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Abstract. Recording on-the-fly global states of distributed executions is an 
important paradigm when one is interested in analysing, testing, or verifying 
properties associated with these executions. Since Chandy and Lamport's seminal 
paper on this topic, this problem is called the snapshot problem. Unfortunately, the 
lack of both a globally shared memory and a global clock in a distributed system, 
added to the fact that transfer delays in these systems are finite but unpredictable, 
makes this problem non-trivial. 

This paper first discusses issues which have to be addressed to compute 
distributed snapshots in a consistent way. Then several algorithms which 
determine on-the-fly such snapshots are presented for several types of networks 
(according to the properties of their communication channels, namely, FIFO, 
non-FIFO, and causal delivery). 

Columbus, OH 43210, USA 

1. Introduction 

A distributed computing system consists of spatially 
separated processes that do not share a common memory 
and communicate asynchronously with each other by 
passing messages over communication channels. Each 
component of a distributed system has a local state. The 
state of a process is characterized by the state of its local 
memory and a history of its activity. The state of a channel 
is characterized by the set of messages sent along the 
channel less the messages received along the channel. The 
global state of a distributed system is a collection of the 
local states of its components. 

Recording the global state of a distributed system is 
an important paradigm and it finds applications in several 
aspects of distributed system design. For examples, in 
detection of stable properties such as deadlocks [15] and 
termination [18], the global state of the system is examined 
for certain properties; for failure recovery, a global state of 
the distributed system (called a checkpoint) is periodically 
saved and recovery from a processor failure is done by 
restoring the system to the last saved global state [14]; for 
debugging distributed software, the system i s  restored to 
a consistent global state [7,8] and the execution resumes 
from there in a controlled manner. A snapshot-recording 
method has been used in the distributed debugging facility 
of Estelle [12, lo], a distributed programming environment. 
Other applications include monitoring distributed events 
[25] such as in industrial process control, setting distributed 
breakpoints [ZO], protocol specification and verification 
[4,9,13], and discarding obsolete information 1211. 

Therefore, it is important that there be efficient ways 
of recording the global state of a distributed system 161. 
Unfortunately, there is no shared memory and no global 
clock in a distributed system and the distributed nature 
of the local clocks and local memory makes it difficult to 
record the global state of the system efficiently. 

If shared memory were available, an up-to-date state 
of the entire system would be available to the processes 
sharing the memory. The absence of shared memory 
necessitates ways of getting a coherent and complete view 
of the system based on the local states of individual 
processes. A meaningful global snapshot can be obtained if 
the components of the distributed system record their local 
states at the same time. This would be possible if the local 
clocks at processes were perfectly synchronized or if there 
were a global system clock that could be instantaneously 
read by the processes. However, it is technologically 
unfeasible to have perfectly synchronized clocks at various 
sites - clocks are bound to drift. If processes read time from 
a single common clock (maintained at one process), various 
indeterminate transmission delays during the read operation 
will cause the processes to identify various physical instants 
as the same time. In both cases, the collection of local state 
observations will be made at different times and may not 
be meaningful, as illustrated by the following example. 
Example: Let S1 and S2 be two distinct sites of a 
distributed system which maintain bank accounts A and 
B, respectively. A site refers to a process in this example. 
Let the communication channels from site S1 to site S2 
and from site S2 to site S1 be denoted by Cl2 and Czl, 
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computing. The work presented in this paper will be 
useful to designers of distributed systems and designers of 
application support mechanisms. 

The rest of the paper is organized as follows. Section 2 
presents the system model and a formal definition of 
the notion of consistent global state. The subsequent 
sections present algorithms to record such global states 
under various communication models. These algorithms 
are called snapshot algorithms. Section 3 presents snapshot 
algorithms for FIFO communication channels. It presents 
the Chandy-Lamport snapshot algorithm followed by a 
short discussion on three variations of it. Section 4 
presents snapshot algorithms for non-FIFO communication 
.channels. Section 5 discusses algorithms for sytems that 
support causal ordering of messages. Finally, Section 6 
concludes the paper with summary remarks. 

2. System model and definitions 

2.1. System model 

The system consists of a collection of n processes, indexed 
from 1 to n. that are connected by channels. There is no 
globally shared memory and processes communicate solely 
by passing messages. There is no physical global clock 
in the system. Message send and receive is asynchronous. 
Messages are delivered reliably with finite but arbitrary time 
delay. The system can be described as a directed graph in 
which vertices represent the processes and edges represent 
unidirectional communication channels. Let Cjj denote the 
channel from process i to process j .  

Processes and channels have states associated with 
them. The state of a process at any time is defined by 
the contents of processor registers, stacks, local memory, 
etc and may be highly dependent on the local context of the 
distributed application. The state of channel Cij, denoted 
by SC,, is given by the set of messages in transit in the 
channel. 

The actions performed by a process are modelled as 
three types of events, namely, internal events, message send 
events, and message receive events. For a message mjj  
that is sent by process i to process j ,  let send(mij)  and 
rec(mij) denote its send and receive events, respectively. 
Occurrence of events changes the states of respective 
processes and channels, thus causing transitions in global 
system state. For example, an internal event changes the 
state of the process at which it occurs. A send event (or a 
receive event) changes the state of the process that sends 
(or receives) the message and the state of the channel on 
which the message is sent (or received). The events at a 
process are linearly ordered by their order of occurrence. 

At any instant, the state of process i, denoted by LS;, 
results from the sequence of all the events executed by 
process i till that instant. For an event e and a process 
state LSj, e E LSj iff e belongs to the sequence of events 
that have taken process i to state LSj .  

A channel is a distributed entity and its state depends 
on the local states of the processes on which it is incident. 
For a channel Cij, the following set of messages can be 
defined, based on the local states of the processes i and j 
D11. 
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SI : Account A S2: Account B 

c1,: $100 

c*l: $0 
t t 2  @-Po $200 

Figure 1. A banking example, 

respectively. Consider the following sequence of actions, 
which are also illustrated in figure 1: 

(i) Initially, Account A = $500, Account B = $200, Clz = 

(ii) Site SI initiates a transfer of $100 from Account A to 
Account B. Account A is decremented by $100 to $400 
and a request for $100 credit to Account B is sent on 
Channel C12 to site S2. Account A = $400, Account B 

(iii) Site S2 initiates a transfer of $50 from Account B to 
Account A. Account B is decremented by $50 to $150 
and a request for $50 credit to Account A is sent on 
Channel Czl to site S1. Account A = $400, Account B 

(iv) Site S1 receives the message for a $50 credit to 
Account A and updates Account A. Account A = $450, 
Account B = $150, CIZ = $100, C21 = $0. 

(v) Site S2 receives the message for a $100 credit to 
Account B and updates Account B. Account A = $450, 
Account B = $250, CIZ = $0, CZI = $0. 

Suppose the local state of Account A is recorded at 
the end of step 1 to show $500 and the local state of 
Account B and channels Clz and C21 are recorded at the 
end of step 3 to show $150, $100, and $50, respectively. 
Then the recorded global state shows $800 in the system. 
An extra of $100 appears in the system. The reason for 
the inconsistency is that Account A‘s state was recorded 
before the $100 transfer to Account B using channel Clz 
was initiated, whereas channel Clz’s state was recorded 
after the $100 transfer was initiated. 

This simple example shows that recording a consistent 
global state of a distributed system is not a trivial task. 
This paper addresses this fundamental issue of distributed 

$0, CZl = $0. 

= $200, c,2 = $100, CZI = $0. 

= $150, Clz = $100, CZI = $50. 
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Transit: transit(LSi. LSj) = (mu [send(mij) E 
LSi Arec (mi j )  @ LSj } 

Thus, if a snapshot recording algorithm records the state 
of processes i and j as LSi and LSj, respectively, then it 
must record the state of channel Cij as transit(LSi, LSj). 

There are several models of communication among 
processes and different snapshot algorithms have assumed 
different models of communication. In a FIFO model, each 
channel acts as a first-in first-out message queue and thus, 
message ordering is preserved by a channel. In non-FIFO 
model, a channel acts like a set in which the sender process 
adds messages and the receiver process removes messages 
from it in a random order. The ‘causal ordering’ model 
[5] is based on Lamport’s ‘happens before’ relation on 
the system events. An event el happens before event e2, 
denoted by el + e2, if (a) el occurs before e2 on the same 
process, or @) el is the send event of a message and e2 

is the receive event of that message, or (c) 3e’leI happens 
before e’ and e’ happens before e2. A system that supports 
a causal ordering model satisfies the following property: 

CO: For any two messages mi, and mkj, if send(m;j) -+ 

send(mkj), then rec(mij) -+ rec(mkj). 

Causally ordered delivery of messages implies FIFO 
message delivery. Causal ordering model is useful in 
developing distributed algorithms and may simplify the 
algorithms themselves. 

2.2. Global state 

The global state of a distributed system is a collection of the 
local states of the processes and the channels. Notationally, 
a global state GS is defined as 

GS = {U LS~,  Uscij] 
i i . j  

A global state GS is a consistent global sfate iff it 
satisfies the following two conditions: 

C1: send(mij) E LSt =$ mtj E SCjfB rec(mij) E LSj. (fB 
is Ex-OR operator.) 

C 2  send(m;j) 
In a consistent global state, every message that is 

recorded as received is also recorded as sent and such a 
state captures the notion of causality that a message cannot 
be received if it was not sent. Consistent global states are 
meaningful global states and inconsistent global states are 
not meaningful in the sense that a distributed system can 
never be in an inconsistent state. 

LSi + mij @ SCijA rec(mij) @ LSj. 

2.3. Jssnes in recording a global state 

If a global physical clock were available, the following 
simple procedure could be used to record a consistent 
_global snapshot of a distributed system: The initiator of 
the snapshot collection decides a future time at which the 
snapshot is to be taken and broadcasts this time to each 
process. All processes take their local snapshots at that 
instant in the global time. The snapshot of channel Cij 
includes all the messages that process j receives after 
taking the snapshot and whose timestamp is smaller than 
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Figure 2. Timing diagram for the banking example. 

the time of the snapshot. (All messages are timestamped 
with the sender’s time.) Clearly, if channels are not FFO, 
a termination detection scheme will be needed to determine 
when to stop waiting for messages on channels. 

However, a global physical clock is not available in 
. a distributed system and the following two issues need to 
be addressed in recording a consistent global snapshot of a 
distributed system: 

11: How to distinguish between the messages to be 
recorded in the snapshot (either in a channel state or 
a process state) from those not to be recorded. The 
answer to this comes from conditions C1 and C2 as 
follows: 
Any message that is sent by a process before recording 
its snapshot must be recorded in the global snapshot 
(from Cl). 
Any message that is sent by a process after recording 
its snapshot must not be recorded in the global snapshot 
(from C2). 

I2: How to determine the instant when a process takes its 
snapshot. The answer to this comes from condition C2: 
A process j must record its snapshot before processing 
a message mij that was sent by process i after recording 
its snapshot. 

2.4. Cuts of a distributed computation 

A distributed computation can be conveniently represented 
using a timing diagram where horizontal lines represent the 
processes’ time lines. Figure 2 shows a timing diagram 
for the computation illustrated in figure 1. A line joining 
one arbitrary point on each process line slices the timing 
diagram into a PAST and a FUTURE. Such a line is 
termed a cur in the computation. Every cut corresponds 
to a global state and every global state can be graphically 
represented as a cut in the computation’s timing diagram 
[3]. A consistent global state corresponds to a cut in which 
every message received in the PAST of the cut has been sent 
in the PAST of that cut. Such a cut is known as a consistent 
cur. Cuts in a timing diagram provide a powerful graphical 
aid in representing and reasoning about global states of a 
computation. 

We next discuss a set of representative snapshot 
algorithms for distributed systems. These algorithms 
assume different interprocess communication capabilities 
about the underlying system and illustrate how interprocess 
communication affects the design complexity of these 
algorithms. There are two types of messages: computation 
messages and control messages. The former are exchanged 



x -  
Si: Accoun! A 

S 2  Account B 

Marker Sending Rule for process i 
(i) Process i records its state. 
(ii) For each outgoing channel C on which a marker 

has not been sent, i sends a marker along C 
before i sends further messages along C. 

Marker Receiving Rule for process j 
On receiving a marker along channel C: 

if j has not recorded its state then 
begin Record the state of C as the empty set 

end 
else 

Follow the ‘Marker Sending Rule’ 

Record the state of C as the set of messages 
received along C after j ’ s  state was recorded 
and before j received the marker along C 

Figure 3. The Chandy-Lampott algorithm. 

f 

by the underlying application and the latter are exchanged 
by the snapshot algorithm. Execution of a snapshot 
algorithm is transparent to the underlying application, 
except for occasional delaying of some actions of the 
application. 

3. Snapshot algorithms for FIFO channels 

This section presents Chandy and Lamport algorithm [6], 
which was the first algorithm to record the global snapshot, 
and three of its variations. 

3.1. Chandy-Lamport algorithm 

3.1.1. Principle. After a site has recorded its snapshot, 
it sends a control message, called a marker, along all its 
outgoing channels before sending out any more messages. 
Since channels are FIFO, a marker separates the messages 
in the channel into those to be included in the snapshot 
(is. channel state or process state) from those not to be 
recorded in the snapshot. (This addresses issue 11.) The 
role of markers in a FIFO system is to act as delimiters 
for the messages in the channels so that the channel state 
recorded by the process at the receiving end of the channel 
satisfies the condition C2. 

Since all messages that follow a marker on channel Cij 

have been sent by process i after i has taken its snapshot, 
process j must record its snapshot not later than when it 
receives a marker on channel Cjj. mis addresses issue 
Ja 
3.1.2. The algorithm. The algorithm is given in figure 
3. A process initiates snapshot collection by executing 
the ‘,Marker Sending Rule’ by which it records its local 
state and sends a marker on each outgoing channel. A 
process executes the ‘Marker Receiving Rule’ on receiving 
a marker. If the process has not yet recorded its local 
state, it executes the ‘Marker Sending Rule’ to record 
its local state. The state of the incoming channel on 
which the marker is received is recorded as being the set 
of computation messages received on that channel after 

recording the local state but before receiving the marker 
on that channel. The algorithm can be initiated by any 
process by executing the ‘Marker Sending Rule’. 

To prove the correctness of the algorithm, we now 
show that a recorded snapshot satisfies conditions C1 and 
C2. Since a process records its snapshot when it receives 
the first marker on any incoming channel, no messages 
that follow markers on the channels incoming to it are 
recorded in the process’s snapshot. Moreover, a process 
stops recording the state of an incoming channel when 
a marker is received on that channel. Due to the FIFO 
property of channels, it follows that no message sent after 
the marker on that channel is recorded in the channel state. 
Thus, condition C2 is satisfied. When a process j receives 
message mi, that precedes the marker on channel Cij, it 
acts as follows: if process j has not taken its snapshot yet, 
then it includes mij in its recorded snapshot. Otherwise, it 
records mij in the state of the channel Cij. Thus, condition 
C1 is satisfied. 

The recorded local snapshots can be put together to 
create the global snapshot in several ways. One policy is 
to have each process send its local snapshot to the initiator 
of the algorithm. Another policy is to have each process 
send the information it records along all outgoing channels, 
and to have each process receiving such information for the 
first time propagate it along its outgoing channels. All the 
local snapshots get disseminated to all other processes and 
all the processes can determine the global state. 

The recording part of a single instance of the algorithm 
requires O(e) messages and O(d) time, where e is the 
number of edges in the graph and d is the diameter of the 
graph. 

3.2. Property of the recorded global state 

The recorded global state may not correspond to any of 
the global states that occurred during the computation. 
Consider a possible execution of the snapshot algorithm 
for the money transfer example of fiewe 2 using a timing 
diagram in figure 4. Let site S1 initiate the algorithm at the 
end of step 1. Site S1 records its local state (Account A = 
$500) and sends a marker to site 2. The marker is received 
by site S2 at the end of step 4. When site S 2  receives the 
marker, it records its local state (Account B = $250), the 
state of channel C1 as $0, and sends a marker along channel 
C2. When site S1 receives,this marker, it records the state 
of Channel C2 as $50. The $700 amount in the system is 
conserved in the recorded global state. However, this global 
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t2, t3, recorded 
global state t4, , t5 t’ I global state 

S2: b u n t  B 

- computation message 

Figure 5. Applying the rubber-band criterion. 

state never occurred in the execution. This happens because 
a process can change its state asynchronously before the 
markers it sent are received by other sites and the other 
sites record their states, 

Nevertheless, as we discuss next, the system could have 
passed through the recorded global state in an equivalent 
execution [6]. Suppose the algorithm is initiated in global 
state Si and it terminates in global state S,. Let seq 
be the sequence of events which takes the system from 
Si to S,. Let Sn be the global state recorded by the 
algorithm. Chandy and Lamport [6] showed that there 
exists a sequence se4’ which is a permutation of se4 such 
that S* is reachable from Si by executing a prefix of seq‘ 
and S, is reachable from S* by executing the rest of the 
events of seq‘. 

Thus, the recorded global state is a valid state in an 
equivalent execution and if a stable property (i.e. a property 
that persists, such as termination or deadlock) holds in the 
system before the snapshot algorithm begins, it holds in 
the recorded global snapshot. Therefore, a recorded global 
state is useful in detecting stable properties. 

A physical interpretation of the collected global state 
is as follows. Consider the two instants of recording of 
the local states in the banking example. These instants 
are marked by crosses in figure 4. If the cut formed by 
these instants is viewed as being an elastic band and if the 
elastic band is stretched so that it is vertical, then all the 
recorded states of all processes occur simultaneously at one 
physical instant and the recorded global state occurs in the 
execution that is depicted in this modified timing diagram 
(figure 5). Note that the system execution would have been 
like this, had the processors’ speeds and message delays 
been different. Yet another physical interpretation of the 
collected global state is as follows: all the recorded process 
states are mutually concurrent-no process state causally 
depends upon another. Therefore, we can view logically 
that all these process states occurred simultaneously even 
though they might have occurred at different instants in 
physical time. 

3.3. Variations of the Chandy-Lamport algorithm 

Several variants of the Chandy-Lamport snapshot algorithm 
followed. These variants refined and optimized the 
basic algorithm. For example, Spezialetti and Kearns 
algorithm [24] optimizes concurrent initiation of snapshot 
collection and efficiently dishibutes the recorded snapshot. 
Venkatesan’s algorithm [23] optimizes the basic snapshot 
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algorithm to efficiently record repeated snapshots of a 
distributed system that are required in recovery algorithms 
with synchronous checkpointing. 
Spezialetti-Kearns method There are two phases in 
obtaining a global snapshot: locally recording the snapshot 
at every process and distributing the resultant global 
snapshot to all the initiators. Spezialetti and Kearns [24] 
optimized the Chandy-Lamport algorithm by exploiting 
the work of combining concurrently initiated snapshots 
(in the first phase) to efficiently distribute the resultant 
global snapshot to only the concurrent initiators (in the 
second phase). A process needs to take only one snapshot, 
irrespective of the number of concurrent initiators and all 
processes are not sent the global snapshot. 

This algorithm assumes bidirectional channels in the 
system. The message complexity of snapshot recording is 
O(e) irrespective of the number of concurrent initiations of 
the algorithm. The message complexity of assembling and 
disseminating thesnapshot is O(m2)  where r is the,number 
of concurrent initiations. 
Venkatesan’s incremental snapshot method Many 
applications require repeated collection of global snapshots 
of the system. For example, recovery algorithms 
with synchronous checkpointing need to advance their 
checkpoints periodically. This can be achieved by repeated 
invocations of the Chandy-Lamport algorithm. However, 
Venkatesan [23] proposed the following efficient approach 
Execute an algorithm to record an incremental snapshot 
since the most recent snapshot was taken and combine it 
with the most recent snapshot to obtain the latest snapshot 
of the system. The incremental snapshot algorithm of 
Venkatesan E231 modifies the global snapshot algorithm of 
Chandy-Lamport to save on messages when computation 
messages are sent only on a few of the network channels, 
between the recording of two successive snapshots. 

The incremental snapshot algorithm assumes bidirec- 
tional FIFO channels, the presence of a single initiator, a 
fixed spanning tree in the network, and four types of con- 
trol messages: initsnap, snap-completed, regular, and ack. 
initsnap and snap-completed messages traverse spanning 
edges. regular and ack messages which serve to record 
states of non-spanning edges are not sent on those edges 
on which no computation message has been sent since the 
previous snapshot. 

Venkatesan [23] showed that the lower bound on the 
message complexity of an incremental snapshot algorithm 
is S2(u + n) where U is the number of edges on which 
a computation message has been sent since the previous 
snapshot. Venkatesan’s algorithm achieves this lower 
bound in message complexity. 
Helary’s wave synchronization method Helary’s 
snapshot algorithm [Ill incorporates the concept of 
message waves in the Chandy-Lamport algorithm. A wave 
is a flow of control messages such that every process 
in the system is visited exactly once by a wave control 
message, and at least one process in the system can 
determine when this flow of control messages terminates. 
A wave is initiated after the previous wave terminates: 
Wave sequences may be implemented by various traversal 
structures such as a ring. A process begins recording 
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(ii) Every message sent by a white (red) process is coloured 
white (red). Thus, a white (red) message is a message 
that was sent before (after) the sender of that message 
recorded its local snapshot. 

(iii)Every white process takes its snapshot at its 
convenience, but no later than the instant it receives 
a red message. 

Thus, when a white process receives a red message, it 
records its local snapshot before processing the message. 
This ensures that no message sent by a process after 
recording its local snapshot is processed by the destination 
process before the destination records its local snapshot. 
Thus, an explicit marker message is not required in this 
algorithm and the ‘marker’ is piggybacked on computation 
messages using a colouring scheme. 

The second observation is that the marker informs 
process j of the value of [send(mjj)[send(mij) E LS, ] 
so that transit(LS;, LSj) can be computed. The Lai-Yang 
algorithm fulfils this role of the marker in the following 
way. 

(iv) Every white process records a history of all white 
messages sent or received by it along each channel. 

(v) When a process turns red, it sends these histories along 
with its snapshot to the initiator process that collects 
the global snapshot. 

(vi) The initiator process evaluates transir(LSj, LSj) for 
each channel Cjj as given below: 
SCjj = (send(mjj)lsend(m;j) E LS, ] - 
{rec(m,j)[rec(mjj) E LSj 1. 
Condition C2 holds because a red message is not 

included in the snapshot of the recipient process and 
a channel state is the difference of two sets of white 
messages. Condition C1 holds because a white message 
mij is included in the snapshot of process j if j receives 
mjj before taking its snapshot. Otherwise, mij is included 
in the state of channel Cj j .  

Though marker messages are not required in the 
algorithm, each process has to record the entire message 
history on each channel as paa of the local snapshot. 
Thus, the space requirements of the algorithm may he 
large. Lai and Yang describe how the size of the local 
storage and snapshot recording can be reduced by storing 
only the messages sent and received since the previous 
snapshot recording, assuming that the previous snapshot 
is still available. This approach can be very useful to 
applications that require repeated snapshots of a distributed 
system. 

4.2. Li et al’s algorithm 

Li etal’s  algorithm [17] for recording a global snapshot in 
a non-FIFO system is similar to the Lai-Yang algorithm. 
Markers are tagged so as to generalize the rdwhite  colours 
of the Lai-Yang algorithm to accommodate repeated 
invocations of the algorithm and multiple initiators. In 
addition, the algorithm is not concerned with the contents 
of computation messages and the state of a channel 
is computed as the number of messages in transit in 
the channel. This simplification is combined with the 
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the local snapshot when it is visited by the wave control 
message. 

Note that in this algorithm, the primary function of 
wave synchronization is to evaluate functions over the 
recorded global snapshot.’ This algorithm has a message 
complexity of O(e)  to record a snapshot (because all 
channels can be traversed to implement the wave). 

4. Snapshot algorithms for non-FIFO channels 

A FIFO system ensures that all messages sent after a 
marker on a channel will be delivered after the marker. 
This ensures that condition C2 is satisfied in the recorded 
snapshot if LS;, LSj, and SC;j are recorded as described 
in the Chandy-Lamport algorithm. In a non-FIFO system, 
the problem of global snapshot recording is complicated 
because a marker cannot be used to delineate messages into 
those to be recorded in the global state from those not to 
be recorded in the global state. In such systems, different 
techniques have to be used to ensure that a recorded global 
state satisfies condition C2. 

In a non-FIFO system, either some degree of inhibition 
(i.e. temporarily delaying the execution of an application 
process or delaying the send of a computation message) 
or piggybacking of control information on computation 
messages to capture out-of-sequence messages, is necessary 
to record a consistent global snapshot [22]. The non-FIFO 
algorithm by Helary uses message inhibition.[ll]. The 
non-FIFO algorithms by Lai and Yang [16], Li er nl [17] 
and Mattern [19] use message piggybacking to distinguish 
computation messages sent after the marker from those sent 
before the marker. 

The non-FIFO algorithm of Helary [ 111 uses message 
inhibition to avoid an inconsistency in a global snapshot in 
the following way: When a process receives a marker, it 
immediately returns an acknowledgement After a process 
i has sent a marker on the outgoing channel to process j ,  it 
does not send any messages on this channel until it is sure 
that j has recorded its local state. Process i can conclude 
this if it has received an acknowledgement for the marker 
sent to j ,  or has received a marker for this snapshot from j .  

We next discuss snapshot recording algorithms for 
systems with non-FIFO channels that use piggybacking of 
computation messages. 

4.1. Lai-Yang algorithm 

Lai and Yang’s global snapshot algorithm for non-FIFO 
systems [16] is based on two observations on the role of 
a marker in a FIFO system. The first observation is that a 
marker ensures that condition C2 is satisfied for LS, and 
LSj when the snapshots are recorded at processes i and j ,  
respectively. The La-Yang algorithm fulfills this role of a 
marker in a non-FIFO system by using a colouring scheme 
on computation messages as follows. 

(i) Every process is initially white and turns red while 
taking a snapshot. The equivalent of the ‘Marker 
Sending Rule’ is executed when a process turns red. 
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incremental technique to compute channel states, also 
outlined by Lai and Yang, which reduces the size of 
message histories to be stored and ’uansmitted. The initiator 
computes the state of Cjj as: (the number of messages’in 
Cij in the previous snapshot) + (the number of messages 
sent on Cjj since the last snapshot at i )  - (the number of 
messages received on Cij since the last snapshot at j ) .  

Though this algorithm does not require any additional 
message to record a global snapshot provided computation 
messages are eventually sent on each channel, the local 
storage and size of tags on computation messages is of size 
O(n), where n is the number of initiators. 

4.3. Mattern’s algorithm 

Mattern’s algorithm [I91 is based on vector clocks. In 
vector clocks, the clock at a process is an integer vector 
of length n, with one component for each process. 
The component of a process in the vector clock at 
a process advances independently whenever the process 
learns, through messages, that a component value has 
advanced. 

Mattern’s algorithm assumes a single initiator process 
and works as follows. 

(i) The initiator ‘ticks’ its local clock and selects a future 
vector times at which it would like a global snapshot to 
be recorded. It then broadcasts this time s and freezes 
all activity until it receives acknowledgements of the 
receipt of this broadcast. 

(ii) When a process receives the broadcast, it remembers 
the value s and returns an acknowledgement to the 
initiator. 

(iii) After having received an acknowledgement from every 
process, the initiator increases its vector clock to s and 
broadcasts a dummy message to all processes. (Observe 
that before broadcasting this dummy message, the local 
clocks of other processes have a value 2 s.) 

(iv) The receipt of this dummy message forces each 
recipient to increase its clock to a value s if not 
already 2 s. 

(v) Each process takes a local snapshot and sends it to the 
initiator when (just before) its clock increases from a 
value less than s to a value 2 s. Observe that this 
may happen before the dummy message arrives at the 
process. 

(vi) The state of Cjj is all messages sent along Cij, whose 
timestamp is smaller than s and which are received by 
pj after recording LSj. 

Processes record their local snapshot as per rule (5). 
Any message mij sent by process i after it records its local 
snapshot LSj has a timestamp > s. Assume that this mij is 
received by j before it records LSj. After receiving this mij 
and before j records LSj, j ’ s  local clock reads a value > s, 
as per rules for updating vector clocks. This implies j must 
have already recorded LSj as per rule (5), which contradicts 
the assumption. Therefore, mi, cannot be received by j 
before it records LSj. By rule (6), mij is not recorded in 
SCi, and therefore, condition C2 is satisfied. Condition C1 
holds because each message mij with a timestamp less than 
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s is included in the snapshot of process j if j receives mij 
before taking its snapshot. Otherwise, mij is included in 
the state of channel C,. 

The following observations about the above algorithm 
lead to various optimizations. (i) The initiator can be 
made a ‘virtual‘ process: so, no process has to freeze. 
(ii) As long as a new higher value of s is selected, the 
phase of broadcasting s and returning the acks can be 

-eliminated. (iii) Only the initiator’s component of s is used 
to determine when to record a snapshot. Also, one needs 
to know only if the initiator’s component of the vector 
timestamp in a message has increased beyond the value 
of the corresponding component in s. Therefore, it suffices 
to have just two values of s, say, white and red, which can 
be represented using one bit 

With these optimizations, the algorithm becomes 
similar to the Lai-Yang algorithm except for the manner 
in which transit(LSi, LSj) is evaluated for channel Cjj. 
In Mattern’s algorithm, a process is not required to store 
message histories to evaluate the channel states. The state 
of any channel is the set of all the white messages that 
are received by a red process on which that channel is 
incident. A termination detection scheme for non-FIFO 
channels is required to detect that no white messages are in 
transit to ensure that the recording of all the channel states 
is complete. 

The savings of not storing and transmitting entire 
message histones, over the Lai-Yang algorithm, comes at 
the expense of delay in the termination of the snapshot 
recording algorithm and need for a termination detection 
scheme (e.g. a message counter per channel). 

5. Snapshots  in a causal delivery system 

Two global snapshot-recording algorithms, namely, 
Acharya-Badrinath [I] and Alagar-Venkatesan 121 assume 
that the underlying system supports causal message deliv- 
ery. The causal message delivery property CO provides a 
built-in message synchronization to control and computa- 
tion messages. Consequently, snapshot algorithms for such 
systems are considerably simplified. For example, these 
algorithms do not send control messages (i.e. markers) on 
every channel and are simpler than the snapshot algorithms 
for a FIFO system. 

Both these algorithms use an identical principle to 
record the state of processes. An initiator process 
broadcasts a token, denoted as token, to every process 
including itself. Let the copy of the token received by 
process i be denoted tokeni. A process i records its 
local snapshot LS, when it receives tokeni and sends the 
recorded snapshot to the initiator. 

These algorithms do not require each process to send 
markers on each channel, and the processes do not 
coordinate their local snapshot recordings with every other 
process. Nonetheless, for any two processes i and j the 
following property (called Property P1) is satisfied 

send(mij) # LSi + rec(mij) # LSj. 

This is due to the causal ordering property of the 
Let a message underlying system as explained next. 
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Table 1. Comparison of the snapshot algorithms. 

Algorithms Features 
Chandy-Lamport [6], 
1985 
SDezialettiiKeams 

Baseline algorithm. FIFO systems. O(e) messages to record snapshot, 

lmurovements to 161: S U D D O ~ ~ S  concurrent initiators. efficient assemblv and distribution 
[24], 1986 of 'snapshot. Assumes bidirectional channels. b(e) messages to record, O(m2) 

messages to assemble and distribute snapshot, 
Venkatesan [23], 1989 Based on [61. Selective sending of markers. Provides message-optimal incremental 

Helary [ill, 1989 Based on [SI. Uses wave synchronization. Evaluates function over recorded global 
snapshots. S2(n + U) messages to record snapshot. 

state. Adaptable to non-FIFO systems but requires inhibaion. 
Lai-Yang [16],1987 Non-FIFO system. Markers iggybacked on computation messages. Message history 

required to compute channerstates. 
Li et a/ [17]. 1987 Similar to 161 

incrementa& . 
Small message history needed as channel states are computed 

Mattern 1191, 1989 

Acharya-Badrinath 
[l], 1992 

Similar to 116 No message history required. Termination detection (e.g. a message 
counter per ckannel) required to compute channel states. 
Requires causal delivery suppolt, Centralized computation of channel states, Channel 
message contents not known. Requires 2n messages, 2 time units. 

Alagar-Venkatesan 
121, 1993 

Requires causal delivery support. DistribLted computation of channel slates. Requires 
3n messages, 3 time units, small messages. 

n =#processes, U = # edges on which messages were sent after previous snapshot, 
e = # channels, r = # concurrent initiators. 

mjj be such that rec(tokeni) --+ send(mjj). Then LSj + mij $ SC,. This in conjunction with property P1 
send(tokenj) 3 send(mjj) and the underlying causal implies that the algorithm satisfies condition C2. 
ordering propem ensures that rec(tokenj), at which instant Consider a message mij which is the kth message from 
j records LSj, happens before rec(mjj). Thus, mjj whose process i to process j before i takes its snapshot. The two 
send is not recorded in LSj, is not recorded as received in possibilities below imply that condition C1 is satisfied. 
LSj. 

Methods of channel state recording are different in these 
two algorithms and are discussed next. 

5.1. Channel Recording in the Afharya-Badrinath 
algorithm 

Each process i maintains arrays S E N Z [ l ,  ..., NI and 
R E C D j [ l .  ..., NI.  S E N Z [ j ]  is thenumberofmessages 
sent by process i to process j and RECDj l j ]  is thc number 
of messages received by process i from process j .  The 
arrays may not contribute to the storage complexity of the 
algorithm because the underlying causal ordering protocol 
may require these arrays to enforce causal ordering. 

Channel states are recorded as follows: when a process 
i records its local snapshot LSj on the receipt of token;, it 
includes arrays RECDi and S E N Z  in its local state before 
sending the snapshot to the initiator. When the algorithm 
terminates, the initiator determines the state of channels in 
the global snapshot being assembled as follows: 

(i) The state of each channel from the initiator to each 
process is empty. 

(ii) The state of channel from process i to process j is the 
set of messages whose sequence numbers are given by 
{RECDj[i]  + 1,. . . , S E N Z [ j ] ) .  
We now show that the algorithm satisfies conditions C1 

and C2. 
Let a message mjj be such that rec(tokeni) + 

send(mjj). Clearly, send(tokenj) --f send(mjj) and 
the sequence number of mij is greater than S E N Z [ j l .  
Therefore, mjj is not recorded in SCjj. Thus, send(mjj) $ 

Process j receives mij before taking its snapshot. In 
this case, mij is recorded in j ' s  snapshot. 
Otherwise, R E C D j [ i ]  5 k 5 S E N Z [ j ]  and the 
message mij will be included in the state of channel 

This algorithm requires 2n messages and 2 time units 
for recording and assembling the snapshot, where one time 
unit is required for the delivery of a message. If the contents 
of messages in channel states are required, the algorithm 
requires 2n messages and 2 time units additionally. 

5.2. ChaMd mcording in the Alagar-Venkatesan 
algorithm 

A message is referred to as old if the send of the message 
causally precedes the send of the token. Otherwise, the 
message is referred to as new. Whether a message is new or 
old can be determined by examining the vector timestamp 
in the message, which is needed to enforce causal ordering 
among messages. 

In the Alagar-Vmkatesan algoritbm [2], channel states 
are recorded as follows. 
(i) When a process receives the token, it takes its snapshot, 

initializes the state of all channels to empty, and returns 
a Done message to the initiator. Now onwards, a 
process includes a message received on a channel in 
the channel state only if it is an old message. 

(ii) After the initiator has received a Done message from 
all processes, it broadcasts a Terminate message. 

(iii) A process stops the snapshot algorithm after receiving 
a Terminate message. 

cjj. 

231 



A D Kshemkalyani et a/ 

An interesting observation is that a process receives all 
the old messages in its incoming channels before it receives 
the Terminate message. This is ensured by the underlying 
causal message delivery property. 

Causal ordering property ensures that no new message 
is delivered to a process prior to the token and only 
old messages are recorded in the channel states. Thus, 
send(mjj) @ LSj mjj @ SCjj. This together 
with Property P1 implies that condition C2 is satisfied. 
Condition C1 is satisfied because each old message mij is 
delivered either before the token is delivered or before the 
Terminate is delivered to a process and thus gets recorded 
in LSj or SCg, respectively. 

6. Summary 

Recording global state of a distributed system is an 
important paradigm in the design of the distributed systems 
and the design of efficient methods of recording the global 
state is an important issue. Recording of a global state of a 
distributed system is complica& due to the lack of both a 
globally shared memory and a global clock in a distributed 
system. This paper first presented a formal definition of 
the global state of a distributed system and exposed issues 
related to its capture; it then described several algorithms 
to record a snapshot of a distributed system under various 
communication models. 

Table 1 gives a comparison of the salient features of 
the various snapshot-recording algorithms. Clearly, the 
higher the level of abstraction provided by a communication 
model, the simpler the snapshot algorithm. However, there 
is no best-performing snapshot algorithm and an appropriate 
algorithm can be chosen based on the application's 
requirement. For examples, for termination detection, a 
snapshot algorithm that computes a channel state as the 
number of messages is adequate; for checkpointing for 
recovery from failures, an incremental snapshot algorithm 
is likely to be the most efficient; for global state monitoring, 
rather than recording and evaluating complete snapshots at 
regular intervals, it is more efficient to monitor changes 
to the variables that affect the predicate and evaluate the 
predicate only when some component variable changes. 

As indicated in the introduction, the paradigm of global 
snapshots finds a large number of applications (among oth- 
ers: detection of stable properties, checkpointing, monitor- 
ing, debugging, analyses of distributed computation, dis- 
carding of obsolete information). Moreover, in addition to 
the problems they solve, the algorithms presented in this 
paper are of great importance to people interested in dis- 
tributed computing, since these algorithms illustrate the in- 
cidence of properties of communication channels (FIFO, 
non-FIFO, causal ordering) on the design of a class of dis- 
tributed algorithms. 
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