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Abstract 

We propose an optimal convergence function for 
achieving fault-tolerant, internal clock synchroniza, 
tion in the presence of arbitrary process and clock fail- 
ures. The diflerential fault-tolerant midpoint conver- 
gence function guarantees an optimal maximum cor- 
rection, an optimal maximum drift rate, and an opti- 
mal maximum deviation. 

The proposed convergence function is simple and 
easy to compute. It bounds the maximum drift rate of 
correct clocks by the maximum drift rate of a correct 
hardware clock. The maximum correction is limited 
by the maximum drift between two correct hardware 
clocks during one round. The maximum deviation is 
approximately 44 + ~PT,,,  , where A is the maximum 
remote clock reading error, p is the maximum drift 
rate of a correct hardware clock and rman is the max- 
imum duration of a synchronization round. 

1 Introduction 

Tight internal clock synchronization is essential for 
many real-time and fault-tolerant applications. Inter- 
nal clock synchronization requires that (1) at any time 
the deviation between two correct clocks be bounded 
by a constant 6 (called the maximum deviation) and 
(2) the drift rate of clocks with respect to real-time 
be bounded by a constant pv.  Clock synchronization 
is a non-trivial problem because of the need to toler- 
ate failures. Since in this paper we are only interested 
in internal clock synchronization algorithms capable 
of masking arbitrary clock and process failures, when 
we talk about a synchronization algorithm, we mean 
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an internal clock synchronization algorithm tolerant 
of arbitrary failures. 

Most synchronization algorithms can be described 
as instances of a single abstract, generic clock syn- 
chronization algorithm by using the notion of a con- 
vergence function introduced in [SI. This generic algo- 
rithm can be succintly described as follows: at the end 
of each synchronization round each process reads the 
clocks of all processes and then adjusts its clock value 
for the next round by applying a convergence function 
to the clock readings of the current round. A synchro- 
nization algorithms which can be obtained from the 
above generic algorithm by instantiating some con- 
crete function for the abstract notion of a convergence 
function will be termed a Convergence function based 
algorithm. 

At any point in time, the value of a synchronized 
clock is defined as the sum of the current value of a 
hardware clock and an adjustment variable. Because 
hardware clocks drift apart from real-time and from 
each other, the adjustment variable of a clock has to 
be updated periodically. The maximum change of a 
clock value that a synchronization algorithm can cause 
to occur during an adjustment is called the maxamum 
correction. The adjustments of the clocks together 
with the drift of the hardware clocks introduce an er- 
ror when a synchronized clock is used to measure a 
time interval. This error can be bounded by a con- 
stant part, which is called the maximum discontinuity, 
and a part which depends on the length of the time 
interval which is measured. This second part is called 
the maximum drift rate of the synchronized clocks. 

When clocks are adjusted discretely, that is, the ad- 
justment variables are only changed once per round, 
the synchronized clocks cannot be guaranteed to be 
monotonic. When using a convergence function with 
an optimal maximum correction the non-monotonicity 
of tightly synchronized clocks becomes in general neg- 
ligible, since the time to read a clock is typically longer 
than the optimal maximum correction. The proposed 
convergence function is also useful for synchronization 



algorithms based on statistical remote clock reading 
[5]. Since such statistical reading methods do not pro- 
vide any a priori or computed upper bound on the 
error made when reading a remote clock, the synchro- 
nized clocks can be repeatedly adjusted forth and back 
with large corrections, because of excessive clock read- 
ing errors. By minimizing the correction of the clocks 
this undesired behavior can be reduced. 

We propose a differential fault-tolerant midpoint 
convergence function which provides an optimal m a -  
imum correction, an optimal maximum drift rate, and 
an optimal maximum deviation between clocks. The 
differential fault-tolerant midpoint convergence func- 
tion is based on the fault-tolerant midpoint function 
proposed in [4], and improves upon it, since the fault- 
tolerant midpoint function, as proposed in [4], does 
not provide an optimal maximum correction, an op- 
timal maximum drift, or an optimal maximum devia- 
tion. 

2 System Model 

We consider a distributed system consisting of 
nodes hosting time server processes. Each such pro- 
cess has access to the local hardware clock of its node. 
In this paper we assume the existence of a remote 
clock reading method which can always read a correct 
remote clock with an error not greater than an a pri- 
ori given maximum reading error. This allows us to 
abstract from the communicat,ion mechanisms used by 
the time server processes to read each other’s clocks. 
We also require the existence of an upper bound rmaZ 
on the maximum time between two successive clock 
synchronizations. This allows us to abstract from con- 
sidering execution time and scheduling delay issues. 
We denote the set of time server processes by ‘P and 
the number of such processes by N = \PI. A 

2.1 Clocks and Clock Readings 

We represent a hardware clock as a total mapping 
from real-time to clock time: H p  denotes process p’s 
hardware clock. All hardware clocks have a finite gran- 
ularity, but we assume that this granularity is negligi- 
ble. A hardware clock can drift apart from real time, 
but the drift of correct hardware clocks is bounded 
by the maximum drip rate p. Let constant to refer 
to the earliest point in real time for which the clocks 
must be synchronized. Process p’s hardware clock is 
correct at time t l ,  when for all intervals [s,t] [to, t l]  

A Iiardware clock failure occurs when the bounded 
drift condition is violated. For most quartz clocks 
available in modern computers, the maximum drift 
rate p is of the order of Since p is such a small 
quantity, we will ignore terms of the order of p2 or 
higher, for example we will equate (l+p)-’ with (1-p) 
and (1 - p)-’ with (1 + p). 

In general, processes do not directly manipulate the 
value or the speed of hardware clocks. Instead, each 
process maintains a virtual clock by adding to the un- 
derlying hardware clock an udjustment function. In 
this paper we consider only discrete adjustment func- 
tions: these are step functions of time. We use the 
term clock to denote a virtual clock. Process p’s clock 
is represented by a total mapping C, from real time 
to clock time. 

To achieve synchronization, processes estimate the 
clocks of other processes by using a remote clock read- 
ing method. Such a method provides for any process p 
an upproximation of any process’ clock. We denote the 
approximation that p computes at its local time T of 
the clock of process q by C, (T ,p ) .  We assume that 
the remote clock reading method bounds the clock 
reading error by A, the muximum reading error: when 
T = CP( t )  and processes p and q are correct at time t ,  
then 

We assume the local reading error is negligible, i.e. 
when process p is correct at time t ,  then 

CP(t) = wQ4. 
2.2 Failure Hypotheses 

Each correct process has by definition a correct 
hardware clock. The total number of processes partic- 
ipating in the clock synchronization must be at least 
3F+1 [2], where F denotes the maximum number of 
processes that can be faulty. For simplicity, we assume 
that no failed process recovers. We assume that pro- 
cesses and clocks fail in arbitrary ways. The reading 
error for approximating a clock of a process which has 
suffered an arbitrary failure is not bounded. 

3 Requirements 

An internal clock synchronization service can be 
specified by two requirements. The first, called the 
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bounded deviation requirement, bounds the deviation 
between correct clocks by a constant 6 (maximum de- 
viation): for any processes p and q correct at time 
t 2 to, 

IC& - C&)l 55. 
Recall that constant to  refers the earliest point in real 
time for which the clocks must be synchronized. 

The second, the clock drift requirement, bounds the 
drift rate of correct clocks by a constant p,, << 1: for 
any process p correct in interval [t, U ] ,  where t o  5 t 5 
211 

The constant G is called the maximum discontinuity 
of a clock. It accounts for the granularity and the 
adjustments of the clocks. Synchronization algorithms 
with p,, = p have an optimal clock drift rate [7]. 

A synchronization algorithm is correct when it sat- 
isfies the bounded deviation and clock drift require- 
ments above. 

(l-pu)(u-t)-G< Cp(u) - Cp(t) < (l+pu)(u-t)+G. 

4 Overview 

Clocks are synchronized in rounds, where correct 
processes approximately agree on the time when a 
round starts. At the end of each round, after read- 
ing all clocks, each correct clock is adjusted so that it 
becomes approximately synchronized with the others. 
The clock readings of a process p are the approxima- 
tions of the values displayed by all clocks by p at the 
end of a round. These are represented by a mapping 
from processes to clock values. For example, for a 
clock reading 0 the approximation of process q’s clock 
is 0(q). 

The adjustment applied by a process to its clock 
at the end of a round is computed by applying a con- 
vergence function to the clock readings obtained in 
that round. Thus, a convergence function c f n  maps a 
process and a clock readings mapping to a clock value. 
When 0 represents the clock readings mapping of pro- 
cess p at the end of the current round, then p’s clock 
value at the start of the next round is c f n ( p ,  0). 

4.1 Algorithm 

We first recall how a convergence function can be 
used to synchronize clocks. A pseudocode descrip- 
tion of a clock synchronization algorithm that uses a 
generic convergence function c f  n is given in figure 1. 
Each process executes a copy of this algorithm. The 
function C (line 4) represents the clock of the execut- 
ing process. Process p’s clock is defined by the sum 
of p’s current adjustment value stored in the variable 

const Time D, R; 
var Time A, T; 

function Time C() { return H() + A; 1 
function void init () { 

(A,T) = InitialAdjustement(); 
schedule ( s y n c h r o n i z e r ,  R, T - D); 

1 
function void synchronizer() { 

Time @[NI;  

parbegin { 

} parend 
A = A + (cfn(myid(), 0) - T); 
T = T + R ;  

Vq E P : O [ r a n k ( q ) ]  = C,(T, m y i d ( ) ) ;  

1 

Figure 1 : Clock Synchronization Protocol. 

A (line 2) and the current value of the hardware clock 
which is returned by the function H (line 4). 

The length of a round is denoted by the constant 
R. The function init determines the initial adjustment 
value and the first time the clock has to be readjusted 
(line 7). The clocks are periodically adjusted by the 
execution of the s y n c h r o n i z e r  function (lines 11-20). 
This function is scheduled for execution every R time 
unih starting at local time T - D (line S), where con- 
stant D denotes the maximum clock time needed to 
read a remote clock. In other words, when we neglect 
the execution time except for the time needed to read 
the remote clocks, the clock is adjusted at local time 
T or before T .  The scheduling is based on the clock 
represented by the local function C. Function m y i d  re- 
turns the id of the executing process and the function 
call C,(T, m y i d ( ) )  returns the approximation of pro- 
cess q’s clock at time T. Recall that the system model 
bounds the maximum error approximating a correct 
remote clock by A. Array 0 contains the approxima- 
tions of the values of all clocks at local time T (line 16). 
The convergence function calculates the value of the 
clock of a process at the start of the next round (line 
18): the old value T is replaced by c f n ( m y i d ( ) ,  0). 
This is achieved by changing the adjustment value A 
to A + c f n ( m y i d ( ) ,  0) - T .  Finally, T is incremented 
and refers now to the end of the next round (line 19). 
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4.2 Notation 

To analyze this algorithm, we use the following well- 
known notations: t,” denotes the start of p’s k-th syn- 
chronization round. For every round k and every cor- 
rect process p ,  the clock synchronization algorithm de- 
fines a new adjustment value which we denote by A i .  
The clock in round k of process p is defined as the 
sum of the current value of p’s hardware clock and the 
adjustment value Ai : 

At the end of each round each process tries to es- 
timate the values of all clocks. Two successive rounds 
can overlap, i.e. a process can start round k + 1 while 
another process is still in round k. At the end of round 
k process p tries to approximate the remote clocks with 
respect to the adjustment values of round k and not 
with respect to the adjustment values of round k + 1. 
This is achieved by using the concept of a round clock. 
The round clock Cpk of process p for round k is defined 
as: 

Cp(t) i HP( t )  + A i .  

We denote Tpk+l the end of round k with respect to 

round clock Cpk: T:+’ e Cpk(tf+’). 

4.3 Assumptions 

To prove that a convergence function based inter- 
nal clock synchronization algorithm is correct one has 
to make the following standard assumptions [SI in ad- 
dition to those described in our system model section. 

4.3.1 Initialization 

At the start of the first round, all correct clocks 
must be within 6s of each other. Let term t k  de- 
note the real time when all correct processes have 
just started their k-th synchronization round: tk 
maz(tpk I p correct ut t ime t,”}. Formally, the first 
assumption ( A l )  can be expressed as: Fur any pro- 
cesses p and q that are correct at real time to ,  

lc;(to) - c;(to)>l 5 6s. 

4.3.2 Interval Constraints 

Assumption (A2) bounds the length of a clock syn- 
chronization round by given constants rmin and r,,,: 
For any process p that is correct a t  time t:+’) 

rmin 5 t,k+l - ti 5 r,,,. 

Assumption (A3) bounds the real-time delay be- 
tween the beginning of the same round for different 
processes by an a priori given constant p. For any 
processes p and q correct at times t,” and t t7  respec- 
tively: 

It; -til 5 P. 
The overlap of rounds is restricted by assumption 

(A4) : 
P 5 rmin, 

5 Differential Midpoint Function 

In this section we introduce the differential fuult- 
tolerant midpoznt convergence function (DFTM). This 
convergence function improves the fault-tolerant mid- 
point function proposed in [4] by providing optimal 
maximum correction, optimal maximum drift rate, 
and optimal maximum deviation. 

5.1 Definitions 

Let C T  refer to the set of clock values. A clock 
reading returns a clock value for each process, thus, it 
is a mapping with signature P i CI. We refer to the 
set of all clock readings by C R .  Function sort takes 
a clock reading as input and returns a sorted array of 
the given clock values. Since an array of clock values 
is represented by a function with signature (0, .., N - 
1) --+ C 7 ,  the signature of sort is: 

sort : C R  i ((0, .., N - 1) + C T )  

Function sort guarantees for each clock reading 0 that 
sort(@) is a permutation of 0 and that the valuw in 
the returned array are nondecreasing: 

V@ E CR : V i  E (0, .., N - 2) : 

sort(@)(i) 5 sort(@)(i  + 1). 

The sign function is defined by: 

1 i f z > O  
sign(z) = 0 if 2 = 0 

A {  -1 i f z < O  

The midpoint of an interval [z, y] is defined by: 

A convergence function takes as input parameters 
the identity of a process p and a clock reading and 
returns the new value of p’s clock. Thus, the signature 
of a convergence function c f n  is: 

c f n  : ( P  x cn) i c7 
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5.2 Fault-Tolerant Midpoint Function 

Because the proposed convergence function is based 
on the fault-tolerant midpoint convergence function 
(FTM) described in [4], we first recall the basic ideas 
of FTM and also give examples illustrating that FTM 
is not optimal. The FTM function is defined as: 

F T M ( ~ ,  e)  b mid(sor t (e ) (F) ,  sor t (e ) (N - F - 1)) 

The intuition behind this convergence function is as 
follows; because at most F clocks are faulty and the 
clock reading error for correct clocks is at most A, a 
process p can reject the F smallest and the F greatest 
clock values to ensure that the length of the interval 
I, = [sort(O)(F),  sort(@)(N - F - l)] spanned by the 
remaining clock values is bounded. In particular, the 
following correct interval condataon holds: there exist 
two correct processes q and r such that the F + 1st 
smallest approximated clock value sort(O)(F)  is at 
most A smaller than q’s clock value and the (N-F-1)th 
greatest clock value sort(@)(N - F - 1) is at most A 
greater than r’s clock value because at most F of the 
F + 1 smallest (or greatest) clock values can belong to 
faulty clocks. This implies that the length of the inter- 
val I, is bounded by the maximum deviation between 
correct clocks 5 plus 2 4  where the last term accounts 
for the clock reading errors. Recall that the number 
of clocks participating in synchronization must be at 
least 3F + 1. Thus, there exists at least 2F + 1 cor- 
rect clocks and a process can reject at most the F th  
smallest and the F t h  greatest correct clock values, but 
it cannot rejecting the F + l th  smallest correct clock 
value. This bounds the distance between the intervals 
Ip and I, of two correct processes p and s by about 2 4  
and this in turn can be used together with the bounded 
length of the two intervals to show that F T M  bounds 
the deviation between any correct clocks. 

The FTM does not provide an optimal drift rate for 
the synchronized clocks, because it can happen that 
all clocks have initially the same value, all hardware 
clocks drift with the maximum drift rate p, and the 
reading error is always +A. In this case all clocks 
are incremented in each round by A. In other words, 
the effective drift rate during each round of length r is 
p+ ). The maximum drift rate of clocks synchronized 
by FTM is therefore at least: 

A 

A 
Pu 2 P +  - ’ 

T min 

Recall that 6s denotes the maximum deviation of 
the clocks of two correct processes at the start of a 
round. At the end of a round the clocks of two correct 

processes can be up to 6s+2prmaX apart and the read- 
ing error can be up to A. A process p can thus adjust 
its clock by up to c = 6s + 2prma, + A  because p’s own 
clock value can be c smaller than the approximations 
of all other clocks and p will hence increase its clock 
by c. The optimal maximum correction is 2prmax [3]. 
Thus, the FTM does not provide optimal maximum 
correction. 

Let us now show why the maximum deviation pro- 
vided by the fault-tolerant midpoint convergence func- 
tion is not optimal. We partition the set of processes 
into three sets L ,  M ,  and U with ILI = 1171 = F 
and IMI = N - 2 F  > F ,  such that the values of all 
hardware clocks in each set are the same at all times. 
Let us assume that the hardware clocks of processes 
in M drift with maximum allowable drift rate p, the 
hardware clocks of processes in L drift with minimum 
allowable drift rate -p ,  and the hardware clocks of 
processes in U are faulty and they drift with 2p. Fur- 
thermore, suppose that at the start of the first round, 
the clocks of processes in M show a value which is ex- 
actly 6s greater than the ones in L and the clocks of 
processes in U have initially a value which is exactly 
6s greater than the ones in M .  Let now the processes 
in M read each others clocks with a maximum error of 
+A, let them adjust their clocks before the processes 
in L ,  and recall that rounds are at most rmaz long. 
The clocks in M are adjusted by 4 because they re- 
ject the clocks of processes in L and U .  Thus, the 
maximum deviation between correct clocks is at least 
4.511 + 4prmax. The tight lower bound for the maxi- 
mum deviation between clocks is Sop* = 4A + 4p~max 
[3]. Therefore, the maximum deviation of the fault- 
tolerant midpoint convergence function FTM is not 
optimal. 

A 

5.3 Differential Fault-Tolerant Midpoint 
Function 

To avoid non optimal drift rate and non optimal 
maximum deviation, a convergence function has to en- 
sure that the new clock value of a process p is neither 
great,er nor smaller than the minimum and maximum 
of the old correct clock values. That is, we must en- 
sure that there exists two correct processes so that 
the round clocks which they use during the last round 
show a value not smaller, respectively not greater, 
than p’s new clock value at the time p adjusts its 
clock (we call this the nested adjustment condition). 
Because of condition correct interval, there exists two 
correct processes q and r such that q’s clock value is 
at most A greater than min(Ip) and r’s clock value 
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is at most A smaller than maz(1 , ) .  When process p 
would only adjust its clock to values which are at least 
A apart from the boundaries of the interval I,, then 
p could ensure the nested adjustment condition. The 
problem is that the length of I ,  could be smaller than 
2A. Let us assume that p adjusts its clock at local time 
T .  Because a process p can read its own clock with a 
negligible error, p can extend I, by [T-A, T+A] with- 
out violating the correct interval condition. Therefore, 
the extended interval has always a length of 2 8  and 
the midpoint of this interval guarantees the nested ad- 
justment condition (see [l] for more details). 

We use this idea to  define an extended midpoint 
function emid. It computes, for a given time T and an 
array Y of N clock values, the midpoint of the union 
ofthe intervals [ Y ( F ) , Y ( N - F - 1 ) ]  and [T-A,T+A]: 

A emid(T,Y) = m i d ( m i n ( T  - h , Y ( F ) } ,  
maz{T + A, Y ( N  - F - 1))) .  

To bound the correction of clocks, we use the fact 
that two correct clocks can drift apart during one 
round by at most 2prmax. This implies that each pro- 
cess has to adjust its clock by up to 2prmax, because 
the following situation could occur: the clocks are par- 
titioned into three sets L ,  M ,  and U like above; it is 
then possible that no process in M using emid changes 
its clock and hence the processes in L have to adjust 
their clocks by 2r,,,. The direction towards which a 
process should adjust its clock is determined by the 
extended midpoint function. We use this idea in the 
definition of function d m p  which has the same param- 
eters as the function emid. 

A 
d m p ( T ,  Y )  = i f  lemid(T, Y )  - TI 5 2prmaX then 

else 
emid(T, Y )  

T + sign(emid(T,Y) - T)2prmax. 

The differential fault-tolerant midpoint conver- 
gence function DFTM makes use of d m p  to calculate 
the new clock value for a given process p and a clock 
reading 0, where process p’s own clock shows 0 ( p )  at 
the end of the round and the function sor t  returns a 
sorted array of the clock values in 0: 

5.4 Correctness Proofs 

We show in the Appendix why the differential fault- 
tolerant midpoint convergence function is correct, i.e. 
a clock synchronization algorithm using DFTM and 

which guarantees assumptions (Al)-(A4) satisfies the 
clock drift and bounded deviation requirements. First, 
we prove that the extended midpoints calculated by 
two correct processes are at, most 6s apart, where 
6s = 4A + 2prmax + 2 p p .  Second, we use t,his proof to 
show that it is sufficient to adjust a clock by 2prmaz. 
The problem here is that the restriction of the correc- 
tion of the clocks by 2prm,, does not allow to use the 
bound for the deviation between the extended mid- 
points directly, because the clocks are not necessarily 
adjusted to  the extended midpoints. The proof given 
in the Appendix is based on the following idea: let 
p and q be two correct processes and be M,, M,  the 
extended midpoints calculated by p ,  q at the end of 
round k. Furthermore, let us assume that p and q 
change their clocks from their old values 0,, 0, to the 
new values N,, N ,  at the same point in real-time and 
that M, 5 M,. The deviation between Np and Nq 
could only be greater than 6s when N, or N ,  are not 
in interval [M,, M,], because the deviation between 
M, and Mq is bounded by 6s. In the worst case 
N, < M, < Mq < N, holds. The deviation between 
Np and N ,  is nevertheless bounded by 6s, because 
0, < N,, N ,  < 0,, and 0, - 0, 5 SS + 2prmaX and 
p adjusts its clock by 2prma, towards M,. 

6 Properties 

We summarize in this section the properties of the 
proposed convergence functions. In [3] the following 
lower bounds for the optimal maximum deviation 6,t 
and the optimal maximum correction I(,t are derived: 

By definition of the function d m p ,  a clock is at most 
changed by 2prmaX and thus the maximum correction 
of the DFTM is optimal. Because p is very small and 
p is in general bounded by 6 ( 1 +  p), [3] neglects sum- 
mands of the form 2pp. We derive in the Appendix 
that the deviation of correct clocks synchronized by 
the DFTM is bounded by 411 + 4prmaX + 2 p p .  Hence 
the maximumdeviation is optimal, because we neglect 
summands of the form 2pp. The drift rate of correct 
clocks is limited by p (see Appendix) and therefore the 
maximum drift rate of clocks is optimal [7]. We derive 
in the Appendix that the maximum discontinuity G 
of the DFTM is bounded by 4A + 4prmaX + 2 p p .  
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7 Conclusion 8 Appendix 

This paper proposes a new differential fault- 
tolerant midpoint convergence function for fault- 
tolerant internal clock synchronization in the presence 
of arbitrary process and clock failures. This function 
achieves an optimal maximum correction, an optimal 
maximum drift rate, and an optimal maximum devia- 
tion. The function is simple and easy to compute. 

The proposed convergence function bounds the 
drift rate pv of correct clocks by p, where p is the 
maximum drift rate of correct hardware clocks. The 
maximum correction is limited by 2prmax, where rmar 

is the maximum duration of a clock synchronization 
round. The maximum deviation and maximum dis- 
continuity achieved are both 4A+4prma, +2pP, where 
A is the maximum clock reading error. 
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8.1 General Assumptions 

Since p is in practice a very small quantity, we ig- 
nore terms of the order of p2 or higher, for example 
we equate (1 + p)-' with (1 - p )  and (1 - p ) - l  with 
(1 + P). 
8.2 Constraints for Constants 

The correctness proof of a clock synchronization al- 
gorithm based on the DFTM convergence function re- 
quires that constants 6 and 6s satisfy the constraints 
(A5) and (A6) given below. 

SS 2 4A + 2prmax + 2pP. (A51 
6 2 4 A +  4prmas + 2pP. (-46) 

8.3 Definitions 

We define the interval of correct clocks I k ( t )  to be 
P ( t )  A [ m i n { ~ f ( t )  I s correct ut t } ,  

m u z { C f ( t )  I s correct ut t } ] .  
Since a correct process q estimates a correct remote 
clock s with an error of up to A, we define the A- 
extended interval of correct clocks I i ( t )  to be 

[ m i n { ~ f ( t >  - A I s correct at t } ,  
muz{Cf(t) + A  I s correct ut t } ] .  

I i ( t )  & 

As the deviation of correct clocks is bounded by 6,  the 
length of I i ( t )  is bounded by 6 + 2A. 

The distance dis t (X,  Y )  between two intervals X 
and Y is 

dis t (X,  Y )  A if (muz(x )  < m i n ( ~ ) )  then 

else if (ma+') < m i n ( X ) )  then 

else 

min(Y) - "(X) 

m i n ( X )  - "(Y) 

0. 

We denote process p's approximation of the interval of 
correct clocks by Ti. Let 0 denote p's clock readings 
mapping at the end of round k: O(q) = C,(T;+',p). 
The interval Zpk is then: 

A k  

2 [min{T:+l - A ,  sor t (O)(F)} ,  
maz(T;+l + A ,  sort(O)(N - F - l)}]. 
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8.4 Outline 

A first lemma states that to bound the distance be- 
tween the midpoints of the approximations Zp" and Zp" 
(assuming that processes p and q would adjust their 
clocks at the same point in real-time) it is sufficient 
to ensure that 1) each approximation Zp" made by a 
correct process p is included in the corresponding A- 
extended interval of correct clocks, 2) the distance be- 
tween any two approximations Zp" and Zp" made by 
correct processes p and q is bounded by a constant d :  

Lemma L l :  t = ti+' = t:+' A p  and q correct at t A  
IlIi(t)ll 5 6 + 211 A Zp" C I i ( t )  A Zp" C I i ( t )  A 
dist(Zi, 1,") 5 d --+ Imid(Z,k) - mid(Z,k)l 5 v. 

Theorem T1 states that the bounded deviation re- 
quirement holds for each of the differential midpoint 
convergence functions whenever assumptions (A1)- 
(A6) and the following conditions (Cl)-(C3) hold for 
any two correct processes p and q :  

(C1) 1; c Ii(t,k+l) 

((72) 

(C3) 

dist(Ti,T,k) 5 211 for ti+' = tk+' q 

c p  k+l  ( p  tk+l 1 EIk(t;+l) 

We first show that conditions (Cl) and (C2) are 
valid. Condition (C3) obviously implies that the drift 
rate of clocks is bounded by the drift rate of hardware 
clocks. We show (C3) in the proof that the drift rate 
of clocks is bounded by p. 

Let 0 denote p's readings of all clocks at the end 
of round k and let Ti+' = C:(t). Because at most F 
clocks are faulty and the reading error is at most A, 
there exist two correct processes s,  r such that C, ( t )  - 
A 5 sor t (@)(F)  and C,.(t) + A  2 sort(@)(l\r - F - 1 ) .  
Hence, condition (Cl) holds. 

The failure assumption guarantees that at least 
2 F  + 1 clocks are correct. Hence, processes p and 
q can reject at most the F smallest and the F great- 
est correct clock values, but both do not reject the 
F + l t h  smallest correct clock value. Therefore, in- 
tervals Zp" and Zp" are at most 2A apart and condition 
(C2) holds, because the reading error for correct clocks 
is bounded by A. 

8.5 Drift Rate and Discontinuity 

ASSUME. 
1. Tt: = maz{Cq(t;) I q correct at tk} .  
2.  TP min{Cq(t;) I q correct at tk>. 
3. I i ( t )  and Zp" defined as above, i.e. ~~Ip"+~~~ 2 2A 

5. p is correct at time t 2 t i .  

A 

4. TZ - qp 5 6s. 

6.  Cp"(t) = Hp(t) + A:. 
7.  The drift rate of H p  and also of Ci( t )  is bounded 

8. Cp(t) = C,k(t) for t i  I t I ti+1. 
by P- 

9. zp" IfE(ti+l). 
A 

A 

A 

10. K = 2pr,,,; maximum correction. 

12. G = I< + R; maximum discontinuity. 
11. R = 6s. 

PROVE: V p  E W s , t  : t i  5 s 5 t A p correct at t :  
( 1  - 
(1 + p)(t - S) + G. 

- s )  - G I CP(t) - CP(S) 5 

PROOF: 
(1)l. PROVE: ~p E P : p correct at t 2 ti: 

(t  - ti)(l+ p) + R. 
(t- t;)U-P)-R I Cp(t>-Cp(t;) I 

T f + ( t k + j  - $ ) ( l - p )  5 CP(tk+j) 5 

PROOF: 
(2)1.  PROVE: V j ~ p  E P correct ut ti+j : 

Tt: + (ti'' - t i ) ( l +  p) 
PROOF: by induction over j .  

CASE: j = 0 
PROOF: holds by definition of TP and T i .  
CASE: j --$. j + 1 
PROOF: 

Because Zp"+j Ii+j(t;+j+') (9), there 
exist two correct clocks q and r with 
( 4 ) l .  C,k+j(t,k+j+') 2 mas(Zi+j)  - A  [9] 
(4)2. G';+j(t:+j+l) 5 min(Zi+j) + A  [9] 
(4)3. min(Zp"+J) + A 5 mid(Z:+j) 5 

(4)4. Cfk+j(tk+j+l) 5 mid(Zp"+j) 5 

(4)5. Q.E.D. 

maz(Z,") - A [3: IIZ,k+jII 2 2A] 

Cp"+j +') [ (4) 1, (4 )  2, (4)  31 

q p  + (ti+j+l - tk)(l - p) 5 

, - .  , - 
(2)2. PROVE: ~p E P : p correct at t 2 t i :  

T; + (t - tk)(l-  p )  I Cp(t) I T{ + 
(t - t,k>(l + PI 

PROOF: ( 2 ) I  and 7 implies ( 2 ) 2  
(2)3. Q.E.D. 

PROOF: 
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P )  + R [(3)1,(3)21 
(1)2. Q.E.D. 

(2) l .  We choose k such that ti 5 s < ti+'. 
The adjustment of clock C, at time ti+' is at most 
IC = G -  R. 
(2)2. ( t , k + l - ~ ) ( i - ~ ) - ( ~ - ~ )  L cP( t ,k+l) -cp(~)  5 

(ti+' - s)(l + p) + (G - R) [7,8] 

(t -tpk+')(l + p )  + R [(1)1] 
(2)3. (t - t,k+')(l - p)  - R I CP(t)  - CP(t,k+i) 5 

(2)4. ( t - s ) ( l -p) -G 5 Cp(t ) -CP(s)  5 ( t - ~ ) ( l +  
+ G [(2)2,(2)31 

8.6 LemmaL1 
A A (1) l .  ASSUME: 1. I = [ko, kl], k1 1 Lo, k = kl - ko. 
A A 2. x = [20,21],21 2 20,2 = 21 - 

20,x I. 
3. y = [YO,Y l I ,Y l  L Y0,Y  = Y1 - 

Y0,Y G I .  
4. d = yo - 2 1 .  

5. dist(X,Y) = d v dist(X, Y )  = 0 ;  

A A 

A 

[X and Y overlap or Y as riglit of 
X I  

PROVE: 
PROOF: 

ImidX - midY I 5 k + d i r ~ ( X 1 y ~  

(2) l .  PROVE: ~ + y <  k -  d 
PROOF: 

X + Y  
= (21 - To) + (Y1  - Y o )  [(1)1.2-31 
= y1 - 2 0  - (yo - 2 1 )  [reorder] 
5 k - d  [(1)1.2-41 

(2)2. Q.E.D. 
PROOF: 

(3) l .  midX = = w + ~ ~ + ~  2 = zo + 
[(I) 1.21 (3)2. midY = + = s i+d+r i+d+y  = 

(3)3. d = yo - 51 5 dist(X,Y) [(1)1.5] 

2 
20 + 2 + d +  5 [(1)1.2,(1)1.3] 

(3)4. Q.E.D. 
mid Y - mid X 

Proof: We show this lemma by induction over k. 
Case k = 0: (L2) is valid by assumption iniiial devia- 
tion (Al) .  
Case k --+ k + 1: First, we show that the extended 
midpoints defined by function emid of two correct 
processes is at time tk+l at most 6s apart. Sec- 
ond, we show that the deviation between two cor- 
rect clocks at the start of a round is bounded by 
6s. The induction assumption guarantees that (L3): 
IlIi(t')>ll I 6s + 2A. Without loss of generality, we 
can assume that ti+' I t;+'. Let Zpk = [xo,z1], 

Zp" = [yo, yl], and c k -ti+'. Moreover, let 2,"' 

MP = mid(Zi'), and Mq = mid(Z,k). Hence, z,"' 
[zo+c(l-p), q+c( l+p)] ,  because the drift ofp's hard- 
ware clocks is bounded by p. Furthermore, the length 
of interval I = [min{yo, 20 + c(1 - p ) } ,  maz(y1,zO + 
c(1 + p)}] is bounded by 6s + 2A + 2p(t;+l  - t'), be- 
cause of (Cl)  and (L3). The distance between 2: and 
Zpk' is bounded by 2A + 2p(t:+l - ti+'), because of 
(C2). We can conclude with lemma L1 that 
IMP - MP I 

[20 + H p ( t i + 1 )  - H P P  ( t k + 1 ) ,  21 + H p ( t i + 1 )  - H P P  ( t k + + 1 ) ] ,  
A 

A 

(1.1) = Imid(Z,k') - mid(z,k)l 

(1.2) I 2 
6 s + 2 A + 2 p ( t ~ + ' - t k ) + 2 A + 2 p ( t t ; + ' - t ~ + ' )  

Second, we show that ICp(tk)-Cq(tk)l 5 6s. The idea 
hereby is that we can use (1.2) to bound ICp(t;+l) - 
Cq(t:+')l by 6s. When p and q can adjust their clock 
to their extended midpoint this is obviously true. Oth- 
erwise, p's and/or q's extended midpoint is more than 
2pr,,, apart from p's/q's clock value at ti+l/t!+'. 
We only consider the case where q cannot adjust its 
clock to M9. The proof when p cannot adjust its 
clock to its extended midpoint is similar. We have 
to distinguish between two cases: (a) When Cq(t:+l) 
has a value between Mq and Cp(tf+l) then the devi- 
ation ICP(t;+l) - Cq(t;+l)l is obviously bounded by 
the bound given in (1.2). Therefore, 
lCP(tk) - Cq(tk)l 

(2.1) 6 ICp(t;+l) - cq(t;+l)l + 2p(tk+1 - tk+l) cl 
= 20 + + d + f - (20 + 5 )  [(3) 1,  (3)2] 6 s + 2 p ( t k + '  - t k ) + 4 A + 2 p ( t k + ' - t ~ + ' )  
= 4 + d + f  (2.2) = 2 

- - q + d  
5 k $ + d  [(2) 11 
- - y  

(2.3) 5 6s+4A+2prma,+2pP 

(2.4) = 
(2.5) = 6s 

2 

- < k + d i s t ( X , Y )  2 [(3)3] (b) When Mq has a value between CP(t;+l) and 
C9(t;+') then, because of condition (C3), lCP(t:+') - 
Cq(ttS1)l 5 6s + 2p(t;+' - tk) - 2pr,,, and hence 8.7 LemmaL2 
ICP(tk) - Wk>l 

(3.1) 5 6.y + 2 p ( t ~ + ' - t k ) - 2 p r , , , + 2 p ( t k f 1 - t ~ + ' )  Lemma L2r When conditions (Cl)-(C3) and as- 

(3.2) 5 6s sumptions (Al)-(A6) are valid, then 
VkVp,q: p , q  correct at t k  + ICp(tk) - Cq(tk)l I 6s. 
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8.8 Theorem T1 

Theorem Tl:  When (Cl)-(CS) and (A1)-(AG) are 
valid and processes p , q  are correct at t,  

ICP(t) - C&)l 56 
Proof There exists a k so that tk 5 t < tk+l. Without 
loss of generality, we can assume ti+' 5 t;+l. We con- 
sider first the case t k  i t < ti+'. With lemma ( L 2 )  we 
can conclude that ICp(t) - Cq(t)l 5 ICp(tk) - Cq(tk)l + 
2prm,, 5 S. Second, we consider the case tf+' _< 
t < t:+'. C;+'(t:+') E Ik( t f+')  by (C3). Therefore, 

holds. Third, we consider the case that t:+l 5 t .  
Similarly to the proof of lemma (L2)  one can show 
that ICp(t) - Cq(t)I 5 6.  0 

ICP(t) - C&)l 5 ICP(tk) - Cq(tk)l + 2P(t - t k )  I 6 

Meaning 
p's adjustment value in round k. 
maximum difference between t i  
and t!. 
virtual clock of process p. 
q's estimate of p's virtual clock at 
local time T .  
round clock of process p .  
set of clock time values. 
maximum execution time of a 
remote clock reading method. 
maximum internal deviation 
between virtual clocks. 
max. internal deviation between 
virtual clocks at the start of a round. 
maximum clock reading error. 
maximum discontinuity of virtual 
clocks. 
hardware clock of process p .  
number of time servers, i.e. N = IPl. 
set of time-server processes. 
processes, i.e. p ,  q, r ,  s E 'P. 
minimum duration of a round. 
maximum duration of a round. 
rank of process p ; 
r a n k ( p )  E (0, .., N - 1). 
max. drift rate of hardware clocks. 
max. drift rate of virtual clocks. 
start of the k-th round for all correct 
processes. 
start of the k-th of process p .  
local time at the start of the k-th 
round of Drocess w. 
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