
An Optimal Internal Clock Synchronization Algorithm*

Christof Fetzer and Flaviu Cristian
Department of Computer Science & Engineering

University of California, San Diego
La Jolla, CA 92093-0114

Abstract

We propose an optimal convergence function for
achieving fault-tolerant, internal clock synchroniza,
tion in the presence of arbitrary process and clock fail-
ures. The diflerential fault-tolerant midpoint conver-
gence function guarantees an optimal maximum cor-
rection, an optimal maximum drift rate, and an opti-
mal maximum deviation.

The proposed convergence function is simple and
easy to compute. It bounds the maximum drift rate of
correct clocks by the maximum drift rate of a correct
hardware clock. The maximum correction is limited
by the maximum drift between two correct hardware
clocks during one round. The maximum deviation is
approximately 44 + ~PT,,, , where A is the maximum
remote clock reading error, p is the maximum drift
rate of a correct hardware clock and rman is the max-
imum duration of a synchronization round.

1 Introduction

Tight internal clock synchronization is essential for
many real-time and fault-tolerant applications. Inter-
nal clock synchronization requires that (1) at any time
the deviation between two correct clocks be bounded
by a constant 6 (called the maximum deviation) and
(2) the drift rate of clocks with respect to real-time
be bounded by a constant pv. Clock synchronization
is a non-trivial problem because of the need to toler-
ate failures. Since in this paper we are only interested
in internal clock synchronization algorithms capable
of masking arbitrary clock and process failures, when
we talk about a synchronization algorithm, we mean

'This work was partially supported by grants from the Air
Force Office of Scientific Research, the German Academic Ex-
change Service (DAAD), the Powell Foundation, Sun Microsys-
tems, and the Microelectronics Innovation and Computer Re-
search Opportunities in California

0-7803-2680-6/95/$4.00 0 1995 IEEE
187

an internal clock synchronization algorithm tolerant
of arbitrary failures.

Most synchronization algorithms can be described
as instances of a single abstract, generic clock syn-
chronization algorithm by using the notion of a con-
vergence function introduced in [SI. This generic algo-
rithm can be succintly described as follows: at the end
of each synchronization round each process reads the
clocks of all processes and then adjusts its clock value
for the next round by applying a convergence function
to the clock readings of the current round. A synchro-
nization algorithms which can be obtained from the
above generic algorithm by instantiating some con-
crete function for the abstract notion of a convergence
function will be termed a Convergence function based
algorithm.

At any point in time, the value of a synchronized
clock is defined as the sum of the current value of a
hardware clock and an adjustment variable. Because
hardware clocks drift apart from real-time and from
each other, the adjustment variable of a clock has to
be updated periodically. The maximum change of a
clock value that a synchronization algorithm can cause
to occur during an adjustment is called the maxamum
correction. The adjustments of the clocks together
with the drift of the hardware clocks introduce an er-
ror when a synchronized clock is used to measure a
time interval. This error can be bounded by a con-
stant part, which is called the maximum discontinuity,
and a part which depends on the length of the time
interval which is measured. This second part is called
the maximum drift rate of the synchronized clocks.

When clocks are adjusted discretely, that is, the ad-
justment variables are only changed once per round,
the synchronized clocks cannot be guaranteed to be
monotonic. When using a convergence function with
an optimal maximum correction the non-monotonicity
of tightly synchronized clocks becomes in general neg-
ligible, since the time to read a clock is typically longer
than the optimal maximum correction. The proposed
convergence function is also useful for synchronization

algorithms based on statistical remote clock reading
[5]. Since such statistical reading methods do not pro-
vide any a priori or computed upper bound on the
error made when reading a remote clock, the synchro-
nized clocks can be repeatedly adjusted forth and back
with large corrections, because of excessive clock read-
ing errors. By minimizing the correction of the clocks
this undesired behavior can be reduced.

We propose a differential fault-tolerant midpoint
convergence function which provides an optimal m a -
imum correction, an optimal maximum drift rate, and
an optimal maximum deviation between clocks. The
differential fault-tolerant midpoint convergence func-
tion is based on the fault-tolerant midpoint function
proposed in [4], and improves upon it, since the fault-
tolerant midpoint function, as proposed in [4], does
not provide an optimal maximum correction, an op-
timal maximum drift, or an optimal maximum devia-
tion.

2 System Model

We consider a distributed system consisting of
nodes hosting time server processes. Each such pro-
cess has access to the local hardware clock of its node.
In this paper we assume the existence of a remote
clock reading method which can always read a correct
remote clock with an error not greater than an a pri-
ori given maximum reading error. This allows us to
abstract from the communicat,ion mechanisms used by
the time server processes to read each other’s clocks.
We also require the existence of an upper bound rmaZ
on the maximum time between two successive clock
synchronizations. This allows us to abstract from con-
sidering execution time and scheduling delay issues.
We denote the set of time server processes by ‘P and
the number of such processes by N = \PI. A

2.1 Clocks and Clock Readings

We represent a hardware clock as a total mapping
from real-time to clock time: H p denotes process p’s
hardware clock. All hardware clocks have a finite gran-
ularity, but we assume that this granularity is negligi-
ble. A hardware clock can drift apart from real time,
but the drift of correct hardware clocks is bounded
by the maximum drip rate p. Let constant to refer
to the earliest point in real time for which the clocks
must be synchronized. Process p’s hardware clock is
correct at time t l , when for all intervals [s,t] [to, t l]

A Iiardware clock failure occurs when the bounded
drift condition is violated. For most quartz clocks
available in modern computers, the maximum drift
rate p is of the order of Since p is such a small
quantity, we will ignore terms of the order of p2 or
higher, for example we will equate (l+p)-’ with (1-p)
and (1 - p)-’ with (1 + p).

In general, processes do not directly manipulate the
value or the speed of hardware clocks. Instead, each
process maintains a virtual clock by adding to the un-
derlying hardware clock an udjustment function. In
this paper we consider only discrete adjustment func-
tions: these are step functions of time. We use the
term clock to denote a virtual clock. Process p’s clock
is represented by a total mapping C, from real time
to clock time.

To achieve synchronization, processes estimate the
clocks of other processes by using a remote clock read-
ing method. Such a method provides for any process p
an upproximation of any process’ clock. We denote the
approximation that p computes at its local time T of
the clock of process q by C, (T ,p) . We assume that
the remote clock reading method bounds the clock
reading error by A, the muximum reading error: when
T = CP(t) and processes p and q are correct at time t ,
then

We assume the local reading error is negligible, i.e.
when process p is correct at time t , then

CP(t) = wQ4.
2.2 Failure Hypotheses

Each correct process has by definition a correct
hardware clock. The total number of processes partic-
ipating in the clock synchronization must be at least
3F+1 [2], where F denotes the maximum number of
processes that can be faulty. For simplicity, we assume
that no failed process recovers. We assume that pro-
cesses and clocks fail in arbitrary ways. The reading
error for approximating a clock of a process which has
suffered an arbitrary failure is not bounded.

3 Requirements

An internal clock synchronization service can be
specified by two requirements. The first, called the

188

bounded deviation requirement, bounds the deviation
between correct clocks by a constant 6 (maximum de-
viation): for any processes p and q correct at time
t 2 to,

IC& - C&)l 55.
Recall that constant to refers the earliest point in real
time for which the clocks must be synchronized.

The second, the clock drift requirement, bounds the
drift rate of correct clocks by a constant p,, << 1: for
any process p correct in interval [t, U] , where t o 5 t 5
211

The constant G is called the maximum discontinuity
of a clock. It accounts for the granularity and the
adjustments of the clocks. Synchronization algorithms
with p,, = p have an optimal clock drift rate [7].

A synchronization algorithm is correct when it sat-
isfies the bounded deviation and clock drift require-
ments above.

(l-pu)(u-t)-G< Cp(u) - Cp(t) < (l+pu)(u-t)+G.

4 Overview

Clocks are synchronized in rounds, where correct
processes approximately agree on the time when a
round starts. At the end of each round, after read-
ing all clocks, each correct clock is adjusted so that it
becomes approximately synchronized with the others.
The clock readings of a process p are the approxima-
tions of the values displayed by all clocks by p at the
end of a round. These are represented by a mapping
from processes to clock values. For example, for a
clock reading 0 the approximation of process q’s clock
is 0(q).

The adjustment applied by a process to its clock
at the end of a round is computed by applying a con-
vergence function to the clock readings obtained in
that round. Thus, a convergence function c f n maps a
process and a clock readings mapping to a clock value.
When 0 represents the clock readings mapping of pro-
cess p at the end of the current round, then p’s clock
value at the start of the next round is c f n (p , 0).

4.1 Algorithm

We first recall how a convergence function can be
used to synchronize clocks. A pseudocode descrip-
tion of a clock synchronization algorithm that uses a
generic convergence function c f n is given in figure 1.
Each process executes a copy of this algorithm. The
function C (line 4) represents the clock of the execut-
ing process. Process p’s clock is defined by the sum
of p’s current adjustment value stored in the variable

const Time D, R;
var Time A, T;

function Time C() { return H() + A; 1
function void init () {

(A,T) = InitialAdjustement();
schedule (s y n c h r o n i z e r , R, T - D);

1
function void synchronizer() {

Time @[NI;

parbegin {

} parend
A = A + (cfn(myid(), 0) - T);
T = T + R ;

Vq E P : O [r a n k (q)] = C,(T, m y i d ()) ;

1

Figure 1 : Clock Synchronization Protocol.

A (line 2) and the current value of the hardware clock
which is returned by the function H (line 4).

The length of a round is denoted by the constant
R. The function init determines the initial adjustment
value and the first time the clock has to be readjusted
(line 7). The clocks are periodically adjusted by the
execution of the s y n c h r o n i z e r function (lines 11-20).
This function is scheduled for execution every R time
unih starting at local time T - D (line S), where con-
stant D denotes the maximum clock time needed to
read a remote clock. In other words, when we neglect
the execution time except for the time needed to read
the remote clocks, the clock is adjusted at local time
T or before T . The scheduling is based on the clock
represented by the local function C. Function m y i d re-
turns the id of the executing process and the function
call C,(T, m y i d ()) returns the approximation of pro-
cess q’s clock at time T. Recall that the system model
bounds the maximum error approximating a correct
remote clock by A. Array 0 contains the approxima-
tions of the values of all clocks at local time T (line 16).
The convergence function calculates the value of the
clock of a process at the start of the next round (line
18): the old value T is replaced by c f n (m y i d () , 0).
This is achieved by changing the adjustment value A
to A + c f n (m y i d () , 0) - T . Finally, T is incremented
and refers now to the end of the next round (line 19).

189

4.2 Notation

To analyze this algorithm, we use the following well-
known notations: t,” denotes the start of p’s k-th syn-
chronization round. For every round k and every cor-
rect process p , the clock synchronization algorithm de-
fines a new adjustment value which we denote by A i .
The clock in round k of process p is defined as the
sum of the current value of p’s hardware clock and the
adjustment value Ai :

At the end of each round each process tries to es-
timate the values of all clocks. Two successive rounds
can overlap, i.e. a process can start round k + 1 while
another process is still in round k. At the end of round
k process p tries to approximate the remote clocks with
respect to the adjustment values of round k and not
with respect to the adjustment values of round k + 1.
This is achieved by using the concept of a round clock.
The round clock Cpk of process p for round k is defined
as:

Cp(t) i HP(t) + A i .

We denote Tpk+l the end of round k with respect to

round clock Cpk: T:+’ e Cpk(tf+’).

4.3 Assumptions

To prove that a convergence function based inter-
nal clock synchronization algorithm is correct one has
to make the following standard assumptions [SI in ad-
dition to those described in our system model section.

4.3.1 Initialization

At the start of the first round, all correct clocks
must be within 6s of each other. Let term t k de-
note the real time when all correct processes have
just started their k-th synchronization round: tk
maz(tpk I p correct ut t ime t,”}. Formally, the first
assumption (A l) can be expressed as: Fur any pro-
cesses p and q that are correct at real time to ,

lc;(to) - c;(to)>l 5 6s.

4.3.2 Interval Constraints

Assumption (A2) bounds the length of a clock syn-
chronization round by given constants rmin and r,,,:
For any process p that is correct a t time t:+’)

rmin 5 t,k+l - ti 5 r,,,.

Assumption (A3) bounds the real-time delay be-
tween the beginning of the same round for different
processes by an a priori given constant p. For any
processes p and q correct at times t,” and t t7 respec-
tively:

It; -til 5 P.
The overlap of rounds is restricted by assumption

(A4) :
P 5 rmin,

5 Differential Midpoint Function

In this section we introduce the differential fuult-
tolerant midpoznt convergence function (DFTM). This
convergence function improves the fault-tolerant mid-
point function proposed in [4] by providing optimal
maximum correction, optimal maximum drift rate,
and optimal maximum deviation.

5.1 Definitions

Let C T refer to the set of clock values. A clock
reading returns a clock value for each process, thus, it
is a mapping with signature P i CI. We refer to the
set of all clock readings by C R . Function sort takes
a clock reading as input and returns a sorted array of
the given clock values. Since an array of clock values
is represented by a function with signature (0, .., N -
1) --+ C 7 , the signature of sort is:

sort : C R i ((0, .., N - 1) + C T)

Function sort guarantees for each clock reading 0 that
sort(@) is a permutation of 0 and that the valuw in
the returned array are nondecreasing:

V@ E CR : V i E (0, .., N - 2) :

sort(@)(i) 5 sort(@)(i + 1).

The sign function is defined by:

1 i f z > O
sign(z) = 0 if 2 = 0

A { -1 i f z < O

The midpoint of an interval [z, y] is defined by:

A convergence function takes as input parameters
the identity of a process p and a clock reading and
returns the new value of p’s clock. Thus, the signature
of a convergence function c f n is:

c f n : (P x cn) i c7

190

5.2 Fault-Tolerant Midpoint Function

Because the proposed convergence function is based
on the fault-tolerant midpoint convergence function
(FTM) described in [4], we first recall the basic ideas
of FTM and also give examples illustrating that FTM
is not optimal. The FTM function is defined as:

F T M (~ , e) b mid(sor t (e) (F) , sor t (e) (N - F - 1))

The intuition behind this convergence function is as
follows; because at most F clocks are faulty and the
clock reading error for correct clocks is at most A, a
process p can reject the F smallest and the F greatest
clock values to ensure that the length of the interval
I, = [sort(O)(F), sort(@)(N - F - l)] spanned by the
remaining clock values is bounded. In particular, the
following correct interval condataon holds: there exist
two correct processes q and r such that the F + 1st
smallest approximated clock value sort(O)(F) is at
most A smaller than q’s clock value and the (N-F-1)th
greatest clock value sort(@)(N - F - 1) is at most A
greater than r’s clock value because at most F of the
F + 1 smallest (or greatest) clock values can belong to
faulty clocks. This implies that the length of the inter-
val I, is bounded by the maximum deviation between
correct clocks 5 plus 2 4 where the last term accounts
for the clock reading errors. Recall that the number
of clocks participating in synchronization must be at
least 3F + 1. Thus, there exists at least 2F + 1 cor-
rect clocks and a process can reject at most the F th
smallest and the F t h greatest correct clock values, but
it cannot rejecting the F + l th smallest correct clock
value. This bounds the distance between the intervals
Ip and I, of two correct processes p and s by about 2 4
and this in turn can be used together with the bounded
length of the two intervals to show that F T M bounds
the deviation between any correct clocks.

The FTM does not provide an optimal drift rate for
the synchronized clocks, because it can happen that
all clocks have initially the same value, all hardware
clocks drift with the maximum drift rate p, and the
reading error is always +A. In this case all clocks
are incremented in each round by A. In other words,
the effective drift rate during each round of length r is
p+). The maximum drift rate of clocks synchronized
by FTM is therefore at least:

A

A
Pu 2 P + - ’

T min

Recall that 6s denotes the maximum deviation of
the clocks of two correct processes at the start of a
round. At the end of a round the clocks of two correct

processes can be up to 6s+2prmaX apart and the read-
ing error can be up to A. A process p can thus adjust
its clock by up to c = 6s + 2prma, + A because p’s own
clock value can be c smaller than the approximations
of all other clocks and p will hence increase its clock
by c. The optimal maximum correction is 2prmax [3].
Thus, the FTM does not provide optimal maximum
correction.

Let us now show why the maximum deviation pro-
vided by the fault-tolerant midpoint convergence func-
tion is not optimal. We partition the set of processes
into three sets L , M , and U with ILI = 1171 = F
and IMI = N - 2 F > F , such that the values of all
hardware clocks in each set are the same at all times.
Let us assume that the hardware clocks of processes
in M drift with maximum allowable drift rate p, the
hardware clocks of processes in L drift with minimum
allowable drift rate -p , and the hardware clocks of
processes in U are faulty and they drift with 2p. Fur-
thermore, suppose that at the start of the first round,
the clocks of processes in M show a value which is ex-
actly 6s greater than the ones in L and the clocks of
processes in U have initially a value which is exactly
6s greater than the ones in M . Let now the processes
in M read each others clocks with a maximum error of
+A, let them adjust their clocks before the processes
in L , and recall that rounds are at most rmaz long.
The clocks in M are adjusted by 4 because they re-
ject the clocks of processes in L and U . Thus, the
maximum deviation between correct clocks is at least
4.511 + 4prmax. The tight lower bound for the maxi-
mum deviation between clocks is Sop* = 4A + 4p~max
[3]. Therefore, the maximum deviation of the fault-
tolerant midpoint convergence function FTM is not
optimal.

A

5.3 Differential Fault-Tolerant Midpoint
Function

To avoid non optimal drift rate and non optimal
maximum deviation, a convergence function has to en-
sure that the new clock value of a process p is neither
great,er nor smaller than the minimum and maximum
of the old correct clock values. That is, we must en-
sure that there exists two correct processes so that
the round clocks which they use during the last round
show a value not smaller, respectively not greater,
than p’s new clock value at the time p adjusts its
clock (we call this the nested adjustment condition).
Because of condition correct interval, there exists two
correct processes q and r such that q’s clock value is
at most A greater than min(Ip) and r’s clock value

191

is at most A smaller than maz(1 ,) . When process p
would only adjust its clock to values which are at least
A apart from the boundaries of the interval I,, then
p could ensure the nested adjustment condition. The
problem is that the length of I , could be smaller than
2A. Let us assume that p adjusts its clock at local time
T . Because a process p can read its own clock with a
negligible error, p can extend I, by [T-A, T+A] with-
out violating the correct interval condition. Therefore,
the extended interval has always a length of 2 8 and
the midpoint of this interval guarantees the nested ad-
justment condition (see [l] for more details).

We use this idea to define an extended midpoint
function emid. It computes, for a given time T and an
array Y of N clock values, the midpoint of the union
ofthe intervals [Y (F) , Y (N - F - 1)] and [T-A,T+A]:

A emid(T,Y) = m i d (m i n (T - h , Y (F) } ,
maz{T + A, Y (N - F - 1))) .

To bound the correction of clocks, we use the fact
that two correct clocks can drift apart during one
round by at most 2prmax. This implies that each pro-
cess has to adjust its clock by up to 2prmax, because
the following situation could occur: the clocks are par-
titioned into three sets L , M , and U like above; it is
then possible that no process in M using emid changes
its clock and hence the processes in L have to adjust
their clocks by 2r,,,. The direction towards which a
process should adjust its clock is determined by the
extended midpoint function. We use this idea in the
definition of function d m p which has the same param-
eters as the function emid.

A
d m p (T , Y) = i f lemid(T, Y) - TI 5 2prmaX then

else
emid(T, Y)

T + sign(emid(T,Y) - T)2prmax.

The differential fault-tolerant midpoint conver-
gence function DFTM makes use of d m p to calculate
the new clock value for a given process p and a clock
reading 0, where process p’s own clock shows 0 (p) at
the end of the round and the function sor t returns a
sorted array of the clock values in 0:

5.4 Correctness Proofs

We show in the Appendix why the differential fault-
tolerant midpoint convergence function is correct, i.e.
a clock synchronization algorithm using DFTM and

which guarantees assumptions (Al)-(A4) satisfies the
clock drift and bounded deviation requirements. First,
we prove that the extended midpoints calculated by
two correct processes are at, most 6s apart, where
6s = 4A + 2prmax + 2 p p . Second, we use t,his proof to
show that it is sufficient to adjust a clock by 2prmaz.
The problem here is that the restriction of the correc-
tion of the clocks by 2prm,, does not allow to use the
bound for the deviation between the extended mid-
points directly, because the clocks are not necessarily
adjusted to the extended midpoints. The proof given
in the Appendix is based on the following idea: let
p and q be two correct processes and be M,, M, the
extended midpoints calculated by p , q at the end of
round k. Furthermore, let us assume that p and q
change their clocks from their old values 0,, 0, to the
new values N,, N , at the same point in real-time and
that M, 5 M,. The deviation between Np and Nq
could only be greater than 6s when N, or N , are not
in interval [M,, M,], because the deviation between
M, and Mq is bounded by 6s. In the worst case
N, < M, < Mq < N, holds. The deviation between
Np and N , is nevertheless bounded by 6s, because
0, < N,, N , < 0,, and 0, - 0, 5 SS + 2prmaX and
p adjusts its clock by 2prma, towards M,.

6 Properties

We summarize in this section the properties of the
proposed convergence functions. In [3] the following
lower bounds for the optimal maximum deviation 6,t
and the optimal maximum correction I(,t are derived:

By definition of the function d m p , a clock is at most
changed by 2prmaX and thus the maximum correction
of the DFTM is optimal. Because p is very small and
p is in general bounded by 6 (1 + p), [3] neglects sum-
mands of the form 2pp. We derive in the Appendix
that the deviation of correct clocks synchronized by
the DFTM is bounded by 411 + 4prmaX + 2 p p . Hence
the maximumdeviation is optimal, because we neglect
summands of the form 2pp. The drift rate of correct
clocks is limited by p (see Appendix) and therefore the
maximum drift rate of clocks is optimal [7]. We derive
in the Appendix that the maximum discontinuity G
of the DFTM is bounded by 4A + 4prmaX + 2 p p .

192

7 Conclusion 8 Appendix

This paper proposes a new differential fault-
tolerant midpoint convergence function for fault-
tolerant internal clock synchronization in the presence
of arbitrary process and clock failures. This function
achieves an optimal maximum correction, an optimal
maximum drift rate, and an optimal maximum devia-
tion. The function is simple and easy to compute.

The proposed convergence function bounds the
drift rate pv of correct clocks by p, where p is the
maximum drift rate of correct hardware clocks. The
maximum correction is limited by 2prmax, where rmar

is the maximum duration of a clock synchronization
round. The maximum deviation and maximum dis-
continuity achieved are both 4A+4prma, +2pP, where
A is the maximum clock reading error.

References

F. Cristian and C. Fetzer. Fault-tolerant internal
clock synchronization. In Proceedings of the Thir-
teenth Symposium on Reliable Distributed Systems,
Dana Point, Ca., Oct 1994.

D. Dolev, J . Y. Halpern, and R. Strong. On the
possibility and impossibility of achieving clock syn-
chronization. Journal of Computer and System
Science, 32(2):230-250, 1986.

C. Fetzer and F. Cristian. Optimal convergence
function based clock synchronization. In Proceed-
ings of Fourtheenth ACM Symposium on Princi-
ples of Distributed Computing, Ottawa, CA, Aug
1995.

J . Lundelius-Welch and N. Lynch. A new fault-
tolerant algorithm for clock synchronization. In-
formation and Computation, 77(1):1-36, 1988.

D. L. Mills. Internet time synchronization: the
network time protocol. IEEE Truns. Communica-
tions, 39(10):1482-1493, Oct 1991.

F. Schneider. Understanding protocols for Byzan-
tine clock synchronization. Technical Report 87-
859, Dept of Computer Science, Cornel1 Univer-
sity, Aug 1987.

T. K. Srikanth and S . Toueg. Optimal clock syn-
chronization. Journal of the ACM, 34(3):626-645,
Jul 1987.

8.1 General Assumptions

Since p is in practice a very small quantity, we ig-
nore terms of the order of p2 or higher, for example
we equate (1 + p)-' with (1 - p) and (1 - p) - l with
(1 + P).
8.2 Constraints for Constants

The correctness proof of a clock synchronization al-
gorithm based on the DFTM convergence function re-
quires that constants 6 and 6s satisfy the constraints
(A5) and (A6) given below.

SS 2 4A + 2prmax + 2pP. (A51
6 2 4 A + 4prmas + 2pP. (-46)

8.3 Definitions

We define the interval of correct clocks I k (t) to be
P (t) A [m i n { ~ f (t) I s correct ut t } ,

m u z { C f (t) I s correct ut t }] .
Since a correct process q estimates a correct remote
clock s with an error of up to A, we define the A-
extended interval of correct clocks I i (t) to be

[m i n { ~ f (t > - A I s correct at t } ,
muz{Cf(t) + A I s correct ut t }] .

I i (t) &

As the deviation of correct clocks is bounded by 6, the
length of I i (t) is bounded by 6 + 2A.

The distance dis t (X, Y) between two intervals X
and Y is

dis t (X, Y) A if (muz(x) < m i n (~)) then

else if (ma+') < m i n (X)) then

else

min(Y) - "(X)

m i n (X) - "(Y)

0.

We denote process p's approximation of the interval of
correct clocks by Ti. Let 0 denote p's clock readings
mapping at the end of round k: O(q) = C,(T;+',p).
The interval Zpk is then:

A k

2 [min{T:+l - A , sor t (O)(F)} ,
maz(T;+l + A , sort(O)(N - F - l)}].

193

8.4 Outline

A first lemma states that to bound the distance be-
tween the midpoints of the approximations Zp" and Zp"
(assuming that processes p and q would adjust their
clocks at the same point in real-time) it is sufficient
to ensure that 1) each approximation Zp" made by a
correct process p is included in the corresponding A-
extended interval of correct clocks, 2) the distance be-
tween any two approximations Zp" and Zp" made by
correct processes p and q is bounded by a constant d :

Lemma L l : t = ti+' = t:+' A p and q correct at t A
IlIi(t)ll 5 6 + 211 A Zp" C I i (t) A Zp" C I i (t) A
dist(Zi, 1,") 5 d --+ Imid(Z,k) - mid(Z,k)l 5 v.

Theorem T1 states that the bounded deviation re-
quirement holds for each of the differential midpoint
convergence functions whenever assumptions (A1)-
(A6) and the following conditions (Cl)-(C3) hold for
any two correct processes p and q :

(C1) 1; c Ii(t,k+l)

((72)

(C3)

dist(Ti,T,k) 5 211 for ti+' = tk+' q

c p k+l (p tk+l 1 EIk(t;+l)

We first show that conditions (Cl) and (C2) are
valid. Condition (C3) obviously implies that the drift
rate of clocks is bounded by the drift rate of hardware
clocks. We show (C3) in the proof that the drift rate
of clocks is bounded by p.

Let 0 denote p's readings of all clocks at the end
of round k and let Ti+' = C:(t). Because at most F
clocks are faulty and the reading error is at most A,
there exist two correct processes s, r such that C, (t) -
A 5 sor t (@)(F) and C,.(t) + A 2 sort(@)(l\r - F - 1) .
Hence, condition (Cl) holds.

The failure assumption guarantees that at least
2 F + 1 clocks are correct. Hence, processes p and
q can reject at most the F smallest and the F great-
est correct clock values, but both do not reject the
F + l t h smallest correct clock value. Therefore, in-
tervals Zp" and Zp" are at most 2A apart and condition
(C2) holds, because the reading error for correct clocks
is bounded by A.

8.5 Drift Rate and Discontinuity

ASSUME.
1. Tt: = maz{Cq(t;) I q correct at tk} .
2. TP min{Cq(t;) I q correct at tk>.
3. I i (t) and Zp" defined as above, i.e. ~~Ip"+~~~ 2 2A

5. p is correct at time t 2 t i .

A

4. TZ - qp 5 6s.

6. Cp"(t) = Hp(t) + A:.
7. The drift rate of H p and also of Ci(t) is bounded

8. Cp(t) = C,k(t) for t i I t I ti+1.
by P-

9. zp" IfE(ti+l).
A

A

A

10. K = 2pr,,,; maximum correction.

12. G = I< + R; maximum discontinuity.
11. R = 6s.

PROVE: V p E W s , t : t i 5 s 5 t A p correct at t :
(1 -
(1 + p)(t - S) + G.

- s) - G I CP(t) - CP(S) 5

PROOF:
(1)l. PROVE: ~p E P : p correct at t 2 ti:

(t - ti)(l+ p) + R.
(t- t;)U-P)-R I Cp(t>-Cp(t;) I

T f + (t k + j - $) (l - p) 5 CP(tk+j) 5

PROOF:
(2)1. PROVE: V j ~ p E P correct ut ti+j :

Tt: + (ti'' - t i) (l + p)
PROOF: by induction over j .

CASE: j = 0
PROOF: holds by definition of TP and T i .
CASE: j --$. j + 1
PROOF:

Because Zp"+j Ii+j(t;+j+') (9), there
exist two correct clocks q and r with
(4) l . C,k+j(t,k+j+') 2 mas(Zi+j) - A [9]
(4)2. G';+j(t:+j+l) 5 min(Zi+j) + A [9]
(4)3. min(Zp"+J) + A 5 mid(Z:+j) 5

(4)4. Cfk+j(tk+j+l) 5 mid(Zp"+j) 5

(4)5. Q.E.D.

maz(Z,") - A [3: IIZ,k+jII 2 2A]

Cp"+j +') [(4) 1, (4) 2, (4) 31

q p + (ti+j+l - tk)(l - p) 5

, - . , -
(2)2. PROVE: ~p E P : p correct at t 2 t i :

T; + (t - tk)(l- p) I Cp(t) I T{ +
(t - t,k>(l + PI

PROOF: (2) I and 7 implies (2) 2
(2)3. Q.E.D.

PROOF:

194

P) + R [(3)1,(3)21
(1)2. Q.E.D.

(2) l . We choose k such that ti 5 s < ti+'.
The adjustment of clock C, at time ti+' is at most
IC = G - R.
(2)2. (t , k + l - ~) (i - ~) - (~ - ~) L cP(t ,k+l) -cp(~) 5

(ti+' - s)(l + p) + (G - R) [7,8]

(t -tpk+')(l + p) + R [(1)1]
(2)3. (t - t,k+')(l - p) - R I CP(t) - CP(t,k+i) 5

(2)4. (t - s) (l -p) -G 5 Cp(t) -CP(s) 5 (t - ~) (l +
+ G [(2)2,(2)31

8.6 LemmaL1
A A (1) l . ASSUME: 1. I = [ko, kl], k1 1 Lo, k = kl - ko.
A A 2. x = [20,21],21 2 20,2 = 21 -

20,x I.
3. y = [YO,Y l I ,Y l L Y0,Y = Y1 -

Y0,Y G I .
4. d = yo - 2 1 .

5. dist(X,Y) = d v dist(X, Y) = 0 ;

A A

A

[X and Y overlap or Y as riglit of
X I

PROVE:
PROOF:

ImidX - midY I 5 k + d i r ~ (X 1 y ~

(2) l . PROVE: ~ + y < k - d
PROOF:

X + Y
= (21 - To) + (Y1 - Y o) [(1)1.2-31
= y1 - 2 0 - (yo - 2 1) [reorder]
5 k - d [(1)1.2-41

(2)2. Q.E.D.
PROOF:

(3) l . midX = = w + ~ ~ + ~ 2 = zo +
[(I) 1.21 (3)2. midY = + = s i+d+r i+d+y =

(3)3. d = yo - 51 5 dist(X,Y) [(1)1.5]

2
20 + 2 + d + 5 [(1)1.2,(1)1.3]

(3)4. Q.E.D.
mid Y - mid X

Proof: We show this lemma by induction over k.
Case k = 0: (L2) is valid by assumption iniiial devia-
tion (Al) .
Case k --+ k + 1: First, we show that the extended
midpoints defined by function emid of two correct
processes is at time tk+l at most 6s apart. Sec-
ond, we show that the deviation between two cor-
rect clocks at the start of a round is bounded by
6s. The induction assumption guarantees that (L3):
IlIi(t')>ll I 6s + 2A. Without loss of generality, we
can assume that ti+' I t;+'. Let Zpk = [xo,z1],

Zp" = [yo, yl], and c k -ti+'. Moreover, let 2,"'

MP = mid(Zi'), and Mq = mid(Z,k). Hence, z,"'
[zo+c(l-p), q+c(l+p)] , because the drift ofp's hard-
ware clocks is bounded by p. Furthermore, the length
of interval I = [min{yo, 20 + c(1 - p) } , maz(y1,zO +
c(1 + p)}] is bounded by 6s + 2A + 2p(t;+l - t'), be-
cause of (Cl) and (L3). The distance between 2: and
Zpk' is bounded by 2A + 2p(t:+l - ti+'), because of
(C2). We can conclude with lemma L1 that
IMP - MP I

[20 + H p (t i + 1) - H P P (t k + 1) , 21 + H p (t i + 1) - H P P (t k + + 1)] ,
A

A

(1.1) = Imid(Z,k') - mid(z,k)l

(1.2) I 2
6 s + 2 A + 2 p (t ~ + ' - t k) + 2 A + 2 p (t t ; + ' - t ~ + ')

Second, we show that ICp(tk)-Cq(tk)l 5 6s. The idea
hereby is that we can use (1.2) to bound ICp(t;+l) -
Cq(t:+')l by 6s. When p and q can adjust their clock
to their extended midpoint this is obviously true. Oth-
erwise, p's and/or q's extended midpoint is more than
2pr,,, apart from p's/q's clock value at ti+l/t!+'.
We only consider the case where q cannot adjust its
clock to M9. The proof when p cannot adjust its
clock to its extended midpoint is similar. We have
to distinguish between two cases: (a) When Cq(t:+l)
has a value between Mq and Cp(tf+l) then the devi-
ation ICP(t;+l) - Cq(t;+l)l is obviously bounded by
the bound given in (1.2). Therefore,
lCP(tk) - Cq(tk)l

(2.1) 6 ICp(t;+l) - cq(t;+l)l + 2p(tk+1 - tk+l) cl
= 20 + + d + f - (20 + 5) [(3) 1, (3)2] 6 s + 2 p (t k + ' - t k) + 4 A + 2 p (t k + ' - t ~ + ')
= 4 + d + f (2.2) = 2

- - q + d
5 k $ + d [(2) 11
- - y

(2.3) 5 6s+4A+2prma,+2pP

(2.4) =
(2.5) = 6s

2

- < k + d i s t (X , Y) 2 [(3)3] (b) When Mq has a value between CP(t;+l) and
C9(t;+') then, because of condition (C3), lCP(t:+') -
Cq(ttS1)l 5 6s + 2p(t;+' - tk) - 2pr,,, and hence 8.7 LemmaL2
ICP(tk) - Wk>l

(3.1) 5 6.y + 2 p (t ~ + ' - t k) - 2 p r , , , + 2 p (t k f 1 - t ~ + ') Lemma L2r When conditions (Cl)-(C3) and as-

(3.2) 5 6s sumptions (Al)-(A6) are valid, then
VkVp,q: p , q correct at t k + ICp(tk) - Cq(tk)l I 6s.

195

8.8 Theorem T1

Theorem Tl: When (Cl)-(CS) and (A1)-(AG) are
valid and processes p , q are correct at t,

ICP(t) - C&)l 56
Proof There exists a k so that tk 5 t < tk+l. Without
loss of generality, we can assume ti+' 5 t;+l. We con-
sider first the case t k i t < ti+'. With lemma (L 2) we
can conclude that ICp(t) - Cq(t)l 5 ICp(tk) - Cq(tk)l +
2prm,, 5 S. Second, we consider the case tf+' _<
t < t:+'. C;+'(t:+') E Ik(t f+') by (C3). Therefore,

holds. Third, we consider the case that t:+l 5 t .
Similarly to the proof of lemma (L2) one can show
that ICp(t) - Cq(t)I 5 6. 0

ICP(t) - C&)l 5 ICP(tk) - Cq(tk)l + 2P(t - t k) I 6

Meaning
p's adjustment value in round k.
maximum difference between t i
and t!.
virtual clock of process p.
q's estimate of p's virtual clock at
local time T .
round clock of process p .
set of clock time values.
maximum execution time of a
remote clock reading method.
maximum internal deviation
between virtual clocks.
max. internal deviation between
virtual clocks at the start of a round.
maximum clock reading error.
maximum discontinuity of virtual
clocks.
hardware clock of process p .
number of time servers, i.e. N = IPl.
set of time-server processes.
processes, i.e. p , q, r , s E 'P.
minimum duration of a round.
maximum duration of a round.
rank of process p ;
r a n k (p) E (0, .., N - 1).
max. drift rate of hardware clocks.
max. drift rate of virtual clocks.
start of the k-th round for all correct
processes.
start of the k-th of process p .
local time at the start of the k-th
round of Drocess w.

196

