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Abstract

In this paper we present results from a six-month empirical study of the high
availability aspectsof the CodaFile System. We reportontheservicefailures
experienced by Coda clients, and show that such failures are masked suc-
cessfully. We also exploretheeffectivenessand resourcecosts of key aspects
of server replication and disconnected operation, the two high availability
mechanismsof Coda. Wherever possible, we compare our measurementsto
simulation-based predictions from earlier papers and to anecdotal evidence
from users. Finally, we explore how users take advantage of the support
provided by Codafor mobile computing.

1 Introduction

Providing high availability is adominant theme of current file sys-
tem research. Examplesof systemswith thisgoal include Coda[18],
Echo[6], Ficus[14], HA-NFS[2], Deceit[22], and FACE[3]. Now
that serious use of such systemsis feasible, it is appropriate to ask
how well their high availability mechanisms function in practice.
This paper is our attempt to answer this question for the Coda File
System. To the best of our knowledge, this is the first empirical
study of a highly available distributed file system.

Empirical studies of file systems have a long history, stretch-
ing back to the 1970s. Early studies of timesharing file systems
such as those by Stritter[26], Smith[23], Satyanarayanan[15, 16],
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Ousterhout[13], and Floyd[4, 5] formed the basis for our initial un-
derstanding of file system usage. This understandingwas crucial to
thedesign of distributed file systemssuch asAFS[7] and Sprite[12].
In 1991, Baker et al.[1] examined Sprite with aview to establishing
how closely its real usage matched predicted usage. More recently,
Spasojevicand Satyanarayanan[24] reported onthe use of wide-area
AFS.

In this paper, we report on data collected from Coda over a
6-month period. During this time, Coda was relied on daily by a
community of almost 40 users. Our data shows that failures do
occur in practice, and that Coda’s high availability mechanisms
are effective in masking them. We establish that users do take
advantage of Coda’s high availability mechanisms, and that the

resource overhead of these mechanismsis modest under conditions
of real use.

Our paper begins with a brief overview of Coda. We then
discuss the factors that influenced our data collection strategy and
present its design. The bulk of the paper is a presentation of our
measurements. Wherever appropriate, we point out ways in which
these measurements corroborate or contradict simulation predic-

tions and anecdotal user observations. We conclude with a brief
summary of results.

2 The System Studied

Coda, a descendant of AFS, was designed to offer continued access
to data in the face of server and network failures. In this section,
we provide a short overview of Coda; further details can be found
in earlier paperg[9, 11, 17, 18, 19, 20, 25].

Clientsview Codaasasingle, location-transparent shared Unix
file system. The Coda name space is mapped to individual file
servers at the granularity of subtrees called volumes[21]. At each
client, a user level process, Venus, caches data on demand on the
client's local disk. An in-kernel VFS driver[10], called the Mini-
Cache, intercepts and forwards file references to Venus.

Coda uses two distinct, but complementary, mechanisms to



achieve high availability. Both mechanisms rely on an optimistic
replica control strategy. This offers a high degree of avail ability,
since data can be updated in any network partition. The system
ensures detection and confinement of conflicting updates after their
occurrence, and provides mechanisms to help users recover from
such conflicts.

The first high-availability mechanism, server replication, al-
lows volumes to have read-write replicas at more than one server.
The performance cost of server replication is kept low by caching
at clients, and through the use of parallel access protocols.

The second high-availability mechanism, disconnected oper-
ation, allows continued read and write access to cached data even
when no server isaccessible. Disconnectionsmay be involuntary or
voluntary. Involuntary disconnectiontypically occurswhenthereis
temporary communication failure. Voluntary disconnection occurs
when a user deliberately isolates a client from the network. This
mechanismisespecially valuablefor mobile computing: auser may
be isolated because no networking capability is available at the re-
mote location, or to avoid use of the network for economic or power
consumption reasons.

3 Measurement Strategy

In this section we first describe the key factors that influenced our
measurement strategy, and then describe the data collection archi-
tecture that we developed to addressthese factors. We compl ete the
section with a description of the hardware and user environment in
which our datawas collected.

3.1 Considerations

A dominant factor influencing the design of our data collection
was the desire to study the system over a long period of time.
Such a long-term study is valuable because our user community
is expected to grow, thereby increasing the diversity of use of the
system. Further, mobile computing is a new mode of interaction,
and people’s use of the system may change as they grow more

familiar with it, and as the portable computers on which Coda runs
improve.

Long-term data collection makesit likely that what is collected
may haveto changeovertime. BecauseCodaisasystemundergoing
active development, appropriate refinements to the instrumentation
will be necessary as new functionality is added and improvements
are made. Other changesto the instrumentation may be warranted

by our own improved understanding of the system based on early
measurements.

These considerations have two implications. First, the data
collection mechanism has to be flexible and easy to administer.

Second, the data analysis software has to cope with data collected
over avery long time, spanning many different versions.

Another major factor influencing our design is the need to min-
imize theimpact on users. Data collection should not require active
intervention by users, especially in along-term study. Nor should it
degrade performance or reduce availability noticeably; otherwise,
usersmay alter their behavior to cope with these shortcomings.

A final factor in our design was the need to avoid losing data
in spite of the wide range of failures experienced by clients and
servers. A particularly challenging problem was to extend the data
collection to voluntarily disconnected portable machinesthat might
not be reconnected to the network for many days.

3.2 Measurement Framework

Figurelillustratesthedatacollectionarchitecturethat wedevel oped
in responseto the concerns described in the previous section. Both
Coda clients and servers are instrumented. The data they collect
is shipped to a central data collector, which spools it to a log on
disk. Once aday, areaper process reads this data and inserts it into
a relational database. This two-stage collection process removes

the database from the critical path of data reporting by clients and
Servers.

Data collection is subject to a wide range of failures. For ex-
ample, the data collector may be down for hardware or software
reasons. A client or server may fail, causing buffered data to be
lost. There may be a network outage that prevents a subset of the
clients and servers from contacting the data collector. An espe-
cially common form of network outage in Coda is the voluntary
disconnection of a portable computer, sometimes for days.

We provide robustnessin the face of such failures through two
buffering strategies. On serversand connected clients, we buffer the
datain volatile memory and periodically flushit to the datacollector.
The frequency of flushing, currently two hours, is a compromise
between minimizing lost data and reducing collection overhead. If
the collector is down, servers and clients retain data until a future
flush succeeds. On disconnected clients, which may be turned on
and off many times before reconnection, we buffer collected data
in non-volatile storage until reconnection. We use the recoverable
virtual memory (RVM) transactional mechanism for this purpose
because of its clean failure semantics[20]. Since RVM resources
are precious on a resource-poor portable computer, we strictly and
conservatively cap its usage; this favors availability of the system
over completeness of the data collected. In combination, these
robustness mechanisms have proved to be quite effective —in our
experience, the number of occasionson which we havelost data has
been negligible.

Our architecture minimizes the performance impact of data
collection on clients and servers. We summarize data at the clients
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Figure 1. Data Collection Architecture

and serverswhenever doing soisinexpensiveand resultsin minimal
loss of information. Such summarization reduces the total amount
of data that must be stored as well as the burden of shipping data.

The collected data is only processed offline, after it resides in the
database.

Weemphasizeflexibility throughout the datacollection process.
The bulk of the data collector’s implementation is independent of
the specific data being collected. When changes are made to a
datatype, only a small portion of the collector needsto be recoded.
When the data collected is changed, we ensure that only upgraded
clients and servers are able to report data; all others are rejected
with an advisory message. Thus, both system administrators and
users soon learn of obsolete clients and servers. Thisis important
because it would be administratively difficult to atomically update
all nodes, especially where some of them may be disconnected.

Our use of arelational database as the permanent repository of
collected data provides us with an open-ended mechanismfor fram-
ing questionslong after the data has been collected. It also provides
us with a scalabletool for storing and manipulating large quantities
of dataat afinegranularity. By including version information with
the data and in post-processing queries, we are able to cope with
multiple generations of data.

3.3 Coverage

Our data collection took placein a system with 40 clients, of which
15 were portable machines. There are 39 user accounts, roughly
25 of which are used regularly. The user community is comprised
of Coda developersas well as other computer science researchers.
There are 10 file servers, organized as one triply-replicated set of
production servers, onetriply-replicated set of betatest servers, and
four independent alpha test servers. Each production server holds
almost 1.4 GB of data, while each of the betatest serversholdsabout
1.1 GB. Data on both the production and beta servers are regul arly

used by our entire user community. Alphatest serversareonly used
by Coda developers.

Data collection beganin March 1992. Therewas aninitial test
period lasting 6 months, after which the data was analyzed and the

collection software revised. Another revision was made 10 months
later, based on the results of asecondtest period. Thedatapresented

inthis paper correspondsto the third major revision of our collection
software. Thiscollection beganin July 1993, and covers aperiod of

six monthst. Where appropriate, we highlight data that has changed
significantly since this paper was submitted for publication. That
data covered only the first three months of this study.

4 Reaults

We present our observations as answers to a set of questions that
reflect on the high availability aspects of Coda. Our discussion
beginsin Section 4.1 with a characterization of observed failures.
Weask, “How often are servicefailures experienced by the sy stem?”
We then addressthe question, “How successful is Codain masking
these failures?’

Next, in Sections4.2 and 4.3, we examine the two Coda mech-
anisms that mask failures: server replication and disconnected op-
eration. For each we ask, “How well does this mechanism work?”
and, “How expensiveis this mechanism, in terms of resources con-
sumed?’

Finally, in Section 4.4, weask, “ Isvoluntary disconnected oper-
ation used as anticipated?’ Since voluntary disconnected operation
isanew model of computing, we would like to better understand it
from the user’s perspective.

1an exception to this is the data presented in Section 4.2 on resolution. The
instrumentation for this data is more recent, and the data was only collected for four
months.



. Percent
Failure State of Time
Fully Connected 92.3%
Majority Connected 4.4%
Minority Connected 1.2%
Disconnected 2.0%

Table 1: Distribution of Failure States

4.1 Profile of Failures

We characterize observed service failures in Coda in three steps.
First, we classify the set of failure states based on their severity.
Next, we examine the longevity of those states. Finally, we show
how data access degradesin each of the states.

4.1.1 Volume Connectivity

As we noted in Section 2, the Coda name space is broken into
subtrees called volumes. Each volume is stored on a set of servers,
known as that volume's volume storage group (VSG). At any point
in time, a client can contact some subset of the VSG known as the
accessible volume storage group (AVSG).

We classify the connectivity of volumes based on the ratio of
AV SG sizeto VSG size, as seen by each client. Note that different
clients may be in different states of connectivity with respect to the
same volume. A volume whose AVSG is equal to its VSG is fully
connected. A volume whose AV SG is empty is disconnected. All
other volumes are partially connected.

We draw a distinction between two types of partial connectiv-
ity. If avolume’'s AVSG is larger than half its VSG, it is majority
connected. Otherwise it is minority connected. An optimistic repli-
cation schemeis necessary to provide read/write accessto volumes
that are minority connected or disconnected. Either an optimistic
or a pessimistic scheme can provide read/write access to majority
or fully connected volumes.

Table 1 shows the amount of time, weighted by volume usage,
clients have spent operating in varying levels of connectivity. Op-
timistic replication was essential over 3% of the time. The high
availability mechanisms as a whole were necessary nearly 8% of

the time. Our environment has also become more stable over the
past three months; these percentageswere much higher over thefirst

half of this study.

4.1.2 Longevity of Failure States

Associated with each volume on aclient is the notion of the current
session. A session is defined as the maximal period of time over

which the AV SG for the volume does not change. Each changein

connectivity between a client and a server endsthe client’s current
sessionfor each volume stored on that server, and beginsanew one.

We divide sessions into two categories, transient and non-
transient. We consider sessionsthat arelessthan 15 minuteslong to
be transient. These sessions are typically due to network glitches.
They may also be dueto the gradual detection of a partition between

aclient and several servers. We chose 15 minutes because it was
the smallest number that clearly exceeded the typical durations of

transient events recorded in our data. It is also under the mini-
mum server restart time. Of the sessionswe have observed, 54% of
them have been 15 minutes or less. However, these short transient
sessionsaccount for only 1% of the total observed time.

Figure 2 shows the distribution of the lengths of non-transient
sessions. Fully connected sessions, shown in Figure 2(a), are the
most commonand tend to belongest-lived. Thesesessionsnever last
morethan 22 hours because of our server restart policy. Each server
is restarted every night so that consistency checks performed at
startup can catch corruptions at most oneday after they happen. The
shutdown times are staggered to reduce the likelihood of complete
disconnection.

Since all of our servers are located in the same room, partial
connectivity is due to server, not network, failure. Figure 2(b)
shows that partially connected sessions are mostly short. These
short sessionsoften occur when a server fails and is quickly brought
back on line. However, there are some sessions that lasted much
longer; these stem from more serious problems befalling a server.
The histogram for the complete six month study is more heavily
skewed toward short server outages than that observed during the
first three months.

Disconnected sessions, shown in Figures 2(c) and 2(d), also
tend toward shorter durations. Many of these short periods cor-
respond to network partitions. Some of the periods correspond to
occasionswhen all servers crash due to operator error, power fail-
ure, or software bugs. These short disconnections are instances of
involuntary disconnection.

Most of the longer session lengths in Figure 2(c) are due to
voluntary disconnections. Users sometimes work at home on their
laptops, and often take them along on extendedtrips. AsFigure 2(d)
shows, some of these voluntary disconnectionscan last many days.
The longest recorded disconnected session was over four daysin
duration. Many of our users have actually operated on their | aptops
away from the network for even longer periods. However, those
longer periods have involved powering down their laptops, thus
resulting in multiple sessionsrather than one long session.

4.1.3 Masking Failures

How do these failures affect a client’s ability to satisfy file
requests? We estimate this by measuring the changein failure rates
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Figure 2: Longevity of Non-Transient Sessions

Fully Majority Minority
Operation | Connected | Connected | Connected | Disconnected
| ookup 58% 75% 94% 86%
getattr >99% >99% 99% >99%
access 99% 99% >99% 99%
open >99% >99% >99% 99%
cl ose >99% >99% >99% >99%

This table shows the success rates of the five most common operations seen by Venus. Connectivity decreases from left to right in the table. The consistently lower
successratesfor | ookup are explainedin Section 4.1.3.

Table 2: Operation Success Rates by Connectivity.



of the most frequently occurring file system operations on clients
during various states of connectivity. Note that operations can fail
even when fully connected because of application or user errors, or
by programs like the shell probing search paths for system binaries.

Table 2 comparesthe successrates for the most frequent opera-
tionsat clientsfor variousstates of connectivity. Fortheget attr,
access, open, and cl ose operations, degraded connectivity
hardly affects successrate.

At first glance, the data for | ookup seems anomalous. In all
states of connectivity, its successrate isthe lowest of all operations.
Thisispartly becauseal ookup typically precedesother operations
on an object; failure of thel ookup suppressesthe later operations.
Compounding this is the fact that the data for Table 2 is collected
after the MiniCache hasfiltered out many successful | ookups[25].
Combined, these two factors account for the high observed failure
rate of | ookup.

The message of Table 2 is that as connectivity degrades, the
success rates of operations barely decline. In other words, the
user does not experience a corresponding increasein failures. This
confirms that Coda does indeed provide high availability of datain
the face of servicefailures.

Notethat this analysis doesnot takeinto account the secondary
effects of failures upon the file references generated by a user. For
example, not being able to open an editor will result in only one
error reflected in our data, but this failure will prevent the user from
generating those references that would have resulted from use of
the editor. Unfortunately, we know of no way to quantify such sec-
ondary effects of servicefailures. Anecdotal evidence suggeststhat
once users become proficient at hoarding, the process of advising

Venuswhich files should be cached, such task-disabling failures are
rare.

4.2 Fileand Directory Resolution

Replicasin Codamay lose coherencebecauseof updateactivity dur-
ing server or network failures. Resolution isthe processof restoring
coherenceto all replicas of an object. In the vast majority of cases,
resolution merely involves overwriting a stale replicawith the most
current one. However, because Coda uses optimistic replication,
more than one replica of an object may have been updated during
a partition. In the case of directories, many such instances of di-
vergence can be resolved automatically by the system. All other
instancesof divergence, whether file or directory, resultinresolution
failure, with the replicas being marked in conflict.

In this section, we ask how often resolution is invoked and
how often it succeeds. When directory resolution resultsin conflict
we examine the causes of failure. Since directory resolution is
based on an operation logging strategy, we also ask how much log

| Files Directories |
Attempts 3,761 3,009
Successes 3,721 2,934
Weakly Equal 717 2,288
Runt Force | 2,410 NA
Other 594 646
Conflicts 40 54
Deadlock Avoidance NA 21

Thistable showsthe results of file and directory resolutionsobserved by our collection
software. For successful resolutions we further classify our data into smple resolu-
tions ("weakly equal" and "runt force"), and more complex ones ("other"). Note that
runt forcing does not apply to directories. We also show, for directories, how many
resolution attempts could not proceed dueto our deadlock avoidance policy.

Table 3: Resolutions

spaceis consumed. We then compare our observationswith earlier
predictions of log growth based on trace-driven simulation.

4.2.1 Frequency and Outcomesof Resolution Attempts

Our measurements show an average of one resolution request per
volume per client every five hours. Table 3 shows the results of

resolutions we have measured. The table shows that resolution
succeeded over 98% of the time, requiring virtually no work in

many cases. These situations corresponds to weak equality, where
the replicas are actually equal, but their version information does
not reflect thisfact. The circumstancesunder which this can happen
have been explained elsewhere[18]. Another common eventis runt
forcing. This correspondsto situations where an empty file replica
was created via a previous resolution of the parent directory.

As shown in the table, there were 21 directory resolution at-
tempts that had to be aborted due to our deadlock avoidance policy.
These attempts are neither successful nor result in a conflict.

Table 3 indicates a conflict rate of about 1.3%, only slightly
larger than that predicted by an earlier study based on AFS[9]. This
discrepancy is partially dueto limitations in our implementation of
directory resolution, as elaborated in the next section.

4.2.2 Causesof Directory Conflicts

An attempt to resolve a directory can fail for two classes of rea-
sons: semantic conflicts, arising from true non-serializability, and
spuriousconflicts, arising from limitations of our current implemen-
tation. Table 4 details reasons for directory conflict as observed at
individual replica sites participating in aresolution attempt. Since
these observations must be made at the replica sites themselves,
as opposed to the resolution coordinator[11], they give an upper
bound on the total number of conflicts. For example, supposeclient
A updatesfilef oo onreplicaA, and client B updates the samefile



Semantic Spurious

Conflicts Count Conflicts Count
Name-Name 24 | Rename 26
Remove-Update 12 | Log Wrap 26
Update-Update 6 | Propagation 0

Thistableshowsthebreakdownof causesfor directory resol utionfailures. Thelefthand
column shows semantic conflicts, arising from non-serializability; the conflicts listed
in the right hand column arise from limitations in our current implementation. These
conflicts are not mutually exclusive, and are upper bounds on the number of actual
conflicts due to our instrumentation methodology. Hence, the sum of the numbersin
this table may exceed the number of failed directory resolutionsreportedin Table 3.

Table 4: Conflict Types Observed by Replicas

f oo in on replica B, which is partitioned from replica A. When
the partition is healed, both replica A and replica B will record a
conflict, when only one semantic conflict is present.

Semantic conflicts can be further classified into name-name,
remove-update, and update-updateconflicts. A name-nameconflict
arises when objects with the same name are created in a directory
in different partitions. The removal of an object in one partition,
and its update in another, results in a remove-update conflict. An
update-update conflict results when the same object is modified in
different partitions. The observed number of each of these types of
conflictsis presented in the left hand column of Table 4.

There are three implementation limitations leading to spurious
conflictsin Coda. First, resolution of cross-directory renamesis not
currently supported. Second, resolution logs are of finite length and
may wrap-around duringlong partitionswith intenseupdate activity.
Third, propagation of a previously detected directory conflict to
newly accessible replicas is counted as a separate conflict by our
accounting mechanism. The right hand column of Table 4 shows
the observed impact of each of these limitations.

4.2.3 Sizeof Directory Resolution Logs

Since Coda uses a log-based approach to directory resolution, it
is important to ask how much space is consumed by these logsin
practice. Figure 3 showsthe distribution of maximum size, or high-
water mark, attained by each volume's log each day. The figure
indicates that log growth is quite modest, with a mean high-water
mark of 19KB. Although afew instances of high-water marks over
250K B were observed, the vast majority were under 200K B.

A previous study, based on trace-driven simulation of the reso-
lution subsystem [11], predicted a maximum log-growth of 3.3MB
per volume per day. Our observations indicate that this grossly
overestimatestrue log growth — the largest value we have observed
is 385K B per volume per day. That study also predicted that 99.5%
of all resolution logs would grow less than 240K B per day. This
is completely consistent with the resultsin Figure 3 which indicate
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Thisgraph showsthe distribution of the maximum resolution log size reached each day
by each volume. The high-water mark is reset each morning to the current log size.
Notethat the y axisislogig scaled.

Figure 3: Daily High-Water Marks of Resolution Log Sizes

that over 99% of all operation logs grow lessthan 240K B per day.

4.3 Disconnected Operation

Mutations made during disconnected operation at a Codaclient are
recordedin aper-volumereplay log. Codaemploysmany cancella-
tion optimizationg[8] to reduce the amount of log spaceused. Upon
reconnection, the client transparently invokes reintegration of each
modified volume. If avolume’slog is successfully replayed by the
servers, they proceed to backfetch the contents of modified files. If
replay fails, the log and associated files are saved in a closure, for
the user to inspect and replay manually.

In this section, we ask how large replay logs become, and how
effective the optimizations are in reducing log growth. We also
examinethe outcomes of reintegrations and their latency.

43.1 Sizeof Replay Logs

Figure 4(a) shows the observed replay log sizes at the end of the
corresponding disconnected sessions. The distribution is skewed
toward the low end, and has a mean of 21 records. This reflects a
much greater use of the system than observed in thefirst half of this
study where the mean was just over half that; in other words, more
datais mutated while disconnected. Thedistribution hasalong tail,
with a maximum value of 1,466 records.

The high-water mark of areplay log’s length could be different
from its final length because of explicit deletion of objects created
during that session. Suchadeletion eliminatesall earlier log records
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These graphs show the distribution of replay log sizes under various situations. Fig-
ure 4(a) shows log sizes at the ends of disconnected sessions. Figure 4(b) shows
the distribution of log high-water marks. Figure 4(c) shows what log sizes would be
without optimizations.

Figure 4: Replay Log Lengths

[ Attempts | 461

Successes 400
Log Records Committed | 6,666

New Files Created | 1,290

MB Backfetched 176

Failures 61

Confirmed Server Disappearances 14
Log Records Saved in Closures 89

Thistable showsthe breakdown of reintegrationresults, as well asdetails of successful
and failed reintegration. For successful reintegrations we show the total number of
log records committed, how many of those log records were creations, and how much
datawas backfetched by the servers. For failures, we give the number of log records
that were saved in closures. We also give the number of failed reintegrationsthat are
knownto be dueto server or network failure rather than for semantic reasons. Thereis
one anomalouscase not included in these figures; it is explained in Section 4.3.2.

Table 5: Reintegrations

for the object. Figure 4(b) showsthe distribution of observed high-
water marks. As expected, this distribution is shifted to the right of
Figure 4(a), with amean of 26.3 records.

L og optimizations proveto bevery effective. Figure4(c) shows
thedistribution of lengthsthat thelogswould have reached had opti-
mizations not been applied. Thisdistribution is substantially shifted
totheright of Figure4(a). On average, replay logswithout optimiza-
tions would have been over 2.5 times longer than the logs actually
encountered in Coda. This corroborates earlier estimates, based on
trace-driven simulation, that indicated that unoptimized logs would
be between 2 and 3 times the length of optimized logs[19]. This
result is also consistent with anecdotal evidence from our users,
who claim to often work disconnected on a small set of files, but
overwrite them frequently.

4.3.2 Reintegration

Table 5 shows a summary of the reintegration attempts in data
volumes we have seen so far; we do not include numbers from test
volumes. Over 85% of al reintegration attempts succeeded. On
average, each successful reintegration involved replay of just over
16 records and backfetching of about 450K B of data. Since most
of these reintegrations were to triply-replicated data, the effective
amount of new data created during a disconnected sessionis at least
150K B.

Thehigh number of failed reintegrationswasinitially surprising
to us, becauseit contradicted anecdotal evidence that users rarely
experiencereintegration failure. From our raw datawe are able to
confirm that almost one quarter (14 out of 61) of the reintegration
failures are due to a server disappearing during reintegration. Some
of the remaining 47 failures may also be attributable to this cause,
but we are unable to confirm this. However, evenif all 47 failures
were due to conflicting updates, we conjecture that many would be
dueto multi-machine activity by the sasme user. Asaresult, the high
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This graph shows the distribution of latencies measured at the client for successful
reintegrations. As discussed in 4.3, this latency includes the time for replay at al
AVSG members as well as the backfetching of file contents by them. There is one
outlier not pictured here, as detailed in Section 4.3.2.

Figure 5: Reintegration Latency Distribution

rate of reintegration conflicts would not prima facie contradict our
earlier predictions of much lower likelihood of conflicts between
different users[9].

One anomalous event is not included in the above analysis. A
user who was unfamiliar with the write-sharing semantics of Coda
ran simulations on five machines which logged information to a
single Coda file. He was unaware that, unlike traditional Unix,
Coda detects concurrent write-sharing and preservesthe first and all
later updates. This preservation is doneby treating the later updates
asfailed reintegrations, and saving the datain closures. In this case,
the simulations ignored failed reintegrations and pushed on blindly,
causing 188 failed reintegrations over the course of one evening!

Figure 5 showsthe distribution of observed reintegration | aten-
cies. Thevast majority of reintegrationshad |atenciesof ten seconds
or less, though there are some outliers beyond 90 seconds. There
was also one outlier at just over seven minutes; this data point was
elided from the graph for readability, but is reflected in the mean.
We conjecturethat the outlier was dueto repeated transient network
failure. Thelow overall latencies corroborate our users’ experience
that most reintegrations are barely noticeable, contributing to the
transparency of disconnected operation.

4.4 User Behavior While Disconnected

Inthissection, we ask how userstake advantageof voluntary discon-
nected operation. We address this question in threeways. First, we
examinethe CPU consumptionon disconnected portable computers.
Second, we look at mutation activity during voluntary disconnec-
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Thisgraphshowsthelaptop CPU consumptionfor disconnected sessions, a per-volume
concept asdiscussed in Section 4.1.2. Thedotted line representsthe averagenumber of
minutes consumed per hour, deterimined by dividing total CPU usage by total elapsed
time. The solid line representsthe observed CPU consumptionof an idlelaptop which
caches this paper, the data collection source code, and the X11, GNU Emacs, and
TeXsoftware collections: atypical cache set in our environment.

Figure 6: CPU Usage During Laptop Disconnections

tions. Finally, we comparethe VFS operation mix during connected
sessionsand voluntary disconnected sections.

Our datacollection has no way of accurately recording whether
adisconnectionis voluntary or involuntary. Rather, this distinction
has to be inferred. We have strong anecdotal evidence indicating
that almost all voluntary disconnectionsoccur on portable machines.
Further, network partitions tend to last well under an hour, and
simultaneous failure of all serversis rare. Therefore, we classify
those disconnected sessions on portable computers lasting longer
than one hour as voluntary.

44.1 Total CPU Usage

Figure 6 depictstotal CPU consumptionasafunction of theduration
of disconnection. Some of this CPU activity is generated by Venus
in the process of cache management; on an otherwiseidle machine,
Venus' CPU usage increases with the number of files cached. To
estimatethisinherent overhead, we measured the CPU consumption
of an idle laptop with a typical complement of cached files. The
observed utilization of 5.0% is shown by the solid line in Figure 6.

Thedotted linein Figure 6 correspondsto the average observed
CPU consumption, and correspondsto a utilization of 10.3%. This
is sufficiently higher than the baseline amount of 5.0% to confirm
that users do indeed work during voluntary disconnections— they
don't just take their laptops home and leave them idle!
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This graph shows the distribution of replay log sizes for al disconnected sessions on
portable computerslasting one hour or longer.

Figure 7: Replay Log Lengths at End of Voluntary Disconnections

4.4.2 Mutation Activity

Figure 7 shows the distribution of replay log sizes for voluntary
disconnected sessions. Earlier, we presented Figure 4(a), which
showed the corresponding distribution for both voluntary and in-
voluntary disconnected sessions. The average number of records
in the two figures is quite different: 8.8 records while voluntarily

disconnected versus 21 records in all disconnected sessions. The
distributions are also quite different; the tail of Figure 7 is much

shorter, indicating that user mutations span a narrower range of
files during voluntary disconnections. An alternative way to in-
terpret this data is that users restrict their mutation behavior when
voluntarily disconnected.

4.4.3 Operation Mixes

Anecdotal evidence suggeststhat during voluntary disconnections,
our users typically perform interactive tasks rather than compute-
intensive tasks. We were curiousto seeif our data confirmed this.

In our data collection, the best indicator we have of usage
patterns is the mix of VFS operations observed during a session.
Figure 8 compares the observed frequency of VFS operations dur-
ing connected and disconnected sessions. The two operations with
significant differences, vget andr esol ve, aregenerated entirely
within Venus and are independent of user activity. All other op-
erations appear about as frequently in connected and disconnected
sessions. Thus, the posited difference in user behavior is not re-
flected at this level. We conjecture that instrumentation at a higher
level of abstraction than VFS operations will reveal the difference.

5 Conclusion

Thisstudy set out to examinethe value, effectiveness and impact of
the high availability aspects of Coda in day-to-day use. Our study
spanned a period of 6 months, and involved serious use by a com-
puter science research community of modest size. During this pe-
riod, we found that Coda clients do experiencevarious kinds of ser-
vicefailures, but that Codais ableto mask thesefailures effectively.
Our empirical observations confirm many earlier simulation-based
predictions on resource usage. They also confirm much anecdotal
evidence from our user community.

At the same time, our study has also produced some surprises
and suggested avenues of further inquiry. For example, we did not
anticipate the large number of transient sessions. We were also
surprised by the substantial number of reintegration failures due to
self-conflict. Another surpriseisthetendency of usersto limit muta-
tion activity while voluntarily disconnected. A disappointing aspect
of our results is their inability to corroborate the strong anecdotal
evidence from users that they perform substantially different tasks
when voluntarily disconnected. These suggest further evaluation
of how mobility effects user behavior, and how Coda’s support of
mobile computing helps or hinders this behavior.

Coda is being enhanced along many different dimensions. It
will soon support the ability to use low-bandwidth communication
links. It will also offer improvements to resolution, reintegration,
and cache management. More powerful, lighter-weight portable
Codalaptopswill soon be availableto our user community. Finaly,
our user community continuesto grow in size and diversity.

It is difficult to predict what the cumulative effect of these
changeswill be. The data collection mechanism described here is
anintegral part of our system, and its impact on usersis negligible.
Wetherefore plan to continue our datacollection, andto periodically
revisit and evolvethe analysis presented in this paper.
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(b) Disconnected Operationsin Venus

Thisfigure contrasts the operation mixesin connected and disconnected sessions. Figure 8(a) shows operationsin connected sessions, and Figure 8(b) shows operations
in disconnected ones. They axisislogyg scaled in both figures, and any operation with a frequency bel ow 0.001% does not appear on this graph.

The operationsand corresponding opcodesin this table are: open (1), close (2), rdwr (3), ioctl (4), select (5), getattr (6), setattr (7), access (8), readlink (9), fsync (10),
inactive (11), lookup (12), create (13), remove (14), link (15), rename (16), mkdir (17), rmdir (18), symlink (19), readdir (20), vget (21), resolve (22), and reintegrate
(23).

Figure 8: VFS Operation Mix During Connected and Disconnected Operation
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