
An introduction to snapshot algorithms in distributed computing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 Distrib. Syst. Engng. 2 224

(http://iopscience.iop.org/0967-1846/2/4/005)

Download details:

IP Address: 128.195.52.171

The article was downloaded on 13/01/2011 at 21:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0967-1846/2/4
http://iopscience.iop.org/0967-1846
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Distrib. Syst. Engng 2 (1995) 224-233. Printed in the UK

c

I An intrqduction to snapshot I algorithms in distributed computing

Ajay D Kshemkalyanit, Michel Raynalt and Mukesh Singhals

t IBM Corporation, PO Box 12195, Research Triangle Park, NC 27709, USA
$ IRISA, campus de Beaulieu, 35042 Rennes-cedex, France
5 Department of Computer and Information Science, The Ohio State University,

Received 14 November 1994, in final form 26 July 1995

Abstract. Recording on-the-fly global states of distributed executions is an
important paradigm when one is interested in analysing, testing, or verifying
properties associated with these executions. Since Chandy and Lamport's seminal
paper on this topic, this problem is called the snapshot problem. Unfortunately, the
lack of both a globally shared memory and a global clock in a distributed system,
added to the fact that transfer delays in these systems are finite but unpredictable,
makes this problem non-trivial.

This paper first discusses issues which have to be addressed to compute
distributed snapshots in a consistent way. Then several algorithms which
determine on-the-fly such snapshots are presented for several types of networks
(according to the properties of their communication channels, namely, FIFO,
non-FIFO, and causal delivery).

Columbus, OH 43210, USA

1. Introduction

A distributed computing system consists of spatially
separated processes that do not share a common memory
and communicate asynchronously with each other by
passing messages over communication channels. Each
component of a distributed system has a local state. The
state of a process is characterized by the state of its local
memory and a history of its activity. The state of a channel
is characterized by the set of messages sent along the
channel less the messages received along the channel. The
global state of a distributed system is a collection of the
local states of its components.

Recording the global state of a distributed system is
an important paradigm and it finds applications in several
aspects of distributed system design. For examples, in
detection of stable properties such as deadlocks [15] and
termination [18], the global state of the system is examined
for certain properties; for failure recovery, a global state of
the distributed system (called a checkpoint) is periodically
saved and recovery from a processor failure is done by
restoring the system to the last saved global state [14]; for
debugging distributed software, the system i s restored to
a consistent global state [7,8] and the execution resumes
from there in a controlled manner. A snapshot-recording
method has been used in the distributed debugging facility
of Estelle [12, lo], a distributed programming environment.
Other applications include monitoring distributed events
[25] such as in industrial process control, setting distributed
breakpoints [ZO], protocol specification and verification
[4,9,13], and discarding obsolete information 1211.

Therefore, it is important that there be efficient ways
of recording the global state of a distributed system 161.
Unfortunately, there is no shared memory and no global
clock in a distributed system and the distributed nature
of the local clocks and local memory makes it difficult to
record the global state of the system efficiently.

If shared memory were available, an up-to-date state
of the entire system would be available to the processes
sharing the memory. The absence of shared memory
necessitates ways of getting a coherent and complete view
of the system based on the local states of individual
processes. A meaningful global snapshot can be obtained if
the components of the distributed system record their local
states at the same time. This would be possible if the local
clocks at processes were perfectly synchronized or if there
were a global system clock that could be instantaneously
read by the processes. However, it is technologically
unfeasible to have perfectly synchronized clocks at various
sites - clocks are bound to drift. If processes read time from
a single common clock (maintained at one process), various
indeterminate transmission delays during the read operation
will cause the processes to identify various physical instants
as the same time. In both cases, the collection of local state
observations will be made at different times and may not
be meaningful, as illustrated by the following example.
Example: Let S1 and S2 be two distinct sites of a
distributed system which maintain bank accounts A and
B, respectively. A site refers to a process in this example.
Let the communication channels from site S1 to site S2
and from site S2 to site S1 be denoted by Cl2 and Czl,

0967-1&16/95/040224d0519.50 0 1995 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

An introduction to snapshot algorithms in distributed computing

computing. The work presented in this paper will be
useful to designers of distributed systems and designers of
application support mechanisms.

The rest of the paper is organized as follows. Section 2
presents the system model and a formal definition of
the notion of consistent global state. The subsequent
sections present algorithms to record such global states
under various communication models. These algorithms
are called snapshot algorithms. Section 3 presents snapshot
algorithms for FIFO communication channels. It presents
the Chandy-Lamport snapshot algorithm followed by a
short discussion on three variations of it. Section 4
presents snapshot algorithms for non-FIFO communication
.channels. Section 5 discusses algorithms for sytems that
support causal ordering of messages. Finally, Section 6
concludes the paper with summary remarks.

2. System model and definitions

2.1. System model

The system consists of a collection of n processes, indexed
from 1 to n. that are connected by channels. There is no
globally shared memory and processes communicate solely
by passing messages. There is no physical global clock
in the system. Message send and receive is asynchronous.
Messages are delivered reliably with finite but arbitrary time
delay. The system can be described as a directed graph in
which vertices represent the processes and edges represent
unidirectional communication channels. Let Cjj denote the
channel from process i to process j .

Processes and channels have states associated with
them. The state of a process at any time is defined by
the contents of processor registers, stacks, local memory,
etc and may be highly dependent on the local context of the
distributed application. The state of channel Cij, denoted
by SC,, is given by the set of messages in transit in the
channel.

The actions performed by a process are modelled as
three types of events, namely, internal events, message send
events, and message receive events. For a message mjj
that is sent by process i to process j , let send(mij) and
rec(mij) denote its send and receive events, respectively.
Occurrence of events changes the states of respective
processes and channels, thus causing transitions in global
system state. For example, an internal event changes the
state of the process at which it occurs. A send event (or a
receive event) changes the state of the process that sends
(or receives) the message and the state of the channel on
which the message is sent (or received). The events at a
process are linearly ordered by their order of occurrence.

At any instant, the state of process i, denoted by LS;,
results from the sequence of all the events executed by
process i till that instant. For an event e and a process
state LSj, e E LSj iff e belongs to the sequence of events
that have taken process i to state LSj .

A channel is a distributed entity and its state depends
on the local states of the processes on which it is incident.
For a channel Cij, the following set of messages can be
defined, based on the local states of the processes i and j
D11.

225

SI : Account A S2: Account B

c1,: $100

c*l: $0
t t 2 @-Po $200

Figure 1. A banking example,

respectively. Consider the following sequence of actions,
which are also illustrated in figure 1:

(i) Initially, Account A = $500, Account B = $200, Clz =

(ii) Site SI initiates a transfer of $100 from Account A to
Account B. Account A is decremented by $100 to $400
and a request for $100 credit to Account B is sent on
Channel C12 to site S2. Account A = $400, Account B

(iii) Site S2 initiates a transfer of $50 from Account B to
Account A. Account B is decremented by $50 to $150
and a request for $50 credit to Account A is sent on
Channel Czl to site S1. Account A = $400, Account B

(iv) Site S1 receives the message for a $50 credit to
Account A and updates Account A. Account A = $450,
Account B = $150, CIZ = $100, C21 = $0.

(v) Site S2 receives the message for a $100 credit to
Account B and updates Account B. Account A = $450,
Account B = $250, CIZ = $0, CZI = $0.

Suppose the local state of Account A is recorded at
the end of step 1 to show $500 and the local state of
Account B and channels Clz and C21 are recorded at the
end of step 3 to show $150, $100, and $50, respectively.
Then the recorded global state shows $800 in the system.
An extra of $100 appears in the system. The reason for
the inconsistency is that Account A‘s state was recorded
before the $100 transfer to Account B using channel Clz
was initiated, whereas channel Clz’s state was recorded
after the $100 transfer was initiated.

This simple example shows that recording a consistent
global state of a distributed system is not a trivial task.
This paper addresses this fundamental issue of distributed

$0, CZl = $0.

= $200, c,2 = $100, CZI = $0.

= $150, Clz = $100, CZI = $50.

A D Kshemkalyani et a/

Transit: transit(LSi. LSj) = (mu [send(mij) E
LSi Arec (mi j) @ LSj }

Thus, if a snapshot recording algorithm records the state
of processes i and j as LSi and LSj, respectively, then it
must record the state of channel Cij as transit(LSi, LSj).

There are several models of communication among
processes and different snapshot algorithms have assumed
different models of communication. In a FIFO model, each
channel acts as a first-in first-out message queue and thus,
message ordering is preserved by a channel. In non-FIFO
model, a channel acts like a set in which the sender process
adds messages and the receiver process removes messages
from it in a random order. The ‘causal ordering’ model
[5] is based on Lamport’s ‘happens before’ relation on
the system events. An event el happens before event e2,
denoted by el + e2, if (a) el occurs before e2 on the same
process, or @) el is the send event of a message and e2

is the receive event of that message, or (c) 3e’leI happens
before e’ and e’ happens before e2. A system that supports
a causal ordering model satisfies the following property:

CO: For any two messages mi, and mkj, if send(m;j) -+

send(mkj), then rec(mij) -+ rec(mkj).

Causally ordered delivery of messages implies FIFO
message delivery. Causal ordering model is useful in
developing distributed algorithms and may simplify the
algorithms themselves.

2.2. Global state

The global state of a distributed system is a collection of the
local states of the processes and the channels. Notationally,
a global state GS is defined as

GS = {U LS~, Uscij]
i i . j

A global state GS is a consistent global sfate iff it
satisfies the following two conditions:

C1: send(mij) E LSt =$ mtj E SCjfB rec(mij) E LSj. (fB
is Ex-OR operator.)

C 2 send(m;j)
In a consistent global state, every message that is

recorded as received is also recorded as sent and such a
state captures the notion of causality that a message cannot
be received if it was not sent. Consistent global states are
meaningful global states and inconsistent global states are
not meaningful in the sense that a distributed system can
never be in an inconsistent state.

LSi + mij @ SCijA rec(mij) @ LSj.

2.3. Jssnes in recording a global state

If a global physical clock were available, the following
simple procedure could be used to record a consistent
_global snapshot of a distributed system: The initiator of
the snapshot collection decides a future time at which the
snapshot is to be taken and broadcasts this time to each
process. All processes take their local snapshots at that
instant in the global time. The snapshot of channel Cij
includes all the messages that process j receives after
taking the snapshot and whose timestamp is smaller than

226

Figure 2. Timing diagram for the banking example.

the time of the snapshot. (All messages are timestamped
with the sender’s time.) Clearly, if channels are not FFO,
a termination detection scheme will be needed to determine
when to stop waiting for messages on channels.

However, a global physical clock is not available in
. a distributed system and the following two issues need to
be addressed in recording a consistent global snapshot of a
distributed system:

11: How to distinguish between the messages to be
recorded in the snapshot (either in a channel state or
a process state) from those not to be recorded. The
answer to this comes from conditions C1 and C2 as
follows:
Any message that is sent by a process before recording
its snapshot must be recorded in the global snapshot
(from Cl).
Any message that is sent by a process after recording
its snapshot must not be recorded in the global snapshot
(from C2).

I2: How to determine the instant when a process takes its
snapshot. The answer to this comes from condition C2:
A process j must record its snapshot before processing
a message mij that was sent by process i after recording
its snapshot.

2.4. Cuts of a distributed computation

A distributed computation can be conveniently represented
using a timing diagram where horizontal lines represent the
processes’ time lines. Figure 2 shows a timing diagram
for the computation illustrated in figure 1. A line joining
one arbitrary point on each process line slices the timing
diagram into a PAST and a FUTURE. Such a line is
termed a cur in the computation. Every cut corresponds
to a global state and every global state can be graphically
represented as a cut in the computation’s timing diagram
[3]. A consistent global state corresponds to a cut in which
every message received in the PAST of the cut has been sent
in the PAST of that cut. Such a cut is known as a consistent
cur. Cuts in a timing diagram provide a powerful graphical
aid in representing and reasoning about global states of a
computation.

We next discuss a set of representative snapshot
algorithms for distributed systems. These algorithms
assume different interprocess communication capabilities
about the underlying system and illustrate how interprocess
communication affects the design complexity of these
algorithms. There are two types of messages: computation
messages and control messages. The former are exchanged

x -
Si: Accoun! A

S 2 Account B

Marker Sending Rule for process i
(i) Process i records its state.
(ii) For each outgoing channel C on which a marker

has not been sent, i sends a marker along C
before i sends further messages along C.

Marker Receiving Rule for process j
On receiving a marker along channel C:

if j has not recorded its state then
begin Record the state of C as the empty set

end
else

Follow the ‘Marker Sending Rule’

Record the state of C as the set of messages
received along C after j ’ s state was recorded
and before j received the marker along C

Figure 3. The Chandy-Lampott algorithm.

f

by the underlying application and the latter are exchanged
by the snapshot algorithm. Execution of a snapshot
algorithm is transparent to the underlying application,
except for occasional delaying of some actions of the
application.

3. Snapshot algorithms for FIFO channels

This section presents Chandy and Lamport algorithm [6],
which was the first algorithm to record the global snapshot,
and three of its variations.

3.1. Chandy-Lamport algorithm

3.1.1. Principle. After a site has recorded its snapshot,
it sends a control message, called a marker, along all its
outgoing channels before sending out any more messages.
Since channels are FIFO, a marker separates the messages
in the channel into those to be included in the snapshot
(is. channel state or process state) from those not to be
recorded in the snapshot. (This addresses issue 11.) The
role of markers in a FIFO system is to act as delimiters
for the messages in the channels so that the channel state
recorded by the process at the receiving end of the channel
satisfies the condition C2.

Since all messages that follow a marker on channel Cij

have been sent by process i after i has taken its snapshot,
process j must record its snapshot not later than when it
receives a marker on channel Cjj. mis addresses issue
Ja
3.1.2. The algorithm. The algorithm is given in figure
3. A process initiates snapshot collection by executing
the ‘,Marker Sending Rule’ by which it records its local
state and sends a marker on each outgoing channel. A
process executes the ‘Marker Receiving Rule’ on receiving
a marker. If the process has not yet recorded its local
state, it executes the ‘Marker Sending Rule’ to record
its local state. The state of the incoming channel on
which the marker is received is recorded as being the set
of computation messages received on that channel after

recording the local state but before receiving the marker
on that channel. The algorithm can be initiated by any
process by executing the ‘Marker Sending Rule’.

To prove the correctness of the algorithm, we now
show that a recorded snapshot satisfies conditions C1 and
C2. Since a process records its snapshot when it receives
the first marker on any incoming channel, no messages
that follow markers on the channels incoming to it are
recorded in the process’s snapshot. Moreover, a process
stops recording the state of an incoming channel when
a marker is received on that channel. Due to the FIFO
property of channels, it follows that no message sent after
the marker on that channel is recorded in the channel state.
Thus, condition C2 is satisfied. When a process j receives
message mi, that precedes the marker on channel Cij, it
acts as follows: if process j has not taken its snapshot yet,
then it includes mij in its recorded snapshot. Otherwise, it
records mij in the state of the channel Cij. Thus, condition
C1 is satisfied.

The recorded local snapshots can be put together to
create the global snapshot in several ways. One policy is
to have each process send its local snapshot to the initiator
of the algorithm. Another policy is to have each process
send the information it records along all outgoing channels,
and to have each process receiving such information for the
first time propagate it along its outgoing channels. All the
local snapshots get disseminated to all other processes and
all the processes can determine the global state.

The recording part of a single instance of the algorithm
requires O(e) messages and O(d) time, where e is the
number of edges in the graph and d is the diameter of the
graph.

3.2. Property of the recorded global state

The recorded global state may not correspond to any of
the global states that occurred during the computation.
Consider a possible execution of the snapshot algorithm
for the money transfer example of fiewe 2 using a timing
diagram in figure 4. Let site S1 initiate the algorithm at the
end of step 1. Site S1 records its local state (Account A =
$500) and sends a marker to site 2. The marker is received
by site S2 at the end of step 4. When site S 2 receives the
marker, it records its local state (Account B = $250), the
state of channel C1 as $0, and sends a marker along channel
C2. When site S1 receives,this marker, it records the state
of Channel C2 as $50. The $700 amount in the system is
conserved in the recorded global state. However, this global

227

A D Kshemkalyani et a/

t2, t3, recorded
global state t4, , t5 t’ I global state

S2: b u n t B

- computation message

Figure 5. Applying the rubber-band criterion.

state never occurred in the execution. This happens because
a process can change its state asynchronously before the
markers it sent are received by other sites and the other
sites record their states,

Nevertheless, as we discuss next, the system could have
passed through the recorded global state in an equivalent
execution [6]. Suppose the algorithm is initiated in global
state Si and it terminates in global state S,. Let seq
be the sequence of events which takes the system from
Si to S,. Let Sn be the global state recorded by the
algorithm. Chandy and Lamport [6] showed that there
exists a sequence se4’ which is a permutation of se4 such
that S* is reachable from Si by executing a prefix of seq‘
and S, is reachable from S* by executing the rest of the
events of seq‘.

Thus, the recorded global state is a valid state in an
equivalent execution and if a stable property (i.e. a property
that persists, such as termination or deadlock) holds in the
system before the snapshot algorithm begins, it holds in
the recorded global snapshot. Therefore, a recorded global
state is useful in detecting stable properties.

A physical interpretation of the collected global state
is as follows. Consider the two instants of recording of
the local states in the banking example. These instants
are marked by crosses in figure 4. If the cut formed by
these instants is viewed as being an elastic band and if the
elastic band is stretched so that it is vertical, then all the
recorded states of all processes occur simultaneously at one
physical instant and the recorded global state occurs in the
execution that is depicted in this modified timing diagram
(figure 5). Note that the system execution would have been
like this, had the processors’ speeds and message delays
been different. Yet another physical interpretation of the
collected global state is as follows: all the recorded process
states are mutually concurrent-no process state causally
depends upon another. Therefore, we can view logically
that all these process states occurred simultaneously even
though they might have occurred at different instants in
physical time.

3.3. Variations of the Chandy-Lamport algorithm

Several variants of the Chandy-Lamport snapshot algorithm
followed. These variants refined and optimized the
basic algorithm. For example, Spezialetti and Kearns
algorithm [24] optimizes concurrent initiation of snapshot
collection and efficiently dishibutes the recorded snapshot.
Venkatesan’s algorithm [23] optimizes the basic snapshot

228

algorithm to efficiently record repeated snapshots of a
distributed system that are required in recovery algorithms
with synchronous checkpointing.
Spezialetti-Kearns method There are two phases in
obtaining a global snapshot: locally recording the snapshot
at every process and distributing the resultant global
snapshot to all the initiators. Spezialetti and Kearns [24]
optimized the Chandy-Lamport algorithm by exploiting
the work of combining concurrently initiated snapshots
(in the first phase) to efficiently distribute the resultant
global snapshot to only the concurrent initiators (in the
second phase). A process needs to take only one snapshot,
irrespective of the number of concurrent initiators and all
processes are not sent the global snapshot.

This algorithm assumes bidirectional channels in the
system. The message complexity of snapshot recording is
O(e) irrespective of the number of concurrent initiations of
the algorithm. The message complexity of assembling and
disseminating thesnapshot is O(m2) where r is the,number
of concurrent initiations.
Venkatesan’s incremental snapshot method Many
applications require repeated collection of global snapshots
of the system. For example, recovery algorithms
with synchronous checkpointing need to advance their
checkpoints periodically. This can be achieved by repeated
invocations of the Chandy-Lamport algorithm. However,
Venkatesan [23] proposed the following efficient approach
Execute an algorithm to record an incremental snapshot
since the most recent snapshot was taken and combine it
with the most recent snapshot to obtain the latest snapshot
of the system. The incremental snapshot algorithm of
Venkatesan E231 modifies the global snapshot algorithm of
Chandy-Lamport to save on messages when computation
messages are sent only on a few of the network channels,
between the recording of two successive snapshots.

The incremental snapshot algorithm assumes bidirec-
tional FIFO channels, the presence of a single initiator, a
fixed spanning tree in the network, and four types of con-
trol messages: initsnap, snap-completed, regular, and ack.
initsnap and snap-completed messages traverse spanning
edges. regular and ack messages which serve to record
states of non-spanning edges are not sent on those edges
on which no computation message has been sent since the
previous snapshot.

Venkatesan [23] showed that the lower bound on the
message complexity of an incremental snapshot algorithm
is S2(u + n) where U is the number of edges on which
a computation message has been sent since the previous
snapshot. Venkatesan’s algorithm achieves this lower
bound in message complexity.
Helary’s wave synchronization method Helary’s
snapshot algorithm [Ill incorporates the concept of
message waves in the Chandy-Lamport algorithm. A wave
is a flow of control messages such that every process
in the system is visited exactly once by a wave control
message, and at least one process in the system can
determine when this flow of control messages terminates.
A wave is initiated after the previous wave terminates:
Wave sequences may be implemented by various traversal
structures such as a ring. A process begins recording

An introduction to snapshot algorithms in distributed computing

(ii) Every message sent by a white (red) process is coloured
white (red). Thus, a white (red) message is a message
that was sent before (after) the sender of that message
recorded its local snapshot.

(iii)Every white process takes its snapshot at its
convenience, but no later than the instant it receives
a red message.

Thus, when a white process receives a red message, it
records its local snapshot before processing the message.
This ensures that no message sent by a process after
recording its local snapshot is processed by the destination
process before the destination records its local snapshot.
Thus, an explicit marker message is not required in this
algorithm and the ‘marker’ is piggybacked on computation
messages using a colouring scheme.

The second observation is that the marker informs
process j of the value of [send(mjj)[send(mij) E LS,]
so that transit(LS;, LSj) can be computed. The Lai-Yang
algorithm fulfils this role of the marker in the following
way.

(iv) Every white process records a history of all white
messages sent or received by it along each channel.

(v) When a process turns red, it sends these histories along
with its snapshot to the initiator process that collects
the global snapshot.

(vi) The initiator process evaluates transir(LSj, LSj) for
each channel Cjj as given below:
SCjj = (send(mjj)lsend(m;j) E LS,] -
{rec(m,j)[rec(mjj) E LSj 1.
Condition C2 holds because a red message is not

included in the snapshot of the recipient process and
a channel state is the difference of two sets of white
messages. Condition C1 holds because a white message
mij is included in the snapshot of process j if j receives
mjj before taking its snapshot. Otherwise, mij is included
in the state of channel Cj j .

Though marker messages are not required in the
algorithm, each process has to record the entire message
history on each channel as paa of the local snapshot.
Thus, the space requirements of the algorithm may he
large. Lai and Yang describe how the size of the local
storage and snapshot recording can be reduced by storing
only the messages sent and received since the previous
snapshot recording, assuming that the previous snapshot
is still available. This approach can be very useful to
applications that require repeated snapshots of a distributed
system.

4.2. Li et al’s algorithm

Li etal’s algorithm [17] for recording a global snapshot in
a non-FIFO system is similar to the Lai-Yang algorithm.
Markers are tagged so as to generalize the rdwhite colours
of the Lai-Yang algorithm to accommodate repeated
invocations of the algorithm and multiple initiators. In
addition, the algorithm is not concerned with the contents
of computation messages and the state of a channel
is computed as the number of messages in transit in
the channel. This simplification is combined with the

229

the local snapshot when it is visited by the wave control
message.

Note that in this algorithm, the primary function of
wave synchronization is to evaluate functions over the
recorded global snapshot.’ This algorithm has a message
complexity of O(e) to record a snapshot (because all
channels can be traversed to implement the wave).

4. Snapshot algorithms for non-FIFO channels

A FIFO system ensures that all messages sent after a
marker on a channel will be delivered after the marker.
This ensures that condition C2 is satisfied in the recorded
snapshot if LS;, LSj, and SC;j are recorded as described
in the Chandy-Lamport algorithm. In a non-FIFO system,
the problem of global snapshot recording is complicated
because a marker cannot be used to delineate messages into
those to be recorded in the global state from those not to
be recorded in the global state. In such systems, different
techniques have to be used to ensure that a recorded global
state satisfies condition C2.

In a non-FIFO system, either some degree of inhibition
(i.e. temporarily delaying the execution of an application
process or delaying the send of a computation message)
or piggybacking of control information on computation
messages to capture out-of-sequence messages, is necessary
to record a consistent global snapshot [22]. The non-FIFO
algorithm by Helary uses message inhibition.[ll]. The
non-FIFO algorithms by Lai and Yang [16], Li er nl [17]
and Mattern [19] use message piggybacking to distinguish
computation messages sent after the marker from those sent
before the marker.

The non-FIFO algorithm of Helary [111 uses message
inhibition to avoid an inconsistency in a global snapshot in
the following way: When a process receives a marker, it
immediately returns an acknowledgement After a process
i has sent a marker on the outgoing channel to process j , it
does not send any messages on this channel until it is sure
that j has recorded its local state. Process i can conclude
this if it has received an acknowledgement for the marker
sent to j , or has received a marker for this snapshot from j .

We next discuss snapshot recording algorithms for
systems with non-FIFO channels that use piggybacking of
computation messages.

4.1. Lai-Yang algorithm

Lai and Yang’s global snapshot algorithm for non-FIFO
systems [16] is based on two observations on the role of
a marker in a FIFO system. The first observation is that a
marker ensures that condition C2 is satisfied for LS, and
LSj when the snapshots are recorded at processes i and j ,
respectively. The La-Yang algorithm fulfills this role of a
marker in a non-FIFO system by using a colouring scheme
on computation messages as follows.

(i) Every process is initially white and turns red while
taking a snapshot. The equivalent of the ‘Marker
Sending Rule’ is executed when a process turns red.

A D Kshemkalyani et a/

incremental technique to compute channel states, also
outlined by Lai and Yang, which reduces the size of
message histories to be stored and ’uansmitted. The initiator
computes the state of Cjj as: (the number of messages’in
Cij in the previous snapshot) + (the number of messages
sent on Cjj since the last snapshot at i) - (the number of
messages received on Cij since the last snapshot at j) .

Though this algorithm does not require any additional
message to record a global snapshot provided computation
messages are eventually sent on each channel, the local
storage and size of tags on computation messages is of size
O(n), where n is the number of initiators.

4.3. Mattern’s algorithm

Mattern’s algorithm [I91 is based on vector clocks. In
vector clocks, the clock at a process is an integer vector
of length n, with one component for each process.
The component of a process in the vector clock at
a process advances independently whenever the process
learns, through messages, that a component value has
advanced.

Mattern’s algorithm assumes a single initiator process
and works as follows.

(i) The initiator ‘ticks’ its local clock and selects a future
vector times at which it would like a global snapshot to
be recorded. It then broadcasts this time s and freezes
all activity until it receives acknowledgements of the
receipt of this broadcast.

(ii) When a process receives the broadcast, it remembers
the value s and returns an acknowledgement to the
initiator.

(iii) After having received an acknowledgement from every
process, the initiator increases its vector clock to s and
broadcasts a dummy message to all processes. (Observe
that before broadcasting this dummy message, the local
clocks of other processes have a value 2 s.)

(iv) The receipt of this dummy message forces each
recipient to increase its clock to a value s if not
already 2 s.

(v) Each process takes a local snapshot and sends it to the
initiator when (just before) its clock increases from a
value less than s to a value 2 s. Observe that this
may happen before the dummy message arrives at the
process.

(vi) The state of Cjj is all messages sent along Cij, whose
timestamp is smaller than s and which are received by
pj after recording LSj.

Processes record their local snapshot as per rule (5).
Any message mij sent by process i after it records its local
snapshot LSj has a timestamp > s. Assume that this mij is
received by j before it records LSj. After receiving this mij
and before j records LSj, j ’ s local clock reads a value > s,
as per rules for updating vector clocks. This implies j must
have already recorded LSj as per rule (5), which contradicts
the assumption. Therefore, mi, cannot be received by j
before it records LSj. By rule (6), mij is not recorded in
SCi, and therefore, condition C2 is satisfied. Condition C1
holds because each message mij with a timestamp less than

230

s is included in the snapshot of process j if j receives mij
before taking its snapshot. Otherwise, mij is included in
the state of channel C,.

The following observations about the above algorithm
lead to various optimizations. (i) The initiator can be
made a ‘virtual‘ process: so, no process has to freeze.
(ii) As long as a new higher value of s is selected, the
phase of broadcasting s and returning the acks can be

-eliminated. (iii) Only the initiator’s component of s is used
to determine when to record a snapshot. Also, one needs
to know only if the initiator’s component of the vector
timestamp in a message has increased beyond the value
of the corresponding component in s. Therefore, it suffices
to have just two values of s, say, white and red, which can
be represented using one bit

With these optimizations, the algorithm becomes
similar to the Lai-Yang algorithm except for the manner
in which transit(LSi, LSj) is evaluated for channel Cjj.
In Mattern’s algorithm, a process is not required to store
message histories to evaluate the channel states. The state
of any channel is the set of all the white messages that
are received by a red process on which that channel is
incident. A termination detection scheme for non-FIFO
channels is required to detect that no white messages are in
transit to ensure that the recording of all the channel states
is complete.

The savings of not storing and transmitting entire
message histones, over the Lai-Yang algorithm, comes at
the expense of delay in the termination of the snapshot
recording algorithm and need for a termination detection
scheme (e.g. a message counter per channel).

5. Snapshots in a causal delivery system

Two global snapshot-recording algorithms, namely,
Acharya-Badrinath [I] and Alagar-Venkatesan 121 assume
that the underlying system supports causal message deliv-
ery. The causal message delivery property CO provides a
built-in message synchronization to control and computa-
tion messages. Consequently, snapshot algorithms for such
systems are considerably simplified. For example, these
algorithms do not send control messages (i.e. markers) on
every channel and are simpler than the snapshot algorithms
for a FIFO system.

Both these algorithms use an identical principle to
record the state of processes. An initiator process
broadcasts a token, denoted as token, to every process
including itself. Let the copy of the token received by
process i be denoted tokeni. A process i records its
local snapshot LS, when it receives tokeni and sends the
recorded snapshot to the initiator.

These algorithms do not require each process to send
markers on each channel, and the processes do not
coordinate their local snapshot recordings with every other
process. Nonetheless, for any two processes i and j the
following property (called Property P1) is satisfied

send(mij) # LSi + rec(mij) # LSj.

This is due to the causal ordering property of the
Let a message underlying system as explained next.

An introduction to snapshot algorithms in distributed computing

Table 1. Comparison of the snapshot algorithms.

Algorithms Features
Chandy-Lamport [6],
1985
SDezialettiiKeams

Baseline algorithm. FIFO systems. O(e) messages to record snapshot,

lmurovements to 161: S U D D O ~ ~ S concurrent initiators. efficient assemblv and distribution
[24], 1986 of 'snapshot. Assumes bidirectional channels. b(e) messages to record, O(m2)

messages to assemble and distribute snapshot,
Venkatesan [23], 1989 Based on [61. Selective sending of markers. Provides message-optimal incremental

Helary [ill, 1989 Based on [SI. Uses wave synchronization. Evaluates function over recorded global
snapshots. S2(n + U) messages to record snapshot.

state. Adaptable to non-FIFO systems but requires inhibaion.
Lai-Yang [16],1987 Non-FIFO system. Markers iggybacked on computation messages. Message history

required to compute channerstates.
Li et a/ [17]. 1987 Similar to 161

incrementa& .
Small message history needed as channel states are computed

Mattern 1191, 1989

Acharya-Badrinath
[l], 1992

Similar to 116 No message history required. Termination detection (e.g. a message
counter per ckannel) required to compute channel states.
Requires causal delivery suppolt, Centralized computation of channel states, Channel
message contents not known. Requires 2n messages, 2 time units.

Alagar-Venkatesan
121, 1993

Requires causal delivery support. DistribLted computation of channel slates. Requires
3n messages, 3 time units, small messages.

n =#processes, U = # edges on which messages were sent after previous snapshot,
e = # channels, r = # concurrent initiators.

mjj be such that rec(tokeni) --+ send(mjj). Then LSj + mij $ SC,. This in conjunction with property P1
send(tokenj) 3 send(mjj) and the underlying causal implies that the algorithm satisfies condition C2.
ordering propem ensures that rec(tokenj), at which instant Consider a message mij which is the kth message from
j records LSj, happens before rec(mjj). Thus, mjj whose process i to process j before i takes its snapshot. The two
send is not recorded in LSj, is not recorded as received in possibilities below imply that condition C1 is satisfied.
LSj.

Methods of channel state recording are different in these
two algorithms and are discussed next.

5.1. Channel Recording in the Afharya-Badrinath
algorithm

Each process i maintains arrays S E N Z [l , ..., NI and
R E C D j [l, NI. S E N Z [j] is thenumberofmessages
sent by process i to process j and RECDj l j] is thc number
of messages received by process i from process j . The
arrays may not contribute to the storage complexity of the
algorithm because the underlying causal ordering protocol
may require these arrays to enforce causal ordering.

Channel states are recorded as follows: when a process
i records its local snapshot LSj on the receipt of token;, it
includes arrays RECDi and S E N Z in its local state before
sending the snapshot to the initiator. When the algorithm
terminates, the initiator determines the state of channels in
the global snapshot being assembled as follows:

(i) The state of each channel from the initiator to each
process is empty.

(ii) The state of channel from process i to process j is the
set of messages whose sequence numbers are given by
{RECDj[i] + 1,. . . , S E N Z [j]) .
We now show that the algorithm satisfies conditions C1

and C2.
Let a message mjj be such that rec(tokeni) +

send(mjj). Clearly, send(tokenj) --f send(mjj) and
the sequence number of mij is greater than S E N Z [j l .
Therefore, mjj is not recorded in SCjj. Thus, send(mjj) $

Process j receives mij before taking its snapshot. In
this case, mij is recorded in j ' s snapshot.
Otherwise, R E C D j [i] 5 k 5 S E N Z [j] and the
message mij will be included in the state of channel

This algorithm requires 2n messages and 2 time units
for recording and assembling the snapshot, where one time
unit is required for the delivery of a message. If the contents
of messages in channel states are required, the algorithm
requires 2n messages and 2 time units additionally.

5.2. ChaMd mcording in the Alagar-Venkatesan
algorithm

A message is referred to as old if the send of the message
causally precedes the send of the token. Otherwise, the
message is referred to as new. Whether a message is new or
old can be determined by examining the vector timestamp
in the message, which is needed to enforce causal ordering
among messages.

In the Alagar-Vmkatesan algoritbm [2], channel states
are recorded as follows.
(i) When a process receives the token, it takes its snapshot,

initializes the state of all channels to empty, and returns
a Done message to the initiator. Now onwards, a
process includes a message received on a channel in
the channel state only if it is an old message.

(ii) After the initiator has received a Done message from
all processes, it broadcasts a Terminate message.

(iii) A process stops the snapshot algorithm after receiving
a Terminate message.

cjj.

231

A D Kshemkalyani et a/

An interesting observation is that a process receives all
the old messages in its incoming channels before it receives
the Terminate message. This is ensured by the underlying
causal message delivery property.

Causal ordering property ensures that no new message
is delivered to a process prior to the token and only
old messages are recorded in the channel states. Thus,
send(mjj) @ LSj mjj @ SCjj. This together
with Property P1 implies that condition C2 is satisfied.
Condition C1 is satisfied because each old message mij is
delivered either before the token is delivered or before the
Terminate is delivered to a process and thus gets recorded
in LSj or SCg, respectively.

6. Summary

Recording global state of a distributed system is an
important paradigm in the design of the distributed systems
and the design of efficient methods of recording the global
state is an important issue. Recording of a global state of a
distributed system is complica& due to the lack of both a
globally shared memory and a global clock in a distributed
system. This paper first presented a formal definition of
the global state of a distributed system and exposed issues
related to its capture; it then described several algorithms
to record a snapshot of a distributed system under various
communication models.

Table 1 gives a comparison of the salient features of
the various snapshot-recording algorithms. Clearly, the
higher the level of abstraction provided by a communication
model, the simpler the snapshot algorithm. However, there
is no best-performing snapshot algorithm and an appropriate
algorithm can be chosen based on the application's
requirement. For examples, for termination detection, a
snapshot algorithm that computes a channel state as the
number of messages is adequate; for checkpointing for
recovery from failures, an incremental snapshot algorithm
is likely to be the most efficient; for global state monitoring,
rather than recording and evaluating complete snapshots at
regular intervals, it is more efficient to monitor changes
to the variables that affect the predicate and evaluate the
predicate only when some component variable changes.

As indicated in the introduction, the paradigm of global
snapshots finds a large number of applications (among oth-
ers: detection of stable properties, checkpointing, monitor-
ing, debugging, analyses of distributed computation, dis-
carding of obsolete information). Moreover, in addition to
the problems they solve, the algorithms presented in this
paper are of great importance to people interested in dis-
tributed computing, since these algorithms illustrate the in-
cidence of properties of communication channels (FIFO,
non-FIFO, causal ordering) on the design of a class of dis-
tributed algorithms.

Acknowledgments

The authors are grateful to Professors F Mattem and
S Venkatesan for providing useful feedback on an earlier
version of the paper.

232

References

[I] Acharya A and Badrinath B R 1992 Recording distributed
snapshots based on causal order of message delivery
Infomation Processing k t t . 44 317-21

[2] Alagar S and Venkatesan S 1994 An optimal algorithm for
distributed snapshots with causal message ordering
Infomation Processing Lert. 50 3116

[31 Babaoglu 0 and Marzullo K 1993 Consistent global states
of distributed systems: fundamental concepts and
mechanisms Distributed Systems ed S J Mullender
(ACM Press) ch 4

[4] Babaoglu 0 and Raynal M 1995 Specification and
verification of dynamic properties in distributed
computations J. Parallel Distributed Systems 28

[SI Birman K and Joseph T 1987 Reliable communication in
presence of failures ACM Trans. Compur. Systems 3
47-76

determining global states of distributed systems ACM
Trans. Comput. Systems 3 63-75

[7l Cooper R and Marzullo K 1991 Consistent detection of
global predicates Proc. ACWONR Workshap on Parallel
and Distributed Debugging (May 1991) pp 163-73

introduction to the analysis and debug of distributed
computations Proc. 1st IEEE Int. Con$ on Algorithms
and Architectures for Parallel Processina (Brisbane.

[61 Chandy K M and Lamport L 1985 Distributed snapshots:

181 Fromentin E, Plouzeau N and Raynal M 1995 An

- .
April 1995) pp 545-54

191 Geihs K and Seifen M 1986 Automated validation of a . .
cooperation protocol for distributed systems Proc. 6rh
Inr. ConJ on Dirrribured Computing Sysrems pp 436-43

[IO] Gerstel 0, Hurfin .M, Plouzeau N, Raynal hl and Zaks S
1995 On-the-fly replay: a practical paradigm and its
implementation for distributed debugging Proc. brh
IEEE Inr. Symp. on Purallel and Distribured Debugging
(Dallas, 7X, Ocr. 1995) pp 266-72

[I I] Helary I-M 1989 Observing global states of asynchronous
distributed applications Proc. 3rd Inr. Workhop on
Disrribured A/gorirhnu, LNCS 392 (Berlin: Springer)
pp 124-34

tool for distribted Estelle programs J. Compur. Commun.
16 328-33

[I31 Kamal J and Singhd M 1992 Specification and verification
of distributed mutual exclusion algorithms Teclmical
Reporr (Columbus, OH: The Ohio State University,
Department of Computer and Information Science)

rollback-recovery in distributed systems IEEE Trans,
Sofnvare Engineering

and resolution of genedized distributed deadlocks IEEE
Trans. SoJtware Engineering 20 43-54

Informarion Processing Leu. 25 153-8

state detection in non-FIFO networks Proc. 7rh Inr.
Conf on Distribured Compuring Systems pp 364-70

[IS] .Mattem F 1987 Algorithms for distributed termination
detection Disrribured Compuring pp 161-75

[I91 Mattem F 1993 Efficient algorithms for distributed
snapshots and global virtual lime approximation J,
Parallel Disrribured Computing 18 423-34

[201 .Miller B and Choi J 1988 Breakpoints and haking in
distributed oroerams Proc. 8r/1 Inr. Conti on Distributed

[I21 Hurfin M, Plouzeau N and Raynal 11 1993 A debugging

[I41 Koo R and Toueg S 1987 Checkpointing and

[IS] Kshemkalymi A and Singhal M 1994 Efficient detection

[I61 Lai T H and Yang T H 1987 On distributed snapshots

[In Li H F, Radhakrishnan T and Vcnkatesh K 1987 Global

Compuring 'sys;ems pp 3 16-23
1211 Sarin S and Lvnch N 1987 Discardine obsolete information

in a replicated database system IEEE Trans. Sofnvnre
Engineering 13 39-47

An introduction to snapshot algorithms in distributed computing

snapshots Proc. 6th Int. Conz on Distributed Computing
Systems pp 382-8

[25] Spezialetti M and Keams P 1989 Simultaneous regions: a
framework for the consistent monitoring of distributed
systems Proc. 9fh Int. Con? on Distributed Computing
Systems pp 61-8

[22] Taylor K 1989 The role of inhibition in consistent cut
protocols Proc. 3rd Int. Workshop on Distributed
Algorithms LNCS 392-(BerIin: Springer) pp 12/1-34

[23] Venkatesan S 1993 Message-optimal incremental snapshots
J. Comput. Sofnvare Engineering 1 211-31

[24] Spezialetti M and Keams P 1986 Efficient distributed

233

