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Abstract. This paper presents a fault tolerant extension to our CAN-
CORBA design. The CAN-CORBA is an environment specific CORBA
we designed for distributed embedded control systems built on the CAN
bus. We extend it for fault tolerance by adopting passive and active repli-
cation strategies mandated by the OMG fault tolerant CORBA draft
standard. To reduce resource demands of these fault tolerance features,
we adopt a state-less passive replication policy and show that it is suf-
ficient for embedded real-time control applications. We give an example
CORBA program with its IDL definition to demonstrate the utility of our
fault tolerant CAN-CORBA. The newly extended CAN-CORBA clearly
reveals that it is feasible to use fault tolerant CORBA in developing dis-
tributed embedded systems on real-time networks with severe resource
limitations.

1 Introduction

Many embedded system applications require a high degree of fault tolerance
for their responsive and continuous operations since they often run in a harsh
environment and possess stringent timing constraints. Unfortunately, writing
programs for embedded systems, even without fault tolerant features, is already
a seriously complicated task. Topping off fault tolerance requirements easily lead
embedded system developers to the infamous embedded software crisis.
Recently, in [9] and [10], we proposed a new embedded CORBA design ded-
icated for CAN-based distributed control systems as an effort to provide a solu-
tion to the complexity problem of embedded software systems. We named this
new CORBA design CAN-CORBA and demonstrated that it would be feasible to
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use it in developing distributed embedded systems on real-time networks. There
were two major difficulties we faced during the design of CAN-CORBA. First,
the resource demands of the original CORBA implementation easily exceeded the
1 Mbps network bandwidth of the CAN bus. This required many optimizations
in the transport protocol and inter-ORB protocol design for the new CORBA.
Second, there was a crucial distinction in communication models between the
conventional CORBA and typical control systems: connection-oriented vs. group
communications. Our CAN-CORBA was designed to solve both problems.

In this paper, we extend our original design of CAN-CORBA for fault toler-
ance since it is one of inevitable requirements imposed on mission critical embed-
ded real-time systems. Recently, the OMG (Object Management Group) made
a request for a proposal to define a specification of fault tolerant CORBA [4].
At the time of submitting this paper, it was in the process of voting to adopt a
standard fault tolerant CORBA after it had received the joint revised submis-
sion in December 1999 [6]. This submission was finally approved by the board
of directors in March 2000.

As mandated by the draft specification, our fault tolerant schemes are based
on object replication. For our CAN-CORBA, we adopt two replication strategies
mandated by the draft fault tolerant CORBA specification. These are passive
replication and active replication. Since the straightforward application of these
strategies leads to excessive resource demands in embedded real-time systems,
we propose a passive replication policy that does not require message logging and
object state transfers. We show that such a state-less passive replication strategy
is sufficient for applications running on top of our CAN-CORBA. We also show
that active replication will be implemented in a straightforward manner in our
CAN-CORBA due to the reliable broadcast bus of the CAN. To demonstrate
the utility of our fault tolerance schemes, we give an example CORBA program
with an IDL definition.

The remainder of the paper is organized as follows. Section 2 gives the target
system hardware model and the publisher/subscriber communication schemes
that our replication mechanisms are based on. In Section 3 we introduce the
general replication strategies for fault tolerance and then present what are pecu-
liar to the CAN-based applications and the CAN-CORBA transport protocols.
Based on the identified peculiarities, we present the various replication mecha-
nisms under the conjoiner-based CAN-CORBA transport protocols in Section 4.
Section 5 presents an example program that demonstrates the usage of our ex-
tended transport protocol that includes fault tolerance in CAN-CORBA. Finally,
Section 6 concludes this paper.

1.1 Related Work

Two issues are essential in designing a fault tolerant system: fault detection and
replication management. Rajkumar and Gagliardi proposed a publisher/subscriber
model for distributed real-time systems in [13] and developed a fault-tolerant
extension to their publisher/subscriber model in [12]. Specifically, they adopted
Cristian’s periodic broadcast membership protocol [2] for fault detection. They
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assumed that the underlying network was built on top of a point-to-point trans-
port layer. As a result, one-to-many group communication was realized by send-
ing message copies to multiple subscribers via a number of point-to-point connec-
tions. This assumption may lead to a performance problem since it is inefficient to
simply send periodic “check” messages to detect failures — especially where many
publishers and subscribers exist. Fetzer [3] devised an efficient mechanism for fail
awareness under the publisher/subscriber communication paradigm. Since CAN
provides a reliable broadcast medium, fault detection is hardly an issue in our
work. It can be achieved through a simple timeout mechanism.

Synchronizing object states among replicas is one of difficult tasks in imple-
menting a fault tolerant CORBA. Obviously, it is a computationally expensive
operation and seriously complicates the resultant system. Unfortunately, the
OMG fault tolerant CORBA RFP [4] mandates such a strong consistency and
the joint revised submission [6] to the RFP proposes an ORB-level solution by
notions of ReplicationManager, PropertyManager, and ObjectGroupManager,
to name a few. On the other hand, the minimumCORBA [5] was proposed to
remove dynamic facilities for serving requests and for creating, activating, passi-
vating and interrogating objects. In embedded system design practice, decisions
on object creation and resource allocation are usually made at design time. More-
over, as will be explicated in Section 3.2, and claimed by [12], the CAN-based
embedded application does not require strong consistency among object repli-
cas. Thus, we also excludes unncessary state management and dynamic object
management features.

2 System Model

CAN-CORBA is designed to operate on a distributed embedded system built on
the CAN bus. In this section, we present the target system hardware model and
CAN-CORBA configuration to help readers understand the characteristics and
limitations of the underlying system platform, before delving into the details of
fault tolerance in our new CAN-CORBA design.

2.1 Target System Hardware Model

We use the same target hardware model as in [9] and [10] since we extend our
prior implementation of CAN-CORBA to include fault tolerance. The target
hardware consists of a number of function control units (FCU) interconnected
by embedded control networks (ECN). As an example of the model, Figure 1
shows the electronic control system of a passenger vehicle. Each FCU, possessing
one or more microcontrollers and microprocessors, conducts a dedicated control
mission by interfacing sensors and actuators and executing prescribed control
algorithms. Depending on configuration, an FCU works as a data producer, a
consumer, or both.

As shown in Figure 1, embedded control networks (ECN) connect FCUs
through inexpensive bus adaptors. Such ECNs are often required to provide
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Fig. 1. Example distributed embedded control system: Passenger vehicle control sys-
tem.

real-time message delivery services and subject to very stringent operational and
functional constraints. In this work, we have chosen the CAN [7] as our embed-
ded control network substrate since it is an internationally accepted industrial
standard satisfying such constraints.

The CAN standard specifies physical and data link layer protocols in the
OSI reference model [1]. It is well suited for real-time communication since it
is capable of bounding message transfer latencies via predictable, priority-based
bus arbitration. A CAN message is composed of identifier, data, error, acknowl-
edgment, and CRC fields. The identifier field consists of 11 bits in CAN 2.0A
or 29 bits in 2.0B and the data field can grow up to eight bytes. When a CAN
network adaptor transmits a message, it first transmits the identifier followed by
the data. The identifier of a message serves as a priority, and a higher priority
message always beats a lower priority one.

The CAN provides a unique addressing scheme, known as subject-based ad-
dressing [11]. In the CAN, a message put into the network does not contain its
destination address. Instead, it contains a subject tag — a predefined bit pattern
in the message identifier which serves as a hint about its data content. A re-
ceiver node can program its CAN bus adaptor to accept only a specific subset of
messages that carry a specific identifier pattern with them. This filtering mech-
anism is made possible via a mask register and a set of comparison registers on
a CAN interface chip. This subject-based addressing scheme is a key underlying
mechanism for the communication models of our CAN-CORBA.

2.2 CAN-CORBA Communication Channels

CAN-CORBA offers a subscription-based, anonymous group communication
scheme that is often referred to as “blindcast” or as a publisher/subscriber
scheme [13], [8]. In this scheme, a communication session starts when a data
producer announces a predefined invocation channel. An invocation channel is
a virtual broadcast channel from publishers to a group of subscribers. Data
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Fig. 2. Comparison between two CORBA configurations.

consumers can subscribe to an announced invocation channel. In this announce-
ment /subscription process, neither a publisher nor a subscriber has to know
each other. This anonymity allows for easy reconfiguration of control systems.
In CAN-CORBA, an invocation channel is uniquely identified with a CAN iden-
tifier, and maintained by the conjoiner as described in Section 2.4.
CAN-CORBA also provides point-to-point communication primitives for in-
teroperability with other standard CORBA implementations. Since the CAN
bus is a broadcast medium, the publisher/subscriber model is more natural and
efficient than the point-to-point model. Moreover, fault tolerance is better ser-
viced by a group communication scheme. Readers are referred to our previous

work in [10] for more details on the connection oriented communications in CAN-
CORBA.

2.3 CAN-CORBA Configuration

The proposed CAN-based CORBA design stems from the standard CORBA and
possesses most of essential components of it. Figure 2 illustrates layer-to-layer
comparison between the standard CORBA and the proposed one. Specifically,
Figure 2 (b) shows our CAN-CORBA design.

We summarize the noticeable features of our CAN-CORBA.

— Group object reference: An object reference in CORBA refers to a single
object. It is internally translated into an interoperable object reference (IOR)
denoting a communication end-point the object resides on. In CAN-CORBA,
an object reference may refer to a group of receiver objects. An intermediary
object named a conjoiner is responsible for managing object groups and
implementing the internal representation of their references.
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Fig. 3. Protocol header format using CAN identifier structure.

— CAN-based transport protocol: A new transport protocol is designed
to support group communication in CORBA. In this protocol, a sender is
totally unaware of its receivers and simply sends out messages via its own
communication port.

— Publisher/subscriber scheme: A new communication scheme for the
publisher/consumer model is also designed on top of the transport proto-
col. This scheme relies on an abstraction named an invocation channel. It
denotes a virtual communication channel which connects a group of com-
munication ports and a group of receivers. Since each port is owned by a
publisher, this scheme supports the one-way, many-to-many communication
model. In this scheme, a conjoiner object takes care of group management,
dynamic channel binding, and address translation. An invocation channel is
uniquely identified as a channel tag in an IDL program.

— Compact common data representation (CCDR): Common data rep-
resentation is a syntax which specifies how IDL data types are represented in
CORBA messages. In CDR, method invocations often take up tens of bytes
in messages. Since a CAN message has only an eight-byte payload, a method
invocation may well trigger a large number of CAN message transfers. To
deal with this problem, we define the compact CDR. It exploits packed data
encoding which avoids byte padding for data alignment, and introduces new
data types for variable length integers to encode four-byte integers in a dense
form.

— Embedded inter-ORB protocol (EIOP): In addition to CCDR, we cus-
tomize GIOP by simplifying messages types and reducing the size of the IOP
headers of messages.
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2.4 Channel Binding Protocol for Subscription-based
Communication

Figure 3 shows the protocol header format. We divide the CAN identifier struc-
ture into three sub-fields: a protocol ID (Proto), a transmitting node address
(TxNode), and a port number (TxPort). They respectively occupy two, five and
four bits amounting to 11. The Proto field denotes an upper layer protocol
identifier. The data field following the identifier in a CAN message is format-
ted according to the upper layer protocol identifier denoted by Proto. In the
CAN, a message identifier with a smaller value gets a higher priority during bus
arbitration.

The TxNode field is the address of the transmitting node. In our design, one
can simultaneously connect up to 32 distinguishable nodes with the CAN bus
under a given upper layer protocol. The TxPort field represents a port number
which is local to a particular transmitting node. Since TxNode serves as a domain
name which is globally identifiable all across the network, TxNode and TxPort
collectively make a global port identifier. This allows ports in distinct nodes to
have the same port number and helps increase modularity in software design and
maintenance. As the TxPort field supports the maximum of 16 local ports on
each node, up to 512 global ports coexist in the network under a specific upper
layer protocol.

Our channel binding protocol relies on an intermediary object we name a
conjoiner. It resides on a CAN node whose node identifier is known in advance to
every publisher and every subscriber in the system. It must be started right after
network initialization and operational during the entire system service period.

The conjoiner maintains a global binding database where each invocation
channel has a corresponding entry which is announced and registered by a pub-
lisher. Figure 4 illustrates the conjoiner-based publisher/subscriber framework
and the global binding database. As shown in the figure, an entry in the global
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binding database is a quadruple consisting of a channel tag, an OMG IDL identi-
fier, TxNode and TxPort. The channel tag is a unique symbolic name associated
with each invocation channel. It is statically defined by programmers when they
write the application code. Both publishers and subscribers use it as a search
key in the global binding database later on. The OMG IDL interface identifier is
a unique identifier associated with each IDL interface in the system. The OMG
IDL compiler generates IDL interface identifiers. The CORBA run-time system
uses these identifiers to perform type checking upon every method invocation.
This ensures strong type safety as required by the CORBA standard. The chan-
nel tag and the interface ID together work as a unique name for each invocation
channel. It is programmers’ responsibility to define a system-wide unique name
for an invocation channel.

The conjoiner exchanges messages with a publisher for channel establish-
ment and with a subscriber for channel subscription. When a publisher wants
to get attached to an invocation channel, it sends a registration message to the
conjoiner. Similarly, a subscriber sends a message to the conjoiner, requesting
subscription to an invocation channel. If the conjoiner finds an matching entry
for the requested invocation channel in the global binding database, it provides
the subscriber with the corresponding binding information. Note that subscribers
may be asynchronously informed of changes in its subscribed invocation channel
as a publisher is attached to, or detached from the channel. A local binding
agent denoted by an oval inside Subscriber S node in Figure 4 takes care of
such updates.

Note the conjoiner should be able to accept messages from any CAN nodes
in the system. Thus, we reserve the local port number (TxPort) 11115 for this
purpose under the network management protocol. As shown in Figure 4, all
messages sent to the conjoiner use this local port. Consequently, the conjoiner
unconditionally accepts all messages with this port number when Proto is 11,.
On the other hand, other CAN nodes can accept messages from the conjoiner in
a straightforward way since the TxNode and TxPort of the conjoiner is known a
PTioTI.

The data field of a binding message carries full binding information or an ac-
tual query. Specifically, a publisher’s registration message contains all necessary
information to construct a database entry such as a channel tag, an OMG IDL
interface ID, and a global port number. Using this information, the conjoiner ei-
ther creates an entry or modifies one if it exists. A subscriber’s request message
contains a channel tag and an IDL interface identifier for an invocation channel.
On successful retrieval of one or more entries from the binding database, the
conjoiner sends a reply message containing information on these entries. These
entries are stored into the local binding database of the subscriber.

3 Replication Strategies for Fault Tolerance

In general, fault tolerance is achieved through replication and the basic unit
of replication is an individual object. Since non-fault tolerant application is re-
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garded as a set of objects posessing single replicas in the program, the definition
of fault tolerance may include that of non-fault tolerance, and it has an impor-
tant subtlety since objects are interoperable with each other whether or not they
are replicated.

We begin by introducing two general replication strategies that are mandated
by the OMG fault tolerant CORBA draft standard [4], and explicate why state-
less passive replication is sufficient for CAN-based applications.

3.1 General Replication Strategies

Replication is made to ensure continuous operation of a particular object. De-
pending on backing-up styles at the time of fault, replication strategy is classified
as passive and active replication.

In passive replication, only one replica for a given object, which is called a
primary replica, executes designated operations, and all others merely wait for
an activating signal to be delivered when a fault is detected. According to the
creation time of replicas and the length of a message log, it is further classified
as cold and warm passive replication.

In cold passive replication, non-primary replicas are not created during nor-
mal operation, and method invocations and responses are recorded in a message
log. When a fault is detected, a recovery service object is initiated and performs
a given recovery action using the recorded message log. While this policy im-
poses no additional memory overhead as long as everything goes well, it requires
long recovery time if a fault really occurs.

To shorten the recovery time of cold passive replication, all replicas can be
created before faults occur, and the current state of a primary replica is peri-
odically transferred to the others. The state transfer is made through multicast
which must be reliable (i.e. not allowed to be lost) and totally ordered with re-
spect to the time of state changes. In the event of a fault, one of the non-primary
replicas can be substituted for the faulty primary by recovering only the state
since it has been recently transferred. Thus, the recovery time can be reduced.
It is called warm passive replication.

Note that the length of a message log determines the temperature of passive
replication. If it is infinite, a message log should be recorded indefinitely until a
fault occurs, thus no need to even create the non-primary replicas until a fault is
detected. This is the cold end in the spectrum. If the length is zero, it means that
no state is recorded for recovery but immediately transferred to the non-primary
replicas via reliable and totally ordered multicast protocol. This is the hot end
in the spectrum.

In active replication, when an object invokes a replicated service, all replicas
service the request and actively reply with their own results without concerning
the faults of other replicas. A client object collects results from all the replicas
before making a final decision. Then it can choose one with majority voting, or
without majority voting possibly based on the precedence among replicas.



10 Gwangil Jeon et al.

3.2 State-less Replication Mechanism In CAN-CORBA

In our fault tolerant CAN-CORBA, the state of a primary replica need not be
preserved or transferred to non-primary replicas. This allows us to replace the
failed primary replica by one of non-primary replicas without transfering the
state of the failed primary replica. This argument can be justified in the context
of control systems theory. In general, control performance is seriously affected by
the freshness of sampled data. Thus, when an embedded control system detects
a run-time fault, it is more desirable for the system to start a new sampling
period and produce actuation commands using recent data than to attempt to
resume the interrupted sampling period using the restored state. As an example,
consider a vehicle control system. If an object in an engine control unit does not
receive oxygen-level data priodically published by an oxygen sensor, it may use
data it received in the previous period. However, if the object cannot retrieve
the previous state, possibly because it has been restarted due to a fault, it can
re-establish the state using the data that are constantly provided from various
publishers. As a matter of fact, it is recovered within a couple of minutes. Fuel
efficiency may be lowered temporarily only for the adjusting period.

As a result, it is unnecessary to differentiate cold and warm passive replica-
tion for the fault tolerant CAN-CORBA. We thus employ a state-less passive
replication policy. It is not hot passive since there is no state transfer between
replicas during execution. It is not cold passive, either since a faulty primary is
not substituted with a stand-by during recovery.

In the next section, we will present the replication strategies that are mean-
ingful to our CAN-based CORBA system, and show the design of the fault
tolerant CAN-CORBA using the conjoiner-based publisher/subscriber commu-
nication protocol.

4 Replicating CAN-CORBA Objects

As CAN-CORBA adopts the publisher/subscriber communication model for dis-
tributed inter process communication, we have three different entities for repli-
cation: publishers, subscribers and a conjoiner. Among them, publishers and
subscribers are general CORBA objects and the conjoiner is a pseudo CORBA
object that was deliberately invented to realize the publisher/subscriber com-
munication model. We present how the replication strategies discussed in the
previous section are applied to CORBA objects in our CAN-CORBA. We also
show how to distribute and replicate a conjoiner in order to eliminate the single
point of failure induced by the conjoiner.

4.1 Passive Replication

Figure 5 illustrates two configurations of a publisher/subscriber connection, each
of which respectively denotes a situation before a fault and after its recovery us-
ing our state-less passive replication. In the figure, there is one publisher P and
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Fig. 5. Passive replication of publisher objects.

two subscribers S and 7" and their replicas are denoted by numbered subscripts.
In our fault tolerant CAN-CORBA design, a publisher/subscriber connection is
composed of dual channels: primary and backup channels. They are denoted by
PCH and BCH, respectively. A primary channel (PCH) is used for normal com-
munications while a backup channel (BCH) is used by non-primary publishers
to monitor the state of the primary.

The publisher P has three replicas P, P>, and Ps for the invocation channel
PCH where P; is the primary replica at the moment. In passive replication,
faults are detected using timeouts. The primary replica broadcasts sensor data
via PCH and heartbeat messages via BCH. Non-primary replicas do not publish
anything and only monitor heartbeat messages. Thus, P, and Pj3 are attached to
BCH as the subscribers of the heartbeat messages. When a non-primary replica
detects a fault through timeout, it requests the conjoiner to switch the channels.

The invocation channels after channel switching are shown in Figure 5 (b).
Failed publisher P; is switched to backup channel BCH as a subscriber to Ps.
P> becomes a new primary by attaching itself to both PCH and BCH as a
publisher. Thus, all entries of {TxNode(P;), TxPort(P;)} must be replaced with
{TxNode(Pz), TxPort(P,)} in the global binding table. Becoming a non-primary
replica is an autonomous operation performed by a failed primary replica. If
Py’s fault is so fatal that it cannot update its local binding database, then it is
eliminated from the application.

The following steps illustrate a scenario when P; misses the time to publish
a heartbeat message.

1
2
3
4

Py announces its registration to PCH and BCH.
S and T request subscription to PCH.
P, and P; request subscription to BCH.

(1)
(2)
®3)
(4) P, periodically publishes messages, S and T keep listening to PCH, and P,
and P; keep monitoring P;.

(5) P, (or P3 or both) detects a timeout and requests channel switching to the

conjoiner.
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Fig. 6. Passive replication for subscriber objects.

(6) The conjoiner decides the next primary. It broadcasts the newly modi-
fied binding information which is a quadruple of (PCH, primary interface,
TxNode(P,), TxPort(P,)). Upon receiving it, objects pertaining to the in-
vocation channel performs the following tasks, respectively.

— Subscribers S and T update their local binding databases. They have an
entry of (PCH, primary interface, TxNode(P,), TxPort(F2)).

— P, and P, switch the roles between primary and non-primary replicas. P;
updates its local binding database by a quadruple of (BCH, backup in-
terface, TxNode(P,), TxPort(P,)). If P; dies completely, it is discarded.
P; will not be revived at all.

— P; updates its local binding database. The resulting entry is (BCH,
backup interface, TxNode(P,), and TxPort(Ps).

(7) Step (6) completes channel switching. P» becomes a new primary and now
starts to publish.

As a final note, there are several possibilities for the conjoiner to select the
next primary among non-primary replicas. First, the conjoiner chooses in an
FCFS fashion. When a fault is detected, many non-primary replicas may send
publication requests to the conjoiner. The conjoiner knows the replicated set of
publishers a priori. It takes the message that comes first and ignores all others.
Second, the order is specified by an application programmer, for example, in a
circular fashion using replica identifers. More generally, a selection function may
be given in an IDL definition by a programmer.

Subscribers are replicated in a similar manner except that the primary sub-
scriber periodically emits an “I am alive” signal to its fellow non-primary replicas.
A primary publisher need not send this extra signal since messages periodically
published can be used for this purpose. Figure 6 illustrates subscriber repli-
cation. The primary subscriber plays a role of a publisher to the non-primary
subscribers. When the primary subscriber S; is failed and S> is substituted for
S1, the whole process is presented as follows.
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Fig. 7. Active replication for (a) publishers and (b) subscribers.

S1 requests its subscription to BCH.

P and () announces their registration to PCH.

Ss and S3 request subscription to BCH.

S1 keeps subscribing to P and @), sending “I am alive” message via BCH,
and S, and S3 keep monitoring S;.

Sy (or S3 or both) detects timeout and requests channel switching to the
conjoiner.

The conjoiner decides who is a new primary. The conjoiner broadcasts the
newly modified binding information which is a quadruple of (BCH, backup
interface, TxNode(S2), TxPort(S2)). The entry of (BCH, backup interface,
TxNode(S;), TxPort(S1)) is eliminated because \S; is no longer a publisher of
“T am alive” message. Upon receiving it, objects pertaining to the invocation
channel performs the following tasks respectively.

— Publishers P and @ are not necessary to be aware of the change.

— 51 and Sy switch the roles. S; and S» must update their local binding
databases by sending queries with {BCH, primary interface}, {PCH,
primary interface}, respectively, in order to switch the channels.

— S3 updates its local binding database with an entry of (BCH, backup
interface, TxNode(S2), TxPort(S2)).

Step (6) completes channel switching. S is substituted for S; and now starts
to subscribe.

4.2 Active Replication

In active replication for publishers, a subscriber must subscribe to one and each
of replicated publishers, as illustrated in Figure 7 (a) where S and T subscribe to
Py,---, P,. Subscribers have a responsibility to multiplex all data from replicated
publishers. A subscriber has freedom to adopt a multiplexing policy. It may use
majority voting to tolerate commission faults that are semantically incorrect
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data sent by publishers. Or it may serve data on an FCFS basis. In either case,
a pertinent, voting logic should be included in subscribers.

For subscribers that are actively replicated, an external voter object must
be created. Each replicated subscriber publishes its decision to the voter, and
the voter finalizes the decision. This is illustrated in Figure 7 (b). N-version
programming can be implemented in this way.

4.3 Mixed Replication

It is natural to have mixed replication in an application. For example, it is
possible that an actively replicated subscriber listens to a passively replicated
publisher.

In our model, “publishers” act as data producers and “subscribers” as data
consumers and an object can be a publisher and a consumer at the same time.
When an object is replicated, this is done through manipulating invocation chan-
nels rather than modifying an entire object module. In a CAN-CORBA applica-
tion, there are specific code segments that handle invocation channels. Structural
changes are made on those code segments to specify replication strategies as will
be illustrated in Section 5. Due to the regularity of replicated code structures,
an automatic source-level translation scheme can be employed.

4.4 Replicated and Distributed Conjoiner

The conjoiner is an important system resource that takes care of channel bind-
ing and services channel switching requests. It also maintains a global binding
database. In our original CAN-CORBA design, there is only one instance of a
conjoiner, which poses serious reliability and performance problems.

To eliminate the single point of failure introduced by a centralized single
conjoiner, the binding database is replicated. As a result, each binding entry is
stored at more than two distinct locations. The conjoiner is actively replicated so
that any of the replicated conjoiners can deliver correct binding information to
its clients. Data consistency among replicated global binding databases is easily
maintained using the reliable broadcast CAN bus.

To mitigate performance degradation due to a large number of binding and
switching channel requests, the global binding database is distributed or frag-
mented. To efficiently service publisher announcement requests, each conjoiner
replica inserts the binding entry into its database fragment only in its own turn.
In this way, the number of entries among distributed conjoiners is balanced.
When a subscription request is made, conjoiner replicas need to search only
global binding database fragments and thus shorten the response time.

Recall that the presence of the conjoiner is known to all CAN nodes by
unique TxNode and TxPort identifiers. Having multiple conjoiners, each conjoiner
replica should have a unique TxNode assignment. On the other hand, any two or
more conjoiner replicas that share the same disjoint subset of the global binding
database should share the TxPort as well.
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Suppose there are two disjoint sets of the binding database with four repli-
cated conjoiners. The database has two fragments, db1, and db2. The two pairs
of conjoiners (C1, C2) and (Cs3, C4) have dbl and db2, respectively. We reserve
two sets of local port number 11115 and 1110; in this case. Roughly speaking,
the performance is doubled, and the probability of the conjoiner failure falls fifty
percent.

5 Example Programs

// IDL

interface TemperatureMonitor {
// Update temperature value for a location.
oneway void update_temperature(in char locationID, in long temperature) ;

}

interface FaultMonitor {
// Publish "I am alive" message.
oneway void I_am_alive(void);

}

Fig. 8. IDL definition for non-primary publisher and subscriber interface.

In this section, we present an example program which demonstrates the us-
age of our transport protocol extended for the fault tolerant CAN-CORBA.
It consists of an IDL interface definition (given in Figure 8), passively repli-
cated publisher code (in Figure 10), and normal subscriber code (in Figure 9).
This program denotes the case illustrated in Figure 5. Other combinations of
replication such as passively replicated subscribers, and actively replicated pub-
lisher /subscriber pairs are similarly written.

The IDL code defines the interfaces of two invocation channels: primary chan-
nel (PCH) and backup channel (BCH). TemperatureMonitor and FaultMonitor
interfaces contain the signatures of two methods update_temperature() and
I_am alive(), respectively. The update temperature method is invoked by a
publisher and then executed in a subscriber to update temperature within the
subscriber object. It is declared as a oneway operation which does not pro-
duce output values. Obviously, two-way operation is not allowed in the pub-
lisher /subscriber communication protocol.

A primary publisher invokes the I_am alive () method to notify its aliveness
to its fellow passive publisher replicas that watch its fault by checking a timeout.
Note that programmers may use a periodic message as a heartbeat message to
reduce network traffic. In this particular example, an explicit heartbeat message
is used, instead since this is more illustrative. Figure 9 and Figure 10 show two
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source code files that correspond to a publisher and a subscriber, respectively.
Each of the files contains unique channel tag TEMP_MONITOR_TAG and an IDL in-
terface identifier TEMP_MONITOR_IFACE. Note that TEMP_MONITOR_TAG is defined
by programmers while TEMP_MONITOR_IFACE is generated by our OMG IDL pre-
compiler. Note that B_TEMP MONITOR_TAG and FAULT MONITOR_IFACE are used
only in publisher replicas.

// Define a channel tag for temperature monitoring.
#define TEMP_MONITOR_TAG 0x01

// Initialize the object request broker (ORB).
CORBA::0RB_ptr orb = CORBA::0RB_init(argc,argv);

// Get a reference to the conjoiner.
Conjoiner_ptr conjoiner =
Conjoiner::_narrow(orb->resolve_initial_references("Conjoiner"));

// Create a servant implementing a temperature monitor object.
TemperatureMonitor_impl monitor_servant;

// Assign a local CORBA object name to the monitor object.
PortableServer::0ObjectId_ptr oid =
PortableServer: :string_to_0ObjectId("Monitori");

// Register the object name and servant to a portable object adaptor (POA).
poa—>activate_object_with_id(oid, &monitor_servant);

// Bind the monitor object to the TEMP_MONITOR_TAG.
conjoiner->subscribe (TEMP_MONITOR_TAG, &monitor_servant);

// Enter the main to receive the temperature values.
orb->run();

Fig. 9. Subscriber code (not replicated).

In Figure 9, a subscriber wishing to subscribe to an invocation channel ac-
cesses the conjoiner object via Conjoiner:: subscribe() method. During this
call, the subscriber provides the conjoiner with TEMP_MONITOR_TAG and a servant.
A servant is a collection of language-specific data and procedures which imple-
ment the actual object body. It is written by an application programmer and
registered into the CORBA object system via a portable object adaptor (POA).
Note that the TEMP_MONITOR_IFACE is not explicitly provided during a call to
Conjoiner: :subscribe () method since the monitor_servant is a typed object
whose interface information can be easily extracted. Conjoiner: :subscribe()
method sends a subscription request message to the conjoiner to get the binding
information of an invocation channel. Finally, the subscriber enters into a block-
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ing loop where it waits for an invocation of update_temperature () method from
the publisher.

Figure 10 shows passively replicated publisher code that works for both pri-
mary and non-primary publishers. While a primary publisher works only as a
data producer, non-primary replicas are in essence heartbeat data consumers
that listen to a backup channel. Thus, the given publisher code includes invo-
cations of both channel announcement and subscription. Programmers let the
primary publisher register its primary and backup channels via two successive
invocations of Conjoiner: :announce () method. This method allocates a local
port from the primary publisher’s free port pool and sends an announcement
message to the conjoiner. Finally, the primary invokes update_temperature()
method to broadcast a temperature data message.

Programmers let the non-primary replicas subscribe to the backup chan-
nel via the invocation of Conjoiner: :subscribe() method. During this call,
the method provides the conjoiner with the backup channel tag and an object
body ft_detector that implements the timeout checking logic. Non-primary
replicas monitor the primary’s status by periodically receiving “I am alive” mes-
sages. They wait inside a loop until ft monitor->I_am alive() is invoked by
the primary or until a timeout occurs. If a timeout is detected, they request
channel switching to the conjoiner by invoking Conjoiner: :switch() method.
This method returns true if the requesting replica is selected as a new primary.
The conjoiner updates the global binding database to replace an old channel
binding with a new one. As shown in Figure 3, TxNode and TxPort of the new
channel binding are provided via the protocol header of our transport protocol.
Finally, the program resumes publishing temperature data using a different sen-
sor. When the primary channel is switched to the backup channel as a result
of the recovery action, some of replicas experience timeouts. In that case, the
local binding agent detects the channel switching by examining the local binding
database.

6 Conclusions

We have presented a fault tolerant extension to our CAN-CORBA design [9],
[10]. The CAN-CORBA is an environment specific CORBA we designed for dis-
tributed embedded systems built on the CAN bus. It supports both anonymous
publisher/subscriber and point-to-point communications without losing the IDL
level compliance to the OMG standard.

In order to support fault tolerance for CAN-CORBA applications, we adopted
the OMG fault tolerant CORBA specification and incorporated into the CAN-
CORBA both passive and active replication strategies. Since fault tolerance
features added excessive complexity to the CAN-CORBA, we took into account
the domain characteristics of the CAN-CORBA environment to avoid it. Specif-
ically, we introduced a state-less passive replication policy that did not require
message logging and object state transfers. We showed that state-less replica-
tion would be sufficient for embedded real-time control applications, as argued



18 Gwangil Jeon et al.

// Define a primary channel tag for temperature monitoring.
#define TEMP_MONITOR_TAG 0x01

// Define a backup channel tag for passive replication.
#define _B_TEMP_MONITOR_TAG 0x101

// Initialize the object request broker (ORB).
CORBA: :0RB_ptr orb = CORBA::0RB_init(argc,argv);

// Get a reference to the conjoiner.
Conjoiner_ptr conjoiner =
Conjoiner::_narrow(orb->resolve_initial_references("Conjoiner"));

// Obtain references to the temperature (PCH) and
// the replica (BCH) monitor groups.
TemperatureMonitor_ptr monitor =
conjoiner->announce (TEMP_MONITOR_TAG, TEMP_MONITOR_IFACE);
TemperatureMonitor_ptr ft_monitor =
conjoiner->announce (_B_TEMP_MONITOR_TAG, FAULT_MONITOR_IFACE) ;

// Create a servant implementing a fault detector object.
FaultMonitor_impl ft_detector;

// Assign a local CORBA object name to ft_detector.
PortableServer::0ObjectId_ptr oid =
PortableServer: :string_to_0ObjectId("Ft_detectorl");

// Register the object name and ft_detector to a POA.
poa->activate_object_with_id(oid, &ft_detector);

// Bind the ft_detector object to the _B_TEMP_MONITOR_TAG.
conjoiner->subscribe (_B_TEMP_MONITOR_TAG, &ft_detector);

while(1) {

// Each replica checks if it is a primary one. The conjoiner determines

// the primary replica by returning TRUE to the ::switch() method.

if (!conjoiner->switch(TEMP_MONITOR_TAG, TEMP_MONITOR_IFACE)) {
// This is a main loop for non-primary replicas where the ft_detector
// watches a time-out. This is terminated only if a fault is found.
orb->run() ;
// The ft_detector detects a fault. It is now terminated and requests

// a channel switching to the conjoiner via invoking ::switch() method.
continue;

// Primary replica starts here. Publish periodically.
while(1) {

// Invoke a method of subscribers.
monitor->update_temperature(’A’, value);

// Publish data to let replicas know my aliveness.
ft_monitor->I_am_alive();

if (conjoiner->is_switched()) break;

Fig. 10. Passively replicated publisher code.
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in [12]. Such a replication policy significantly helped reduce the complexity of
our fault tolerant CAN-CORBA design. Since the fault tolerant CAN-CORBA
provides replications for publishers, subscribers, and a conjoiner, not only can
programmers be free from the single point of failure caused by the centralized
conjoiner, but also they can freely add fault tolerance to their designs through
replicating CAN-CORBA objects. Finally, we showed a program example that
made use of the proposed fault tolerance features.

Although we are still implementing and evaluating the fault tolerant CAN-
CORBA, we strongly believe that additional resource requirements of the fault
tolerant CAN-CORBA fall in a reasonable boundary where most CAN based
embedded systems could handle. The new CAN-CORBA design demonstrated
that it was feasible to use a fault tolerant CORBA in developing distributed
embedded systems on real-time networks with severe resource limitations.
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