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Abstract

In this paper we present results from a six-month empirical study of the high

availability aspectsof the Coda File System. We reporton the service failures

experienced by Coda clients, and show that such failures are masked suc-

cessfully. We also explore the effectiveness and resource costs of key aspects

of server replication and disconnected operation, the two high availability

mechanisms of Coda. Wherever possible, we compare our measurements to

simulation-based predictions from earlier papers and to anecdotal evidence

from users. Finally, we explore how users take advantage of the support

provided by Coda for mobile computing.

1 Introduction

Providing high availability is a dominant theme of current file sys-
tem research. Examples of systems with this goal include Coda[18],
Echo[6], Ficus[14], HA-NFS[2], Deceit[22], and FACE[3]. Now
that serious use of such systems is feasible, it is appropriate to ask
how well their high availability mechanisms function in practice.
This paper is our attempt to answer this question for the Coda File
System. To the best of our knowledge, this is the first empirical
study of a highly available distributed file system.

Empirical studies of file systems have a long history, stretch-
ing back to the 1970s. Early studies of timesharing file systems
such as those by Stritter[26], Smith[23], Satyanarayanan[15, 16],
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Ousterhout[13], and Floyd[4, 5] formed the basis for our initial un-
derstanding of file system usage. This understanding was crucial to
the design of distributed file systems such as AFS[7] and Sprite[12].
In 1991, Baker et al.[1] examined Sprite with a view to establishing
how closely its real usage matched predicted usage. More recently,
Spasojevicand Satyanarayanan[24] reported on the use of wide-area
AFS.

In this paper, we report on data collected from Coda over a
6-month period. During this time, Coda was relied on daily by a
community of almost 40 users. Our data shows that failures do
occur in practice, and that Coda’s high availability mechanisms
are effective in masking them. We establish that users do take
advantage of Coda’s high availability mechanisms, and that the
resource overhead of these mechanisms is modest under conditions
of real use.

Our paper begins with a brief overview of Coda. We then
discuss the factors that influenced our data collection strategy and
present its design. The bulk of the paper is a presentation of our
measurements. Wherever appropriate, we point out ways in which
these measurements corroborate or contradict simulation predic-
tions and anecdotal user observations. We conclude with a brief
summary of results.

2 The System Studied

Coda, a descendantof AFS, was designed to offer continued access
to data in the face of server and network failures. In this section,
we provide a short overview of Coda; further details can be found
in earlier papers[9, 11, 17, 18, 19, 20, 25].

Clients view Coda as a single, location-transparent shared Unix
file system. The Coda name space is mapped to individual file
servers at the granularity of subtrees called volumes[21]. At each
client, a user level process, Venus, caches data on demand on the
client’s local disk. An in-kernel VFS driver[10], called the Mini-
Cache, intercepts and forwards file references to Venus.

Coda uses two distinct, but complementary, mechanisms to



achieve high availability. Both mechanisms rely on an optimistic

replica control strategy. This offers a high degree of availability,
since data can be updated in any network partition. The system
ensures detection and confinement of conflicting updates after their
occurrence, and provides mechanisms to help users recover from
such conflicts.

The first high-availability mechanism, server replication, al-
lows volumes to have read-write replicas at more than one server.
The performance cost of server replication is kept low by caching
at clients, and through the use of parallel access protocols.

The second high-availability mechanism, disconnected oper-
ation, allows continued read and write access to cached data even
when no server is accessible. Disconnectionsmay be involuntary or
voluntary. Involuntary disconnection typically occurs when there is
temporary communication failure. Voluntary disconnection occurs
when a user deliberately isolates a client from the network. This
mechanism is especially valuable for mobile computing: a user may
be isolated because no networking capability is available at the re-
mote location, or to avoid use of the network for economic or power
consumption reasons.

3 Measurement Strategy

In this section we first describe the key factors that influenced our
measurement strategy, and then describe the data collection archi-
tecture that we developed to address these factors. We complete the
section with a description of the hardware and user environment in
which our data was collected.

3.1 Considerations

A dominant factor influencing the design of our data collection
was the desire to study the system over a long period of time.
Such a long-term study is valuable because our user community
is expected to grow, thereby increasing the diversity of use of the
system. Further, mobile computing is a new mode of interaction,
and people’s use of the system may change as they grow more
familiar with it, and as the portable computers on which Coda runs
improve.

Long-term data collection makes it likely that what is collected
may have to changeover time. BecauseCoda is a system undergoing
active development, appropriate refinements to the instrumentation
will be necessary as new functionality is added and improvements
are made. Other changes to the instrumentation may be warranted
by our own improved understanding of the system based on early
measurements.

These considerations have two implications. First, the data
collection mechanism has to be flexible and easy to administer.

Second, the data analysis software has to cope with data collected
over a very long time, spanning many different versions.

Another major factor influencing our design is the need to min-
imize the impact on users. Data collection should not require active
intervention by users, especially in a long-term study. Nor should it
degrade performance or reduce availability noticeably; otherwise,
users may alter their behavior to cope with these shortcomings.

A final factor in our design was the need to avoid losing data
in spite of the wide range of failures experienced by clients and
servers. A particularly challenging problem was to extend the data
collection to voluntarily disconnected portable machines that might
not be reconnected to the network for many days.

3.2 Measurement Framework

Figure 1 illustrates the data collection architecture that we developed
in response to the concerns described in the previous section. Both
Coda clients and servers are instrumented. The data they collect
is shipped to a central data collector, which spools it to a log on
disk. Once a day, a reaper process reads this data and inserts it into
a relational database. This two-stage collection process removes
the database from the critical path of data reporting by clients and
servers.

Data collection is subject to a wide range of failures. For ex-
ample, the data collector may be down for hardware or software
reasons. A client or server may fail, causing buffered data to be
lost. There may be a network outage that prevents a subset of the
clients and servers from contacting the data collector. An espe-
cially common form of network outage in Coda is the voluntary
disconnection of a portable computer, sometimes for days.

We provide robustness in the face of such failures through two
buffering strategies. On servers and connectedclients, we buffer the
data in volatile memory and periodically flush it to the data collector.
The frequency of flushing, currently two hours, is a compromise
between minimizing lost data and reducing collection overhead. If
the collector is down, servers and clients retain data until a future
flush succeeds. On disconnected clients, which may be turned on
and off many times before reconnection, we buffer collected data
in non-volatile storage until reconnection. We use the recoverable

virtual memory (RVM) transactional mechanism for this purpose
because of its clean failure semantics[20]. Since RVM resources
are precious on a resource-poor portable computer, we stric tly and
conservatively cap its usage; this favors availability of the system
over completeness of the data collected. In combination, these
robustness mechanisms have proved to be quite effective – in our
experience, the number of occasions on which we have lost data has
been negligible.

Our architecture minimizes the performance impact of data
collection on clients and servers. We summarize data at the clients
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Figure 1: Data Collection Architecture

and servers whenever doing so is inexpensive and results in minimal
loss of information. Such summarization reduces the total amount
of data that must be stored as well as the burden of shipping data.
The collected data is only processed offline, after it resides in the
database.

We emphasizeflexibility throughout the data collection process.
The bulk of the data collector’s implementation is independent of
the specific data being collected. When changes are made to a
data type, only a small portion of the collector needs to be recoded.
When the data collected is changed, we ensure that only upgraded
clients and servers are able to report data; all others are rejected
with an advisory message. Thus, both system administrators and
users soon learn of obsolete clients and servers. This is important
because it would be administratively difficult to atomically update
all nodes, especially where some of them may be disconnected.

Our use of a relational database as the permanent repository of
collected data provides us with an open-endedmechanism for fram-
ing questions long after the data has been collected. It also provides
us with a scalable tool for storing and manipulating large quantities
of data at a fine granularity. By including version information with
the data and in post-processing queries, we are able to cope with
multiple generations of data.

3.3 Coverage

Our data collection took place in a system with 40 clients, of which
15 were portable machines. There are 39 user accounts, roughly
25 of which are used regularly. The user community is comprised
of Coda developers as well as other computer science researchers.
There are 10 file servers, organized as one triply-replicated set of
production servers, one triply-replicated set of beta test servers, and
four independent alpha test servers. Each production server holds
almost 1.4 GB of data, while each of the beta test servers holds about
1.1 GB. Data on both the production and beta servers are regularly

used by our entire user community. Alpha test servers are only used
by Coda developers.

Data collection began in March 1992. There was an initial test
period lasting 6 months, after which the data was analyzed and the
collection software revised. Another revision was made 10 months
later, based on the results of a second test period. The data presented
in this papercorresponds to the third major revision of our collection
software. This collection began in July 1993, and covers a period of

six months1. Where appropriate, we highlight data that has changed
significantly since this paper was submitted for publication. That
data covered only the first three months of this study.

4 Results

We present our observations as answers to a set of questions that
reflect on the high availability aspects of Coda. Our discussion
begins in Section 4.1 with a characterization of observed failures.
We ask, “How often are service failures experiencedby the system?”
We then address the question, “How successful is Coda in masking
these failures?”

Next, in Sections 4.2 and 4.3, we examine the two Coda mech-
anisms that mask failures: server replication and disconnected op-
eration. For each we ask, “How well does this mechanism work?”
and, “How expensive is this mechanism, in terms of resources con-
sumed?”

Finally, in Section 4.4, we ask, “Is voluntary disconnectedoper-
ation used as anticipated?” Since voluntary disconnected operation
is a new model of computing, we would like to better understand it
from the user’s perspective.

1An exception to this is the data presented in Section 4.2 on resolution. The

instrumentation for this data is more recent, and the data was only collected for four

months.



Failure State
Percent
of Time

Fully Connected 92.3%
Majority Connected 4.4%
Minority Connected 1.2%
Disconnected 2.0%

Table 1: Distribution of Failure States

4.1 Profile of Failures

We characterize observed service failures in Coda in three steps.
First, we classify the set of failure states based on their severity.
Next, we examine the longevity of those states. Finally, we show
how data access degrades in each of the states.

4.1.1 Volume Connectivity

As we noted in Section 2, the Coda name space is broken into
subtrees called volumes. Each volume is stored on a set of servers,
known as that volume’s volume storage group (VSG). At any point
in time, a client can contact some subset of the VSG known as the
accessible volume storage group (AVSG).

We classify the connectivity of volumes based on the ratio of
AVSG size to VSG size, as seen by each client. Note that different
clients may be in different states of connectivity with respect to the
same volume. A volume whose AVSG is equal to its VSG is fully
connected. A volume whose AVSG is empty is disconnected. All
other volumes are partially connected.

We draw a distinction between two types of partial connectiv-
ity. If a volume’s AVSG is larger than half its VSG, it is majority

connected. Otherwise it is minority connected. An optimistic repli-
cation scheme is necessary to provide read/write access to volumes
that are minority connected or disconnected. Either an optimistic
or a pessimistic scheme can provide read/write access to majority
or fully connected volumes.

Table 1 shows the amount of time, weighted by volume usage,
clients have spent operating in varying levels of connectivity. Op-
timistic replication was essential over 3% of the time. The high
availability mechanisms as a whole were necessary nearly 8% of
the time. Our environment has also become more stable over the
past three months; these percentageswere much higher over the first
half of this study.

4.1.2 Longevity of Failure States

Associated with each volume on a client is the notion of the current
session. A session is defined as the maximal period of time over
which the AVSG for the volume does not change. Each change in

connectivity between a client and a server ends the client’s current
session for each volume stored on that server, and begins a new one.

We divide sessions into two categories, transient and non-

transient. We consider sessions that are less than 15 minutes long to
be transient. These sessions are typically due to network glitches.
They may also be due to the gradual detection of a partition between
a client and several servers. We chose 15 minutes because it was
the smallest number that clearly exceeded the typical durations of
transient events recorded in our data. It is also under the mini-
mum server restart time. Of the sessions we have observed, 54% of
them have been 15 minutes or less. However, these short transient
sessions account for only 1% of the total observed time.

Figure 2 shows the distribution of the lengths of non-transient
sessions. Fully connected sessions, shown in Figure 2(a), are the
most commonand tend to be longest-lived. Thesesessionsnever last
more than 22 hours because of our server restart policy. Each server
is restarted every night so that consistency checks performed at
startup can catch corruptions at most one day after they happen. The
shutdown times are staggered to reduce the likelihood of complete
disconnection.

Since all of our servers are located in the same room, partial
connectivity is due to server, not network, failure. Figure 2(b)
shows that partially connected sessions are mostly short. These
short sessions often occur when a server fails and is quickly brought
back on line. However, there are some sessions that lasted much
longer; these stem from more serious problems befalling a server.
The histogram for the complete six month study is more heavily
skewed toward short server outages than that observed during the
first three months.

Disconnected sessions, shown in Figures 2(c) and 2(d), also
tend toward shorter durations. Many of these short periods cor-
respond to network partitions. Some of the periods correspond to
occasions when all servers crash due to operator error, power fail-
ure, or software bugs. These short disconnections are instances of
involuntary disconnection.

Most of the longer session lengths in Figure 2(c) are due to
voluntary disconnections. Users sometimes work at home on their
laptops, and often take them along on extended trips. As Figure 2(d)
shows, some of these voluntary disconnections can last many days.
The longest recorded disconnected session was over four days in
duration. Many of our users have actually operated on their laptops
away from the network for even longer periods. However, those
longer periods have involved powering down their laptops, thus
resulting in multiple sessions rather than one long session.

4.1.3 Masking Failures

How do these failures affect a client’s ability to satisfy file
requests? We estimate this by measuring the change in failure rates
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This graph shows the distribution of the lengths of sessions, a per-volume concept as discussed in Section 4.1.2. Each histogram bucket contains the number of sessions

longer than the bucket below, but less than or equal to the number of hours of the x coordinate. The last bucket in Figure 2(c) contains all disconnected sessions greater

than 23 hours in duration; the graph in Figure 2(d) shows the distribution of only those sessions. Note that only sessions longer than fifteen minutes were included in

these histograms, accounting for 99% of observed client operation. Also note that the y axes are log10 scaled.

Figure 2: Longevity of Non-Transient Sessions

Fully Majority Minority
Operation Connected Connected Connected Disconnected
lookup 58% 75% 94% 86%
getattr >99% >99% 99% >99%
access 99% 99% >99% 99%

open >99% >99% >99% 99%
close >99% >99% >99% >99%

This table shows the success rates of the five most common operations seen by Venus. Connectivity decreases from left to right in the table. The consistently lower

success rates for lookup are explained in Section 4.1.3.

Table 2: Operation Success Rates by Connectivity.



of the most frequently occurring file system operations on clients
during various states of connectivity. Note that operations can fail
even when fully connected because of application or user errors, or
by programs like the shell probing search paths for system binaries.

Table 2 compares the success rates for the most frequent opera-
tions at clients for various states of connectivity. For the getattr,
access, open, and close operations, degraded connectivity
hardly affects success rate.

At first glance, the data for lookup seems anomalous. In all
states of connectivity, its success rate is the lowest of all operations.
This is partly becausea lookup typically precedes other operations
on an object; failure of the lookup suppresses the later operations.
Compounding this is the fact that the data for Table 2 is collected
after the MiniCache has filtered out many successfullookups[25].
Combined, these two factors account for the high observed failure
rate of lookup.

The message of Table 2 is that as connectivity degrades, the
success rates of operations barely decline. In other words, the
user does not experience a corresponding increase in failures. This
confirms that Coda does indeed provide high availability of data in
the face of service failures.

Note that this analysis does not take into account the secondary
effects of failures upon the file references generated by a user. For
example, not being able to open an editor will result in only one
error reflected in our data, but this failure will prevent the user from
generating those references that would have resulted from use of
the editor. Unfortunately, we know of no way to quantify such sec-
ondary effects of service failures. Anecdotal evidence suggests that
once users become proficient at hoarding, the process of advising
Venus which files should be cached, such task-disabling failures are
rare.

4.2 File and Directory Resolution

Replicas in Coda may lose coherencebecauseof update activity dur-
ing server or network failures. Resolution is the process of restoring
coherence to all replicas of an object. In the vast majority of cases,
resolution merely involves overwriting a stale replica with the most
current one. However, because Coda uses optimistic replication,
more than one replica of an object may have been updated during
a partition. In the case of directories, many such instances of di-
vergence can be resolved automatically by the system. All other
instancesof divergence,whether file or directory, result in resolution
failure, with the replicas being marked in conflict.

In this section, we ask how often resolution is invoked and
how often it succeeds. When directory resolution results in conflict
we examine the causes of failure. Since directory resolution is
based on an operation logging strategy, we also ask how much log

Files Directories
Attempts 3,761 3,009
Successes 3,721 2,934

Weakly Equal 717 2,288
Runt Force 2,410 NA

Other 594 646
Conflicts 40 54
Deadlock Avoidance NA 21

This table shows the results of file and directory resolutions observed by our collection

software. For successful resolutions we further classify our data into simple resolu-

tions ("weakly equal" and "runt force"), and more complex ones ("other"). Note that

runt forcing does not apply to directories. We also show, for directories, how many

resolution attempts could not proceed due to our deadlock avoidance policy.

Table 3: Resolutions

space is consumed. We then compare our observations with earlier
predictions of log growth based on trace-driven simulation.

4.2.1 Frequency and Outcomes of Resolution Attempts

Our measurements show an average of one resolution request per
volume per client every five hours. Table 3 shows the results of
resolutions we have measured. The table shows that resolution
succeeded over 98% of the time, requiring virtually no work in
many cases. These situations corresponds to weak equality, where
the replicas are actually equal, but their version information does
not reflect this fact. The circumstances under which this can happen
have been explained elsewhere[18]. Another common event is runt

forcing. This corresponds to situations where an empty file replica
was created via a previous resolution of the parent directory.

As shown in the table, there were 21 directory resolution at-
tempts that had to be aborted due to our deadlock avoidance policy.
These attempts are neither successful nor result in a conflict.

Table 3 indicates a conflict rate of about 1.3%, only slightly
larger than that predicted by an earlier study based on AFS[9]. This
discrepancy is partially due to limitations in our implementation of
directory resolution, as elaborated in the next section.

4.2.2 Causes of Directory Conflicts

An attempt to resolve a directory can fail for two classes of rea-
sons: semantic conflicts, arising from true non-serializability, and
spuriousconflicts, arising from limitations of our current implemen-
tation. Table 4 details reasons for directory conflict as observed at
individual replica sites participating in a resolution attempt. Since
these observations must be made at the replica sites themselves,
as opposed to the resolution coordinator[11], they give an upper
bound on the total number of conflicts. For example, suppose client
A updates file foo on replica A, and client B updates the same file



Semantic
Conflicts Count

Spurious
Conflicts Count

Name-Name 24 Rename 26
Remove-Update 12 Log Wrap 26
Update-Update 6 Propagation 0

This table shows the breakdownofcauses fordirectory resolution failures. The left hand

column shows semantic conflicts, arising from non-serializability; the conflicts listed

in the right hand column arise from limitations in our current implementation. These

conflicts are not mutually exclusive, and are upper bounds on the number of actual

conflicts due to our instrumentation methodology. Hence, the sum of the numbers in

this table may exceed the number of failed directory resolutions reported in Table 3.

Table 4: Conflict Types Observed by Replicas

foo in on replica B, which is partitioned from replica A. When
the partition is healed, both replica A and replica B will record a
conflict, when only one semantic conflict is present.

Semantic conflicts can be further classified into name-name,
remove-update, and update-update conflicts. A name-name conflict
arises when objects with the same name are created in a directory
in different partitions. The removal of an object in one partition,
and its update in another, results in a remove-update conflict. An
update-update conflict results when the same object is modified in
different partitions. The observed number of each of these types of
conflicts is presented in the left hand column of Table 4.

There are three implementation limitations leading to spurious
conflicts in Coda. First, resolution of cross-directory renames is not
currently supported. Second, resolution logs are of finite length and
may wrap-around during long partitions with intense update activity.
Third, propagation of a previously detected directory conflict to
newly accessible replicas is counted as a separate conflict by our
accounting mechanism. The right hand column of Table 4 shows
the observed impact of each of these limitations.

4.2.3 Size of Directory Resolution Logs

Since Coda uses a log-based approach to directory resolution, it
is important to ask how much space is consumed by these logs in
practice. Figure 3 shows the distribution of maximum size, or high-

water mark, attained by each volume’s log each day. The figure
indicates that log growth is quite modest, with a mean high-water
mark of 19KB. Although a few instances of high-water marks over
250KB were observed, the vast majority were under 200KB.

A previous study, based on trace-driven simulation of the reso-
lution subsystem [11], predicted a maximum log-growth of 3.3MB
per volume per day. Our observations indicate that this grossly
overestimates true log growth – the largest value we have observed
is 385KB per volume per day. That study also predicted that 99.5%
of all resolution logs would grow less than 240KB per day. This
is completely consistent with the results in Figure 3 which indicate
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Figure 3: Daily High-Water Marks of Resolution Log Sizes

that over 99% of all operation logs grow less than 240KB per day.

4.3 Disconnected Operation

Mutations made during disconnected operation at a Coda client are
recorded in a per-volume replay log. Coda employs many cancella-

tion optimizations[8] to reduce the amount of log space used. Upon
reconnection, the client transparently invokes reintegration of each
modified volume. If a volume’s log is successfully replayed by the
servers, they proceed to backfetch the contents of modified files. If
replay fails, the log and associated files are saved in a closure, for
the user to inspect and replay manually.

In this section, we ask how large replay logs become, and how
effective the optimizations are in reducing log growth. We also
examine the outcomes of reintegrations and their latency.

4.3.1 Size of Replay Logs

Figure 4(a) shows the observed replay log sizes at the end of the
corresponding disconnected sessions. The distribution is skewed
toward the low end, and has a mean of 21 records. This reflects a
much greater use of the system than observed in the first half of this
study where the mean was just over half that; in other words, more
data is mutated while disconnected. The distribution has a long tail,
with a maximum value of 1,466 records.

The high-water mark of a replay log’s length could be different
from its final length because of explicit deletion of objects created
during that session. Such a deletion eliminates all earlier log records
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These graphs show the distribution of replay log sizes under various situations. Fig-

ure 4(a) shows log sizes at the ends of disconnected sessions. Figure 4(b) shows

the distribution of log high-water marks. Figure 4(c) shows what log sizes would be

without optimizations.

Figure 4: Replay Log Lengths

Attempts 461

Successes 400
Log Records Committed 6,666

New Files Created 1,290
MB Backfetched 176

Failures 61
Confirmed Server Disappearances 14

Log Records Saved in Closures 89

This table shows the breakdownof reintegration results, as well as details of successful

and failed reintegration. For successful reintegrations we show the total number of

log records committed, how many of those log records were creations, and how much

data was backfetched by the servers. For failures, we give the number of log records

that were saved in closures. We also give the number of failed reintegrations that are

known to be due to server or network failure rather than for semantic reasons. There is

one anomalous case not included in these figures; it is explained in Section 4.3.2.

Table 5: Reintegrations

for the object. Figure 4(b) shows the distribution of observed high-
water marks. As expected, this distribution is shifted to the right of
Figure 4(a), with a mean of 26.3 records.

Log optimizations prove to be very effective. Figure 4(c) shows
the distribution of lengths that the logs would have reached had opti-
mizations not been applied. This distribution is substantially shifted
to the right of Figure 4(a). On average, replay logs without optimiza-
tions would have been over 2.5 times longer than the logs actually
encountered in Coda. This corroborates earlier estimates, based on
trace-driven simulation, that indicated that unoptimized logs would
be between 2 and 3 times the length of optimized logs[19]. This
result is also consistent with anecdotal evidence from our users,
who claim to often work disconnected on a small set of files, but
overwrite them frequently.

4.3.2 Reintegration

Table 5 shows a summary of the reintegration attempts in data
volumes we have seen so far; we do not include numbers from test
volumes. Over 85% of all reintegration attempts succeeded. On
average, each successful reintegration involved replay of just over
16 records and backfetching of about 450KB of data. Since most
of these reintegrations were to triply-replicated data, the effective
amount of new data created during a disconnected session is at least
150KB.

The high number of failed reintegrations was initially surprising
to us, because it contradicted anecdotal evidence that users rarely
experience reintegration failure. From our raw data we are able to
confirm that almost one quarter (14 out of 61) of the reintegration
failures are due to a server disappearing during reintegration. Some
of the remaining 47 failures may also be attributable to this cause,
but we are unable to confirm this. However, even if all 47 failures
were due to conflicting updates, we conjecture that many would be
due to multi-machine activity by the same user. As a result, the high
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Figure 5: Reintegration Latency Distribution

rate of reintegration conflicts would not prima facie contradict our
earlier predictions of much lower likelihood of conflicts between
different users[9].

One anomalous event is not included in the above analysis. A
user who was unfamiliar with the write-sharing semantics of Coda
ran simulations on five machines which logged information to a
single Coda file. He was unaware that, unlike traditional Unix,
Coda detects concurrent write-sharing and preserves the first and all
later updates. This preservation is done by treating the later updates
as failed reintegrations, and saving the data in closures. In this case,
the simulations ignored failed reintegrations and pushed on blindly,
causing 188 failed reintegrations over the course of one evening!

Figure 5 shows the distribution of observed reintegration laten-
cies. The vastmajority of reintegrations had latencies of ten seconds
or less, though there are some outliers beyond 90 seconds. There
was also one outlier at just over seven minutes; this data point was
elided from the graph for readability, but is reflected in the mean.
We conjecture that the outlier was due to repeated transient network
failure. The low overall latencies corroborate our users’ experience
that most reintegrations are barely noticeable, contributing to the
transparency of disconnected operation.

4.4 User Behavior While Disconnected

In this section, we ask how users take advantageof voluntary discon-
nected operation. We address this question in three ways. First, we
examine the CPU consumptionon disconnectedportable computers.
Second, we look at mutation activity during voluntary disconnec-

Length of Session - Hours
10 20 30 40 50 60

C
P

U
 M

in
ut

es
 C

on
su

m
ed

50

100

150

200

250

300

350

0

Average CPU Utilization = 10.3%
Baseline CPU Utilization = 5.0%
Points in Graph = 1,990

This graphshows the laptop CPU consumptionfor disconnectedsessions, a per-volume

concept as discussed in Section 4.1.2. The dotted line represents the average number of

minutes consumed per hour, deterimined by dividing total CPU usage by total elapsed

time. The solid line represents the observed CPU consumption of an idle laptop which
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Figure 6: CPU Usage During Laptop Disconnections

tions. Finally, we compare the VFS operation mix during connected
sessions and voluntary disconnected sections.

Our data collection has no way of accurately recording whether
a disconnection is voluntary or involuntary. Rather, this distinction
has to be inferred. We have strong anecdotal evidence indicating
that almost all voluntary disconnectionsoccur on portable machines.
Further, network partitions tend to last well under an hour, and
simultaneous failure of all servers is rare. Therefore, we classify
those disconnected sessions on portable computers lasting longer
than one hour as voluntary.

4.4.1 Total CPU Usage

Figure 6 depicts total CPU consumptionas a function of the duration
of disconnection. Some of this CPU activity is generated by Venus
in the process of cache management; on an otherwise idle machine,
Venus’ CPU usage increases with the number of files cached. To
estimate this inherent overhead, we measured the CPU consumption
of an idle laptop with a typical complement of cached files. The
observed utilization of 5.0% is shown by the solid line in Figure 6.

The dotted line in Figure 6 corresponds to the average observed
CPU consumption, and corresponds to a utilization of 10.3%. This
is sufficiently higher than the baseline amount of 5.0% to confirm
that users do indeed work during voluntary disconnections — they
don’t just take their laptops home and leave them idle!
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Figure 7: Replay Log Lengths at End of Voluntary Disconnections

4.4.2 Mutation Activity

Figure 7 shows the distribution of replay log sizes for voluntary
disconnected sessions. Earlier, we presented Figure 4(a), which
showed the corresponding distribution for both voluntary and in-
voluntary disconnected sessions. The average number of records
in the two figures is quite different: 8.8 records while voluntarily
disconnected versus 21 records in all disconnected sessions. The
distributions are also quite different; the tail of Figure 7 is much
shorter, indicating that user mutations span a narrower range of
files during voluntary disconnections. An alternative way to in-
terpret this data is that users restrict their mutation behavior when
voluntarily disconnected.

4.4.3 Operation Mixes

Anecdotal evidence suggests that during voluntary disconnections,
our users typically perform interactive tasks rather than compute-
intensive tasks. We were curious to see if our data confirmed this.

In our data collection, the best indicator we have of usage
patterns is the mix of VFS operations observed during a session.
Figure 8 compares the observed frequency of VFS operations dur-
ing connected and disconnected sessions. The two operations with
significant differences, vget and resolve, are generated entirely
within Venus and are independent of user activity. All other op-
erations appear about as frequently in connected and disconnected
sessions. Thus, the posited difference in user behavior is not re-
flected at this level. We conjecture that instrumentation at a higher
level of abstraction than VFS operations will reveal the difference.

5 Conclusion

This study set out to examine the value, effectiveness and impact of
the high availability aspects of Coda in day-to-day use. Our study
spanned a period of 6 months, and involved serious use by a com-
puter science research community of modest size. During this pe-
riod, we found that Coda clients do experience various kinds of ser-
vice failures, but that Coda is able to mask these failures effectively.
Our empirical observations confirm many earlier simulation-based
predictions on resource usage. They also confirm much anecdotal
evidence from our user community.

At the same time, our study has also produced some surprises
and suggested avenues of further inquiry. For example, we did not
anticipate the large number of transient sessions. We were also
surprised by the substantial number of reintegration failures due to
self-conflict. Another surprise is the tendency of users to limit muta-
tion activity while voluntarily disconnected. A disappointing aspect
of our results is their inability to corroborate the strong anecdotal
evidence from users that they perform substantially different tasks
when voluntarily disconnected. These suggest further evaluation
of how mobility effects user behavior, and how Coda’s support of
mobile computing helps or hinders this behavior.

Coda is being enhanced along many different dimensions. It
will soon support the ability to use low-bandwidth communication
links. It will also offer improvements to resolution, reintegration,
and cache management. More powerful, lighter-weight portable
Coda laptops will soon be available to our user community. Finally,
our user community continues to grow in size and diversity.

It is difficult to predict what the cumulative effect of these
changes will be. The data collection mechanism described here is
an integral part of our system, and its impact on users is negligible.
We therefore plan to continue our data collection, and to periodically
revisit and evolve the analysis presented in this paper.
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This figure contrasts the operation mixes in connected and disconnected sessions. Figure 8(a) shows operations in connected sessions, and Figure 8(b) shows operations

in disconnected ones. The y axis is log10 scaled in both figures, and any operation with a frequency below 0.001% does not appear on this graph.

The operations and corresponding opcodes in this table are: open (1), close (2), rdwr (3), ioctl (4), select (5), getattr (6), setattr (7), access (8), readlink (9), fsync (10),

inactive (11), lookup (12), create (13), remove (14), link (15), rename (16), mkdir (17), rmdir (18), symlink (19), readdir (20), vget (21), resolve (22), and reintegrate

(23).

Figure 8: VFS Operation Mix During Connected and Disconnected Operation
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