube system using overlapping domains, there exists a
maximum size domain beyond which the balancing process
no longer benefits by using larger domains. The SID and RID
approaches employ overlapping domains while all three other
approaches use variable domains. The balancing domains in
the HBM strategy vary to include a larger subset of processors
at higher levels in the hierarchy. The same is true for the DEM
strategy where each dimension is balanced in turn. Finally,
the GM domains vary according to the location of the nearest
underloaded processor.

C. Degree of Knowledge

The degree of global knowledge, also referred to as in-
formation dependency [3], used in the balancing process is
critical to the accuracy of balancing decisions. The more
knowledge available in the decision process the more effec-
tively the balancer can correct imbalances in the global load
distribution. The SID and RID strategies only make use of a
small degree of knowledge (load levels of A neighbors) in
each balancing decision. Both the HBM and DEM strategies
use only a small degrees of knowledge in each balancing
step, but some additional knowledge is implicitly known. The
HBM strategy is structured in such a way that, while the
technique is asynchronous, lower level domains will balance
themselves before upper level domains when imbalances exist.
Therefore, some knowledge concerning lower level domains’
load distributions may be assumed, increasing the inherent
degree of knowledge used in higher level balancing decisions.
The same is true for the DEM approach, but for different
reasons. Here, the balancing process is explicitly synchronized
forcing different level domains to balance in order. The GM
scheme is perhaps the most complex to evaluate. This scheme

uses a relatively large degree of knowledge, but in an indirect
way via the proximity gradient map. Each processor has certain
global knowledge concerning the locations of underloaded
processors. This knowledge is not very informative, however,
since it does not relate the exact locations of underloaded
processors, nor does it give a quantitative measure of the
imbalances that exist.

D. Aging of Information

The accuracy of the information used by the load balancer is
vital to its effectiveness. Three of the four strategies described
make use of a periodic update strategy (Section III-E). This
update strategy is critical to the accuracy of load information in
terms of the aging period. The aging of information specifically
refers to the length of the delay from the time of load
information determination to the time it is used in making
balancing decisions. This delay is particularly critical when
the load levels are changing at a rapid rate and the load
information is only valid for a short period of time. Aside
from the update interval, u(t), the delay depends both on
the system communication latency as well as on the amount
of information being acquired. For the SID, RID, and HBM
strategies the aging period depends primarily on the length of
the update interval, u(t). For the RID and SID strategies the
aging period is also affected by the number of processors per
domain, O(K). The HBM strategy aging period depends on
the hierarchical organization, including the number of levels in
the hierarchy as well as on the number of processors per branch
(e.g.. O(log N) for a binary-tree organization). The aging
period of the DEM strategy, because it operates synchronously,
is constant, while that of the GM scheme is O(diameter(V)),
where diameter(N ) is the maximum number of hops between
any two processors in the system.

E. Overhead Distribution and Complexity

It is desirable to both minimize the load balancing overhead
as well as to distribute it evenly across all processors in
the system. This eliminates any bottlenecks in the balancing
process and increments in the overhead will not severely im-
pact system performance. Furthermore, the balancing overhead
should be scalable to support large systems. Both the SID and
RID strategies achieve a uniform overhead distribution that is
independent of N, but increases instead as O(K), the number
of neighbors. The RID strategy, however, requires two more
messages per task transfer. The HBM scheme also distributes
the load balancing overhead, but some processors incur a larger
portion than others. For a binary tree organization, the disparity
in the overhead distribution is O(N/log N), or 1 : 3 given
a broadcast mechanism [see (28) and (29)]. Nonetheless, the
average overhead per processor increases as O(log N). For the
DEM strategy some synchronization mechanism is required
once the load balancer is invoked. The overhead of the GM
scheme is difficult to measure. In setting up the gradient map
each processor in the GM scheme may need to update its
proximity O(N) times. Furthermore, in the GM scheme, the
processors in the path of migration incur additional overhead in
forwarding tasks to their destinations. Since these destinations
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TABLE 11
PARAMETERS USED FOR DLB STRATEGY IMPLEMENTATIONS
GM RID SID HBM DEM
LWM = 1 4 Loz £t Liow =1+ Loz L Liow = Lihreshota = 100022} Liow =1
HWM = LWM x 2 by =1 barrn =1 Sarrn =1 barin =1
6= 1 u = % U= % u = %

max_hops = log N Lihreshota =1

Linyeshotda = 1

are not fixed, unless a limit is put on the number of hops a task
is permitted to travel, tasks may continue to migrate through
the system indefinitely.

V. IMPLEMENTATION RESULTS

All five schemes were implemented on an Intel iPSC/2
hypercube. The strategies were first tested and analyzed us-
ing synthetic data consisting of a set of tasks with random
computational requirements executed as busy loops. After
observing the strategies performances at balancing the artificial
application, they were tested with a branch-and-bound Job
Scheduling problem.

The parameters used in implementing the various strategies
are shown in Table II. No effort was made to fine tune these
parameters for each independent run. Reasonable values were
used which tended to produce the best results for the majority
of cases. Improved performance can be obtained for each
of the strategies by adjusting these parameters with a priori
knowledge of the application characteristics. This was not
assumed to be the case.

In implementing the load balancing strategies on the iPSC/2
hypercube, some minor adaptations have been made to some of
the algorithms. For the GM scheme, each task is assigned a hop
counter to limit the distance (and time) that a task is permitted
to travel. This is done to avoid message traffic congestion
and stabilize the migration process. For the DEM strategy,
the balancer is invoked by a global broadcast from any
processor that becomes underloaded. This, however, presents
a problem when more than one processor requests balancing
simultaneously, since request messages may get queued for
receipt while another request is being serviced. Queued re-
quests become obsolete once the balancer is invoked. Hence,
in order to distinguish between new and old requests each
balancing sequence is given an identification number. If a
pending request has an ID number that is less than or equal
to the last request’s ID, it is ignored. Each processor updates
the current request number whenever a balancing operation is
executed.

A. Load Model for the Artificially Generated Tasks

The artificial application is practical for analysis since both
the size and quantity of the tasks being processed can be
predetermined. The total problem load, L, is distributed (with
a uniform random distribution) across all processors in blocks
of size b = wt), where w and ¢ are defined as the task weight
and the loop size, respectively. On a system of N processors
each processor’s load equals hl;, where [; is a random value
in the range, 0 < /; < 2L/hN. The range is selected to yield

TABLE 1il

SAMPLE PARAMETER SET FOR ARTIFICIALLY GENERATED TASKS
grain size task weight loop size total load
g w ¥ L(108 loops)
10 50 20000 8.10
20 100 10000 8.24
50 250 4000 8.12
100 500 2000 7.97
200 1000 1000 8.15
500 2500 400 8.08
1000 5000 200 8.07
a total load of L, represented as,
N-1
L=hY L. (33)

=0

Each processor’s load, hl;, is further partitioned into g tasks
of random sizes (uniform distribution), T

The block size, h = w, is held constant. However, the
ratio, w /v is varied to change the granularity, g, while keeping
the range of 7; the same. Each processors load can be written
as,

g
YRESRT N (34)
J
7j=1

The task sizes, generated randomly (uniform distribution) on
each processor, can be represented by an average task size, 7.
Equation (34) can then be rewritten as,

hl; =~ g7
w’l,/)li N ’(/}g7".

Since I; is a constant, in order to keep the range of 7; constant,
independent of g, a change in the value of g must be counter
balanced by w. Hence, an increase in g results in a directly
proportional increase in w. This in turn results in an inversely
proportional decrease in ¢ due to the relation, h = we), where
h is constant. Also, in order to satisfy (34), the task sizes, 7,
must be scaled to within the range, 0 < 7; < 2wl;/g.

In summary, the block size, h, is chosen to scale the problem
size, and the ratio w/g is held constant to fix the task size
range (smaller range values improve the load estimate) for all
values of g. For example, given the following values, h = 108
and w/g = 5, a sample set of parameters are shown in Table
III. For an average processor load, I; = 25, on an N = 32
processor system, the set of parameters shown in the table
would produce a random load distribution with a statistical
sum of 8 x 10% loops. The actual total loads produced are
included in Table III

(35)
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TABLE 1V
RESULTS FOR ARTIFICIAL LOADS OF GRANULARITY 100 on A 32 Nobe iPSC/2
Run Time(s)
optimal NOBAL DEM RID SID HBM GM
Liow =0 Liow =2 Lrow=a¢ Liow =
1 35 66 47 47 48 61 52 48 53
2 35 74 47 48 48 68 56 48 56
3 31 62 41 42 43 55 49 43 50
4 26 64 34 35 34 40 39 34 40
5 36 62 48 48 48 57 53 48 56
6 34 66 46 46 46 48 49 46 51
7 32 66 43 43 43 53 52 43 50
8 37 68 49 50 50 59 56 51 54
9 29 61 39 39 39 42 42 39 59
10 32 74 43 43 43 51 50 43 49
T 32.8 66.3 43.7 441 44.2 534 49.8 443 51.8
I 1.00 0.00 0.67 0.65 0.65 0.38 0.49 0.65 0.43
Brotal NA. 0 645 2862 2820 3952 4155 6694 5324
speedup 2.02 1.00 1.52 1.50 1.50 1.24 1.33 1.50 1.28

a=14+4 AI-I%LI

T is the average time of the 10 runs measured.

11 is a measure of the load balancing effectiveness.

8i0tal is the average total tasks transferred over the 10 runs measured.

speedup is measured as the improved speedup over the case of no load balancing (NOBAL).

B. Performance Results for the Artificially Generated Tasks

The first performance measure used to compare the ef-
fectiveness of the various load balancing strategies is made
independent of system size and task granularity. All five
load balancing strategies were tested on ten different runs of
uniform random load distributions with a granularity of 100
tasks per processor on a 32 processor iPSC/2. The problem
size was chosen as L = 8.0 x 10® loops, and a loop is
approximately 1.3 ps. Tasks are divided into blocks of 100
loops, and messages are checked every 100 loops (130 us).
The experimental results are presented in Table IV.

Timing measurements were obtained for the RID and SID
strategies using two different Lzow threshold values. These
results indicate that the RID strategy was not very sensitive to
the threshold value while the SID strategy was. For the SID
strategy, the Lzow threshold must be set high since waiting
until “the last minute” before adjusting load imbalances leads
to processor idle time and poor performance. This is attribut-
able to the fundamental difference between the two strategies,
which is that in the RID strategy the underloaded processors
are themselves responsible for obtaining work, while in the
SID strategy underloaded processors must rely on neighbors
to obtain work for them. Consequently, when a processor
becomes underloaded in the RID scheme it will continue to
perform work in the form of load balancing operations, while
in the SID scheme an underloaded processor remains idle until
a neighbor sends it work. A measure used to determine the
effectiveness of the load balancing strategies is the normalized
performance II which takes into account the initial level of
load imbalance as well as the load balancing overhead,

Tnobal — Tbal

Il = onobel = “bal
Tnobal - Top

(36)

where the optimal time, T,,, is the time to complete the work
on a uniprocessor divided by the number of processors in

the multiprocessor system (Tuni/N), Tnobat is the time to
complete the work on a multiprocessor system without load
balancing, and Tyq is the time to complete the work on a
multiprocessor system with load balancing. When the load
balancing time approaches the optimal time (Toar — Top),
then the normalized performance approaches one (II — 1).
If the load balancing is poor and does not improve much
over the case without load balancing (Thai — Thnobat) then
the normalized performance approaches zero (II — 0).

An average II value was computed for each load balanc-
ing strategy over the ten runs. This measure is included in
Table 1V. The DEM, RID, and HBM strategies all performed
comparably, while the SID and GM strategies performed less
effectively. Note, however, that although the DEM, RID,
and HBM strategies yielded good performance, the number
of task transfers enacted to achieve the load balance varied
dramatically. The HBM required 10 times more transfers than
the DEM strategy. This variation has a significant impact on
performance when the granularity of tasks is finer and many
more transfers are required. All strategies, however, improved
the speedup over the case with no load balancing (see Table
V).

The effect of system size and task granularity on the
performance of each DLB strategy for the artificial data
have been investigated. A graph of speedup versus system
size is shown in Fig. 6. Each point in the graph represents
the mean value taken over ten different uniform random
load distributions. The problem size was scaled to match
the number of processors in the system, L = 2.5 X 107N
loops. As before, tasks are divided into blocks of 100 loops,
and messages are checked every 100 loops (130 ps). The
granularity of the problem was g = 100 tasks per processor.

The random load distributions affect the total load and the
load imbalance for different size systems, and consequently
the optimal speedup attainable. The GM and SID strategies
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Fig. 6. Performance of different size systems at executing artificially gener-
ated random loads, with a granularity of 100 tasks per processor. The problem
size is scaled to match the system size, and the performance is measured in
terms of speedup over the case where no load balancing is used.
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Fig. 7. Performance of a 32 processor system at executing different grain
sizes of artificially generated random loads. Performance is measured in terms
of speedup over the case where no load balancing is used.

were ineffective for small system sizes, but improved as the
number of processors increased. From the graph we can infer
an asymptotic trend in which the performance of the SID and
GM strategies approach that of the other strategies for very
large systems.

A graph of speedup versus granularity (tasks per processor)
for a 32 processor iPSC/2 is shown in Fig. 7. Once again, each
point in the graph represents the mean value taken over ten
different random load distributions. The granularities selected,
correspond to those shown in Table III. The total load for
each individual data set was chosen to be ~ 8 x 108 loops.
An analysis of the results indicated that between 20 and 25%
of the processing time was spent on load balancing. Since the
optimal speedup attainable is 2, this indicates that the balancers
are actually achieving near optimal load distributions, but the
performance is deteriorated by the load balancing overhead.

From the graph in Fig. 7, it is evident that the DEM strategy
outperforms all other strategies. This is expected since the size
of the system being used is relatively small (32 processors) and
the synchronization overhead is small. All strategies perform

the best for the midrange of granularities, specifically when
g = 100. Smaller grains are less efficient to transfer (only one
task is transferred per message), and larger grains make it more
difficult to load balance since tasks cannot be partitioned. The
HBM strategy’s performance degrades for small granularities
due to the aging of information and the instability of the
task migration protocol. Out-dated load update messages may
arrive when the task execution time is small relative to the
aging period of load information. The GM strategy deteriorates
for finer granularities, since there is no measure of the quantity
of the imbalance between processors and a fixed number of
tasks are transferred in all cases. For this particular problem,
the amount of load transferred when g = 100 is best suited
to the imbalance situation that exists. Finer tuning of the load
transfer amount as well as the HWM and LWM thresholds of
the GM strategy may improve the performance for each case.

The RID strategy outperforms its counterpart, the SID
strategy. This is attributable to several reasons: 1) subtle
differences in the strategy implementations, particularly how
the RID triggers load balancing operation, 2) although the
balancing overhead is slightly greater for the RID strategy,
the underloaded, rather than the overloaded, processors are
burdened with the overhead (this can be significant when the
task size is small), and 3) the added overhead, due to the
additional messages in the migration protocol, improves the
stability of the balancing process. The stability is improved
since underloaded processors only get as many tasks as they
request, and overloaded processors have a final determina-
tion in how many tasks they choose to send. Furthermore,
underloaded processors do not send out more requests until
all requests from previous iterations are answered.

C. The Branch-and-Bound Job Scheduling Application

Branch-and-bound (b&b) is a well-known technique for
solving combinatorial search problems. The basic scheme is
to reduce the problem search space by dynamically pruning
unsearched areas which cannot yield better results than solu-
tions already found. Branching is performed by recursively
partitioning the problem into subproblems. A lower bound
is computed for each subproblem to determine whether or
not further exploration of the subproblem is worthwhile.
Branching is typically performed using either a depth-first or
best-first search approach.

A b&b algorithm was implemented to solve the Job Schedul-
ing Problem [20]. The Job Scheduling problem is described as
follows: Given a set of .J jobs to be run on a single processor,
each with a processing time ¢; and a due date d;, an optimal
schedule is sought which minimizes the total tardiness of the
set. The tardiness is expressed as

T =
J

(max (0, X; — d;))
1

J

37

where X is the completion time of job j. No credit or penalty
is given to jobs completed before their deadlines.

A sequential b&b approach to solving the Job Scheduling

problem is performed by searching the solution space (depth-

first or best-first) and maintaining a record of the partial
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TABLE V
PARAMETER SET FOR BRANCH-AND-BOUND PROBLEM OF DIMENSION n = 11
task dimension task size number of tasks

m m! 5

6 720 56440

7 5040 7920

8 40320 990

9 362880 110

tardinesses of all partially completed schedules (branches).
The minimum tardiness of all fully completed schedules is
also maintained throughout the search. If a branch’s partial
tardiness exceeds the recorded minimum tardiness, the branch
may be disregarded from further consideration. The pruning
of branches can greatly reduce the search space.

The parallel b&b approach that we have implemented to
solve the Job Scheduling Problem is a straightforward paral-
lelization of the sequential approach with a minor modification.
On an N processor system, the search space is divided into N
parts and each processor explores its own branch. However,
in order to make a fair comparison between the different
load balancing strategies, a predetermined tardiness threshold
is specified and all solutions satisfying this requirement are
found. This modification ensures that, regardless of which
strategy is used, the number of nodes searched remains con-
stant. Without this modification, the order in which branches
are searched (affected by the load balancing strategy) may
alter the total problem size since early detection of a good
solution can quickly prune subsequent branches. A similar
approach was used by Rao and Kumar in their analysis of
parallel depth-first search [21], [22].

The load distribution for the b&b Job Scheduling Problem
can quickly become unbalanced since certain branches may
be pruned quickly while others will be searched exhaustively.
Consequently, to perform efficiently, the load must be bal-
anced dynamically during program execution.

Our primary focus in implementing the b&b algorithm
on a hypercube is on the dynamic load balancing process.
The b&b problem produces tasks (branches) of varying load
requirements that are easily transferred between processors.
Hence, the application fits the load model assumptions made
earlier. The problem search space for a b&b problem of n
dimensions can be partitioned into a set of s = n!/m! tasks,
of size m! search steps, where n > m > 1. A search step takes
on the order of 150 ys to complete and messages are checked
after each search step. The decomposition of a problem of
dimension 11 into tasks of sizes m! = 6!.7!.8Land 9! is
summarized in Table V.

The results obtained for the b&b application have been
plotted in Fig. 8. Each point in the graph represents the
mean value taken over five different schedule requircments
where n = 11. The granularities tested correspond to the
parameters shown in Table V. In general, the results for the
b&b application exhibit the same pattern as the graph obtained
for the artificial tasks. However, the potential load imbalance
for the b&b application is much greater than that of the
artificial application, depending on how carly task branches
are pruned. The DEM and RID strategies outperformed all

22
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Fig. 8. Performance of a 32 processor system at executing different grain
sizes of a branch and bound Job Scheduling Problem of dimension 11.
Performance is measured over the case where no load balancing is used.

others. The HBM scheme achieved comparable performance
for coarse granularity, but had complications with message
overflows for the finer grain sizes. The grain sizes span a
larger range than the artificial tasks do. The performance of
all strategies suffers for very fine grain sizes. This is due
to the fact that each task is transferred independently, and
the communication cost of transferring the small tasks is
comparable to its computation time. A block transfer approach
would enhance the performance.

VI. CONCLUSION

Five dynamic load balancing strategies designed to support
highly parallel systems have been presented and compared.
The different strategies exemplify some of the main issues and
tradeoffs that exist in dynamic load balancing, specifically in
reference to highly parallel systems. Two major issues, that
of load balancing overhead and the degree of knowledge used
in balancing decisions were discussed. Also considered were,
the concept of balancing domains, the aging of information,
and the form of balancing initiation. Of the five strategies
proposed, the DEM strategy tended to outperform the rest for
all granularities. The efficiency of the DEM and the HBM
strategies, depends heavily on the system interconnection
topology. The hypercube topology is ideally suited to match
these two strategies communication dependencies. Further-
more, the system sizes tested were very small in the context of
highly parallel systems. The overhead of synchronization costs
[scale as O(N log N)] for the DEM approach and the aging
period and nonuniform overhead distributions of the HBM
approach may deteriorate their performance when the number
of processors is large (1000 processors). The RID strategy, on
the other hand, is easily ported to simpler topologies, and can
scale gracefully for larger systems. Finally, for a wider variety
of applications, exhibiting local communication dependencies
between tasks, the RID scheme is able to maintain task
locality. Therefore, since its performance was shown to be
comparable to those of the DEM and HBM approaches, the
RID strategy may be best suited for a broader range of systems
supporting a large variety of applications.
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