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Abstract

Popular Web sites can neither rely on a single powerful server nor on independent mirrored-

servers to support the ever increasing request load. Scalability and availability can be provided

by distributed Web-server architectures that schedule client requests among the multiple server

nodes in a user-transparent way. In this paper we will review the state of the art in load

balancing techniques on distributed Web-server systems. We will analyze the eÆciency and

limitations of the various approaches and their tradeo�.
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1 Introduction

The explosive growth of traÆc on the World Wide Web is causing a rapid increase in the request

rate to popular Web sites. These sites can su�er from severe congestion, especially in conjunction

with special events, such as Olympic Games and NASA Path�nder. The administrators of popular

sites constantly face the need of improving the capacity of their Web-servers to meet the demands

of the users.

One approach to handle popular Web sites is based on the replication of information across

a mirrored-server architecture, which provides a list of independent URL sites that have to be

manually selected by the users. This solution has a number of disadvantages, including the not

user-transparent architecture, and the lack of control on the request distribution by the Web-server

system. A more promising solution is to rely on a distributed architecture that can route incom-

ing requests among several server nodes in a user-transparent way. This approach can potentially

improve throughput performance and provide Web-server systems with high scalability and avail-

ability. However, a number of challenges must be addressed to make a distributed server cluster

function eÆciently as a single server within the framework of the HTTP protocol and Web browsers.

In this paper we describe and discuss the various approaches on routing requests among the dis-

tributed Web-server nodes. We analyze the eÆciency and the limitations of the di�erent techniques

and the tradeo� among the alternatives. The scope of this paper is not to describe the detailed

technical features of each approach, for which we refer the reader to the appropriate literature. Its

aim is rather to analyze the characteristics of each approach and its e�ectiveness on Web-server

scalability.

In Section 2 we propose a classi�cation of existing approaches based on the entity that dispatches

the client requests among the distributed servers: client-based, DNS-based, dispatcher-based, and

server-based. From Section 3 to Section 6 we describe and discuss in more details each of these

approaches. In Section 7 we provide a comparison of the di�erent solutions. In Section 8 we give

some �nal remarks for future work.

2 Distributed Web-server systems

In this paper we refer to user as anyone who is accessing the information on the World Wide

Web, while we de�ne client as a program, typically a Web browser, that establishes connections

to Internet for satisfying user requests. Clients are connected to the network through gateways;

we will refer to the network sub-domain behind these local gateways as domain. The purpose of

a Web server is to store information and serve client requests. To request a document from a

Web-server host, each client �rst needs to resolve the mapping of the host-name contained in the

URL to an IP address. The client obtains the IP address of a Web-server node through an address

mapping request to the Domain Name System (DNS) server, which is responsible for the address

resolution process. However, to reduce traÆc load due to address resolutions, various entities (e.g.,

intermediate name servers, local gateways, and browsers) can cache some address mapping for a

certain period.

In this paper, we will consider as a distributed Web-server system any architecture consisting
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of multiple Web-server hosts with some mechanism to spread the incoming client requests among

the servers. The nodes may be locally or geographically distributed (namely, LAN and WAN

Web-server systems, respectively). As assumed by existing distributed Web-server systems, each

server in the cluster can respond to any client request. There are essentially two mechanisms for

implementing information distribution among the server nodes: to replicate the content tree on

the local disk of each server or to share information by using a distributed �le system. The former

solution can be applied to both LAN and WAN Web-server systems, the latter works �ne only for

LAN Web-server systems.

A distributed Web-server system needs to appear as a single host to the outside world, so

that users need not be concerned about the names or locations of the replicated servers. Unlike

the distributed Web-server system, the mirrored-server based architecture is visible to the user,

thereby violating the main transparency requirement.

In this paper we classify the distributed Web-server architectures by focusing on the entity

which distributes the incoming requests among the servers. In such a way, we identify four classes

of methods, the �rst of which requires software modi�cation on the client side, and the remaining

three a�ect one or more components of the Web-server cluster.

� Client-based approach

� DNS-based approach

� Dispatcher-based approach (at network level)

� Server-based approach.

All approaches of interest to this paper satisfy the architecture transparency requirement. Oth-

er considered factors include scalability, load balancing, availability, applicability to existing Web

standards (namely, backward compatibility), and geographical scalability (i.e., solutions applicable

to both LAN and WAN distributed systems).

3 Client-based approach

The approach of routing the document requests from the client side can be applied to any replicated

Web-server architecture even when the nodes are loosely or not coordinated at all. There are two

main approaches that put the server selection mechanism on the client side by satisfying the user-

transparency requirement: the routing to the Web cluster can be provided by the Web clients (i.e.,

the browsers) or by the client-side proxy servers.

3.1 Web clients

The Web clients can play an active role in the request routing, if we assume that the Web clients

know the existence of the replicated servers of the Web-server system. Figure 1 shows the steps

through which a client can directly route user requests to a Web-server node. This �gure and all

those in the following sections showing the main features of di�erent approaches for distributing
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Step 1: Document request
Step 2: Web-server selection

Step 4: Document response (Server 1)
Step 3: Document request (Server 1)

(1), (2)

(3)

(4)

User

Server 1
(address 1)

Server N
(address N)

Client

Figure 1: Web clients based approach.

requests are based on a protocol-centered description: the labeled arcs denotes the main steps that

are necessary to request a document, select a Web-server and receive a response.

In particular, Figure 1 shows the simplicity of the Web clients based approach. Upon received

the user request (step 1), the Web client is able to select a node of the cluster (step 2) and, once

resolved the address mapping (not shown in the �gure because it is not relevant to the server

selection), submits the request to the selected node (step 3). This Web-server is responsible for

responding to the client (step 4). A successive request from the same client can reach another

server. We consider two representative examples of the scheduling approach based on Web clients.

Netscape's approach. The way of accessing the Netscape Communication site through the Netscape

Navigator browser has been the �rst example of client-based distributed Web-server architec-

ture [20, 24]. The mechanism for spreading the load across the multiple nodes of the Netscape

Web-server system is as follows. When the user accesses the Netscape home page (located

at the URL www.netscape.com), Navigator selects a random number i between 1 and the

number of servers and directs the user request to the node wwwi.netscape.com.

The Netscape approach is not generally applicable, as the number of Web sites that have the

privilege to own a browser to distribute the load among their servers is very limited. (Such a

solution could �nd a wider practical application in the Intranets of large corporations.) Fur-

thermore, this architecture is not scalable unless the client browser is re-installed. Moreover,

the random selection scheme, which is used for spreading the requests, does not guarantee

server availability and load balancing among the servers.

Smart Clients. This solution [27] aims at migrating some server functionality to the client ma-

chine, in contrast with the traditional approach in which the Web client is not involved. The

client request routing is achieved through a Java applet which is executed at the client side

each time a user requests an access to the distributed Web-server system. As the applet

knows the IP addresses of all server nodes in the Web cluster, it can send messages to each
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of the servers to get information on the node states and network delays. This information is

analyzed by the applet to select the most appropriate server. Requests from the client node

executing the applet are then forwarded to the selected server.

A major drawback of this approach is the increase in network traÆc due to the message

exchanges to monitor server load and network delay at each server node. Moreover, although

this approach provides scalability and availability, it lacks of portability on the client side.

3.2 Client-side proxies

The proxy server is another important Internet entity that may dispatch client requests to Web-

server nodes. We include these approaches in this section because from the Web cluster point of

view the proxy servers are quite similar to clients. An interesting proposal that combine caching

and server replication is described in [4]. Their Web Location and Information Service (WLIS)

implemented at the client-side proxy can keep track of replicated URL addresses and route client

requests to the most appropriate server.

We do not further investigate this class of solutions because they are a�ected by the same

problem that limits the applicability of all Web client approaches. Indeed, any load balancing

mechanism carried out by the client-side proxy servers requires some modi�cations on Internet

components, that typically are not controlled by the same institution/company that manages the

distributed Web-server system.

4 DNS-based approach

The distributed Web-server architectures that use request routing mechanisms on the cluster side

do not su�er from the limited applicability problems of the client-based approaches. Typically, the

architecture transparency is obtained through a single virtual interface to the outside world at least

at the URL level. (We will see that other approaches provide a single virtual interface even at the

IP level). In the �rst implementation of a cluster side solution, the responsibility of spreading the

requests among the servers is delegated to the cluster DNS, that is, the authoritative DNS server

for the domain of the cluster nodes. Through the translation process from the symbolic name

(URL) to IP address, the cluster DNS can select any node of the Web-server cluster. In particular,

this translation process allows the cluster DNS to implement a large set of scheduling policies to

select the appropriate server. On the other hand, it should be observed that the DNS has a limited

control on the request reaching the Web cluster. Indeed, between the client and the cluster DNS,

there are many intermediate name servers that can cache the logical name to IP address mapping

(i.e. network-level address caching) to reduce network traÆc. Moreover every Web client browser

typically caches some address resolution (i.e. client-level address caching).

Besides providing the IP address of a node, the DNS also speci�es a validity period, known

as Time-To-Live (TTL), for caching the symbolic to IP address mapping. After the expiration of

the TTL, the address mapping request is forwarded to the cluster DNS for assignment to a Web-

server node. Otherwise, the address mapping request is handled by some intermediate name server.

These two alternative ways of URL address resolution are shown in Figure 2. If an intermediate
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Figure 2: DNS-based approach.

name server holds a valid mapping for the cluster URL, it can resolve the address mapping request

without forwarding it to another intermediate name server or to the DNS (loop 1, 3'). Otherwise,

the address request reaches the cluster DNS (step 1, 1'), which selects the IP address of a Web-

server and the TTL (step 2). The URL to IP address mapping and the TTL value are forwarded

to all intermediate name servers along the path (step 3) and to the client (step 3').

The DNS control on the address caching is limited by the following factors. First of all, the TTL

period does not work on the browser caching. Moreover, the DNS may not be able to reduce the

TTL to values close to zero because of the presence of non-cooperative intermediate name servers

that ignore very small TTL periods. On the other hand, the limited control on client requests

prevents DNS from becoming a potential bottleneck.

We distinguish the DNS-based architectures through the scheduling algorithm that the cluster

DNS uses to share the load among the Web-server nodes. We �rst consider various policies where

the DNS makes server selection considering some system state information, and then assigns the

same TTL value to all address mapping requests (constant TTL algorithms). We next describe an

alternative class of algorithms that adapt the TTL values on the basis of dynamic information from

servers and/or clients (dynamic TTL algorithms).

4.1 Constant TTL algorithms

The constant TTL algorithms are classi�ed on the basis of the system state information (i.e., none,

client load or client location, server load, or combination of them) the DNS uses for the Web-server

choice.

System stateless algorithms. The most important example of this class is the Round Robin

DNS (namely, DNS-RR) approach implemented by the National Center for Supercomputing

Applications (NCSA) [23]. This was the �rst distributed homogeneous Web-server architec-

ture, and represents the basic approach for various subsequent enhancements. To support the
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fast growing demand to its site, NCSA developed a Web cluster that is made up of the follow-

ing entities: a group of loosely-coupled Web-server nodes to respond to HTTP requests, an

AFS distributed �le system that manages the entire WWW document tree and one primary

DNS for the entire Web-server system.

The DNS for the NCSA domain is modi�ed in order to implement a round-robin algorithm

for address mapping. The load distribution under the DNS-RR is not very balanced mainly

because of the address caching mechanism that lets the DNS control only a very small fraction

of the requests. This is further a�ected by the uneven distribution of client requests from

di�erent domains. So a large number of clients from a single domain can be assigned to the

same Web-server, leading to load imbalance and overloaded server nodes [13, 18]. Additional

drawbacks of this approach are related to the fact that the DNS-RR ignores both server

capacity and availability. If a server is overloaded or out of order, there is no mechanism to

stop the clients from continuing to try to access the Web site by using the cached address of

that server. Moreover, the round-robin mechanism treats all servers equally, i.e. assuming

a homogeneous server environment. The poor performance of the RR-DNS policy motivates

the study of alternative DNS routing schemes that require additional system information to

better balance the load of a Web-server cluster.

Server state based algorithms. Knowing server state conditions is mandatory if we want an

available Web-server system that can exclude unreachable servers because of faults or con-

gestion. It was found in [13] that the DNS policies combined with a simple feedback alarm

mechanism from highly utilized servers is very e�ective to avoid overloading the Web-server

system. This allows to exclude those servers from further request assignments during the

overload period. A similar approach combined with the DNS-RR policy is implemented by

the SunSCALR framework [26].

The scheduling decision of lbmnamed proposed in [25] is based on the current load on the

Web-server nodes. When an address request reaches the DNS, it selects the server with the

lightest load. To inhibit address caching at name servers, the DNS of the lbmnamed system

sets the TTL value to zero. This choice imposes a limitation to the applicability of this

approach as discussed in Section 4.3.

Client state based algorithms. Two main kinds of information can come from the client side:

the typical load that arrives to the Web-server system from each connected domain, and the

geographical location of the client.

A measure of the average number of data requests sent from each domain to a Web site during

the TTL caching period following an address mapping request is referred to as the hidden load

weight [13]. (A normalized hidden load weight represents the domain request rate.) Various

DNS scheduling policies were proposed in [13] that mainly use this client information so as

to assign the requests to the most appropriate server. In particular, these policies aim at

identifying the requesting domain and the hidden load weight that this domain imposes on

the server. One example of hidden load weight algorithm is the multi-tier round-robin policy,
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where di�erent round-robin chains are used for requests in di�erent ranges of hidden load

weight.

One of the two alternative modes of the Cisco DistributedDirector [12] takes into account the

location of the client/domain to make server selection. In this mode, DistributedDirector

acts as a primary DNS. It basically takes relative client-to-server topological proximity and

client-to-server link latency into account to determine the most suitable server. As an ap-

proximation, the client location is evaluated using the IP address of the client's local DNS

server.

The Internet2 Distributed Storage Infrastructure Project (I2-DSI) proposes a smart DNS

that implements address resolution criteria based on network proximity information, such as

round trip delays [6].

These geographic DNS-based algorithms do not work if URL to IP address mapping is always

cached by the intermediate name servers. To make these mechanisms work, the cluster DNS

sets the TTL to zero. However, this solution has a limited e�ect because of many non-

cooperative name servers.

Server and client state based algorithms. Most DNS algorithms achieve best results when

they use both client and server state conditions. For example, the DistributedDirector DNS

algorithm actually uses server availability information in addition to client proximity.

Similarly, the hidden load weight may not always be suÆcient to predict the load conditions

at each Web-server node. An asynchronous alarm feedback from over-utilized servers allows

the design of new DNS policies that exclude those servers from request assignments during

the overload period and use the client state based algorithms to select an eligible server

from the non-overloaded servers [13]. As the enhanced DNS scheduling algorithms require

various kinds of system state information, eÆcient state estimators are needed for their actual

implementation. Some dynamic approaches for collecting state information at the DNS are

proposed in [9].

4.2 Dynamic TTL algorithms

To balance the load across multiple Web-server nodes, the DNS has actually two control knobs: the

policy for scheduling the server and the algorithm for the TTL value selection. Just exploring the

scheduling component alone (constant TTL algorithms) is often inadequate to address client request

skew and probable heterogeneity of server capacities. For this reason, a new class of dynamic TTL

scheduling policies was proposed in [14]. They use some server and client state based DNS policy

for the selection of the server, and dynamically adjust the TTL value based on di�erent criteria.

The �rst set of algorithms (variable TTL) mainly addresses the problem of the limited control

of the DNS. For this purpose, it increases the DNS control when there are many overloaded servers

through a dynamic reduction of the TTL value. However, the strategies based on this approach do

not work much better than constant TTL algorithms. Instead of just reducing the TTL value to

give more control to the DNS, a better alternative is to address the unevenly distributed domain

load and heterogeneous server capacities by assigning a di�erent TTL value to each address request
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(adaptive TTL algorithms). The rationale for this approach comes from the observation that the

hidden load weight, independently of the domain, increases with the TTL value. Therefore, by

properly selecting the TTL value for each address request, the DNS can control the subsequent

requests to reduce the load skews that are the main cause of overloading [14].

The adaptive TTL uses a two-step decision process. In the �rst step, the DNS selects the Web-

server node similarly to the hidden load weight algorithms. In the second step, the DNS chooses the

appropriate value for the TTL period. The uneven domain load distribution is handled by using

TTL values inversely proportional to the domain request rate, i.e., the address requests coming

from very popular domains will receive a TTL value lower than the requests originated by small

domains. As the popular domains have higher domain request rate, a shorter TTL interval will

even out the total number of subsequent requests generated. The (probable) system heterogeneity

is addressed either during the server selection or, again, through adjusting the TTL values. The

DNS can assign a higher TTL value when the DNS chooses a more powerful server, and a lower

TTL value when the requests are routed to a less capable server. This is due to the fact that

for the same fraction of server capacity, the more powerful server can handle a larger number of

requests, or take requests for a longer TTL interval. Furthermore, the adaptive TTL approach can

take server availability into account by using feedback mechanisms from the servers.

The adaptive TTL algorithms can easily scale from LAN to WAN distributedWeb-server system

because they only require information that can be dynamically gathered by the DNS [9], i.e., the

request rate associated with each connected domain and the capacity of each server.

4.3 DNS-based architecture comparison

In [13] it was shown that the DNS policies such as lbmnamed based on detailed server state in-

formation (e.g., present and past load) are not e�ective in balancing the load across the servers.

This is because with address caching, each address mapping can cause a burst of future requests

to the selected server and make the current load information become obsolete quickly and poorly

correlate with future load. The hidden load weight provides an estimate of the impact of each

address mapping and is a more useful information to guide routing decisions.

Scheduling algorithms based on the hidden load weight and alarms from the overloaded servers

can lead to much better load balancing than RR-DNS and maintain high Web site availability [13].

However, they give less satisfactory results when generalized to a heterogeneous Web-server system

through probabilistic routing [14].

Adaptive TTL algorithms are the most robust and e�ective in balancing the load among dis-

tributed Web-server systems, even in the presence of skewed loads and non-cooperative name

servers. However, they do not take the client-to-server distance into account in making scheduling

decision. A policy that uses adaptive TTL assignment combined with information on geographical

client location may achieve a better performance, even though no existing DNS-based system has

yet considered this approach.

Policies, such as the DistributedDirector, I2-DSI and lbmnamed, that require the setting of the

TTL value to zero have serious limitations on general applicability. They make DNS a potential

bottleneck. Furthermore, they do not take the client-level address caching into account, because
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of which subsequent requests from the same client (browser) are sent to the same server. Some

problems exist even at the network-level address caching because most intermediate name servers

are con�gured in a way that do not accept very low TTL values.

5 Dispatcher-based approach

An alternative approach to DNS-based architectures aims to achieve full control on client requests

and mask the request routing among multiple servers. To this purpose, they extend the address

virtualization, done by the DNS-based approaches at the URL level, to the IP level. This approach

provides the Web-server cluster with a single virtual IP address (IP-SVA). In fact, this is the IP

address of a dispatcher that acts as a centralized scheduler and, in contrast to the DNS, has complete

control on the routing of all client requests. To distribute the load among the Web-server nodes,

the dispatcher is able to uniquely identify each server in the cluster through a private address that

can be at di�erent protocol levels depending on the proposed architecture. We di�erentiate the

dispatcher-based architectures through the mechanism they use to route the requests reaching the

dispatcher toward the `hidden' selected Web-server. The two main classes of routing are through a

packet rewriting mechanism or HTTP redirection.

The existing dispatcher-based architectures typically use simple algorithms for the selection of

the Web-server (e.g., round-robin, server load) because the dispatcher has to manage all incoming


ow and the amount of processing for each request has to be kept to minimum. However, it is

possible to integrate this architecture with some more sophisticated assignment algorithms pro-

posed for distributed Web-server systems having a centralized dispatcher with full control on client

requests. An example is the SITA-V algorithm [16] that takes into account the heavy-tailed task

size distributions [3, 15] in the selection of the appropriate server.

5.1 Packet single-rewriting by the dispatcher

We �rst consider architectures where the dispatcher reroutes client-to-server packets by rewriting

their IP address. An example of this solution is the basic TCP router mechanism described in [18].

The distributed Web-server cluster is made up by a group of nodes and a TCP router that acts

as an IP address dispatcher. The mechanism is outlined in Figure 3, where address i is now the

private IP address of the i-th Web-server node. All HTTP client requests reach the TCP router

because the IP-SVA is the only public address (step 1). The routing to a server is achieved by

rewriting the destination IP address of each incoming packet (and also the TCP and IP checksums,

since they both depend on the destination IP address): the dispatcher replaces its IP-SVA with

the IP address of the selected server (step 3). The server choice for each HTTP request is done

by the dispatcher through a round-robin algorithm (step 2). Since a request consists of several IP

packets, the TCP router keeps track of the source IP address for every established TCP connection

in an address table. In such a way, the TCP router can always route packets pertaining to the

same connection to the same Web-server node (step 4).

Furthermore, the Web-server, before sending the response packets to the client (step 6), needs

to replace its IP address with the IP-SVA of the dispatcher (step 5). Therefore, the client is not
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Step 1: Document request (IP-SVA)
Step 2: Web-server selection
Step 3: Packet rewriting (IP-SVA -> address 1)

Step 6: Document response (IP-SVA)
Step 5: Packet rewriting (address 1 -> IP-SVA)
Step 4: Packet routing

(2), (3)

(1)

(6)

(5)

(4)
User

Server N
(address N)

(IP-SVA)
dispatcher
Address

Server 1
(address 1)

Client

Figure 3: Packet single-rewriting by the dispatcher.

aware that its requests are handled by some hidden Web-server.

Although this solution is transparent to the client, the TCP router architecture does require

modi�cation of the kernel code of the servers, since the IP address substitution occurs at the

TCP/IP level. On the other hand, this approach provides high system availability, because upon

failure of a front-end node, its address can be removed from the router's table so that no client

request will be routed to it anymore. The TCP router architecture can be combined with a DNS-

based solution to scale from LAN to WAN distributed Web system.

5.2 Packet double-rewriting by the dispatcher

This class of Web-server clusters also relies on the presence of a centralized dispatcher that acquires

all client requests and distributes them among the servers. The di�erence from the TCP router is in

the modi�cation of the source address of the server-to-client packets. Now, the modi�cation of all

IP addresses, including that in the response packets, are carried out by the dispatcher. This packet

double-rewriting mechanism is at the basis of the Network Address Translation (NAT) de�ned

in [19] and shown in Figure 4. When the dispatcher receives a client request, it selects the Web-

server node (step 2) and modi�es the IP header of each incoming packet (step 3). Furthermore, the

dispatcher has to modify the outgoing packets that compose the requested Web document (step 6).

Two architectures that are based on this approach (with a server fault detection mechanism)

are the Magicrouter [1] and the LocalDirector [11].

Magicrouter. Magicrouter uses a mechanism of fast packet interposing, where a user level process,

acting as a switchboard, intercepts client-to-server and server-to-client packets and modi�es

them by changing the addresses and checksum �elds. To balance the load among the Web-

server nodes, three algorithms are considered: round-robin, random and incremental load,

which is similar to selecting the lowest load server based on the current load estimate and
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Step 2: Web-server selection
Step 3: Packet rewriting (IP-SVA -> address 1)
Step 4: Packet routing
Step 5: Server sends each packet to the dispatcher
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(6)
(2), (3)

User
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(address N)

(IP-SVA)

Address
dispatcher

Server 1
(address 1)

Client

Figure 4: Packet double-rewriting by the dispatcher.

the per TCP connection load adjustment. Unlike the TCP router working at kernel level, the

Magicrouter works at application level.

LocalDirector. The LocalDirector from Cisco Systems [11] rewrites the IP information header

of each client-to-server packet according to a dynamic mapping table of connections between

each session and the server to which it has been redirected. The routing policy selects the

server with the least number of active connections.

5.3 Packet forwarding by the dispatcher

A di�erent set of solutions uses the dispatcher to forward client packets to the servers instead of

rewriting their IP addresses.

Network Dispatcher. An extension of the basic TCP router mechanism is provided by the IBM

Network Dispatcher [22]. Let us distinguish its LAN implementation from WAN implemen-

tation.

The LAN Network Dispatcher solution assumes that the dispatcher and the server nodes are

on the same local network. All them share the same IP-SVA address, however the client

packets reach the Network Dispatcher because the Web nodes have disabled the ARP reso-

lution mechanism. The dispatcher can forward these packets to the selected server using its

physical address (MAC address) on the LAN without modifying the IP header. Unlike the

basic TCP router mechanism, neither the dispatcher nor the Web-servers of the LAN Network

Dispatcher are required to modify the IP header of the response packets. The mechanism is

similar to that described in Figure 3. In this case, address i is the private hardware MAC

address of the i-th Web-server node. This solution is transparent to both the client and server

because it does not require packet rewriting. The scheduling policy used by the dispatcher

can be dynamically based on server load and availability.
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Figure 5: WAN Network Dispatcher architecture.

The extension of the Network Dispatcher to a WAN distributed architecture requires a dif-

ferent solution based on two levels of Network Dispatchers. The mechanism is outlined in

Figure 5, where cluster i is the IP address of the second level dispatcher for the i-th clus-

ter. The �rst level acts now quite similarly to a packet single-rewriting mechanism by the

dispatcher, because it replaces the IP-SVA address with the IP address of the second level

Network Dispatcher (step 2, 3) that coordinates the chosen cluster. The second level Net-

work Dispatcher, in its turn, changes this IP address back to the original IP-SVA and selects a

Web-server (step 5, 6). As the second level Network Dispatcher and the Web-server nodes of

this cluster are on the same local network, the packet forwarding mechanism based on MAC

address can be used to assign the client requests to one Web-server (step 7). This solution

limits the rewriting by the dispatcher to the client-to-server packets that in a Web environ-

ment are typically much less than server-to-client packets, thereby solving the main problem

of the other architectures in Section 5.2 that require packet rewriting in both directions.

ONE-IP address. A di�erent kind of forwarding approach uses the if config alias option to

con�gure a Web-server system with multiple machines [17]. This solution publicizes the same

secondary IP address of all Web-server nodes as IP-SVA of the Web-server cluster (here called

ONE-IP). Starting from this basic approach, two techniques are described in [17].

The routing-based dispatching requires that all the packets directed to the ONE-IP address

are �rst rerouted by the subnetwork router to the IP address dispatcher of the distributed

Web-server system. The dispatcher selects the destination server based on a hash function

that maps the client IP address into the primary IP address of a server and then reroutes

the packet to the selected server. This approach provides a static assignment, however it

guarantees that all packets belonging to the same TCP connection are directed to the same

server.

The broadcast-based dispatching uses a di�erent mechanism to distributed client requests. The
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subnetwork router broadcasts the packets having ONE-IP as destination address to every

server in the Web-server cluster. Each server evaluates whether it is the actual destination by

applying a hash function to the client IP address and comparing the result with its assigned

identi�er.

Using a hash function to select the server based on the client IP address is the weak point of

the ONE-IP address approach. Although the hash function could be dynamically modi�ed to

provide fault tolerance, this approach does not allow dynamic load balancing based on server

load. Moreover, the proposed hash function does not take into account server heterogene-

ity. To further scale the system, the ONE-IP approach can be combined with a DNS-based

solution.

5.4 HTTP redirection by the dispatcher

In the HTTP redirection approach a centralized dispatcher receives all incoming requests and

distributes them among the Web-server nodes through the redirection mechanism provided by

HTTP. This protocol allows the dispatcher to redirect a request by specifying the appropriate

status code in the response and indicating in its header the server address to which the client can

get the desired document. Such redirection is transparent to the users that can at most perceive an

increase in the response time. Unlike most dispatcher-based solutions, the HTTP redirection does

not require the modi�cation of the IP address of the packets reaching or leaving the Web-server

cluster. Two main proposals of this class are:

Server state based dispatching. The Distributed Server Groups approach [21] adds some new

methods to HTTP protocol to administer the cluster and exchange messages between the

dispatcher and the servers. Since the dispatcher needs to be aware of the load on the servers,

each server periodically reports both the number of processes in its run queue and the number

of received requests per second. Based on this information, the dispatcher selects the least

loaded server.

Location based dispatching. The Cisco DistributedDirector [12] provides two alternative modes

on location based dispatching. The former, discussed in Section 4.1, uses the DNS approach

with client and server state information, while the latter takes the HTTP redirection approach.

The DistributedDirector that acts as a dispatching facility uses some measure to estimate the

proximity of a client to the servers and the node availability (as in the DNS case), determines

the most suitable server for the request and redirects the client to that node.

5.5 Dispatcher-based architecture comparison

The solutions based on the packet double-rewriting by the dispatcher have the major disadvantage

of requiring the dispatcher to rewrite not only the incoming but also outgoing packets (which are

typically in larger number than the incoming request packets).

The packet single-rewriting by the dispatcher mechanism provided by the TCP router archi-

tecture has the same overhead of rewriting in both directions, however it reduces the bottleneck
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risks at the dispatcher because the more numerous server-to-client packets are rewritten by the

Web-servers. Even more eÆcient is the WAN Network Dispatcher solution that rewrites (twice)

only the client-to-server packets.

However, packet rewriting remains a big overhead. Packet forwarding mechanisms aim at

addressing this issue. Problems of the ONE-IP approach can arise from the static scheduling

algorithm which does not take the server state into account for the routing decision. While the

routing-based dispatching requires double re-routing of each packet, the broadcast-based dispatching

broadcasts all packets to every servers, thus causing more server overhead. This latter solution also

requires the modi�cation of each server device driver in order to properly �lter the packets.

The LAN Network Dispatcher architecture avoids most of the network traÆc problems of the

ONE-IP solutions, and overheads of TCP router and double rewriting approaches. However, it

lacks geographical scalability because it requires that the dispatcher and the Web-server nodes are

directly connected by the same network segment.

The HTTP request redirection approach can be �nely applied to LAN and WAN distributed

Web-server systems, however it duplicates the number of necessary TCP connections. Furthermore,

the Distributed Server Group technique requires new methods added to HTTP protocol for the

communications among the dispatcher and the Web-server nodes.

6 Server-based approach

The server-based techniques use a two-level dispatching mechanism: client requests are initially

assigned by the cluster DNS to the Web-servers; then, each server may reassign a received request

to any other server of the cluster. Unlike the DNS-based and dispatcher-based centralized solutions,

the distributed scheduling approach allows all servers to participate in balancing the load of the

cluster through the request (re-)assignment mechanism. The integration of the DNS-based approach

with some redirection techniques carried out by the Web-servers aims to solve most of the problems

that a�ect DNS scheduling policies, e.g., the non-uniform distribution of client requests among the

domains and limited control over the requests reaching the Web cluster.

The server-based proposals di�er in the way the redirection decision is taken and implemented.

We consider two main classes of solutions: those based on the packet rewriting mechanism, and

those that take advantage of the redirection facility provided by the HTTP protocol.

6.1 HTTP redirection by the server

Scalable server World Wide Web (SWEB) system [2] and other architectures proposed in [10] use

a two-level distributed scheduler (see Figure 6). Client requests, initially assigned from the DNS to

a Web-server (step 1, 1', 2, 3, 3'), may be reassigned to any other server of the cluster through the

redirection mechanism of the HTTP protocol. Figure 6 shows the case where the server 1 receiving

the client request (step 4) decides to redirect the request (step 5, 6) to server 2 instead of serving it.

As in Figure 2, we show that the �rst-level Web-server selection done by the DNS can be prevented

by the intermediate name servers caching a valid address mapping.

The decision to serve or to redirect a request can be based on various criteria. A large set
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Figure 6: HTTP redirection by the server.

of alternative mechanisms, including synchronous (periodic) vs. asynchronous activation of the

redirection mechanism, and granularity of the redirected entities (i.e., individual clients vs. entire

domains) are discussed and compared in [10]. The asynchronous activation is triggered when the

server chosen by the DNS considers that is more appropriate to let another server answer the

client request, e.g. the former server is overloaded, or in the cluster there is a less loaded server

and/or a server closer to the client domain. We have seen that the redirection of individual client

connections is crucial to better balancing the load for asynchronous schemes, however it has to be

combined with domain redirection when synchronous policies are adopted. Although these latter

algorithms give the best results for a wide set of system parameters, the performance di�erence

with the asynchronous approaches is not appreciable unless the Web-server cluster is subject to

very heavy loads.

The SWEB architecture uses a round robin DNS policy as a �rst-level scheduler and a purely

distributed asynchronous scheme as a second-level scheduler. Each Web-server decides about redi-

rection on the basis of a server selection criterion that aims to minimize the response time of the

client request. The estimation of this time value is done by taking the processing capabilities of

the servers and Internet bandwidth/delay into account.

All the proposed re-assignment mechanisms imply an overhead of intra-cluster communications,

as every server needs to periodically transmit some status information to the cluster DNS [10] or

to other servers [2]. However, such cost has a negligible e�ect on the network traÆc generated by

the client requests. Indeed, on the user point of view, the main drawback of the HTTP redirection

mechanism is that it increases the mean response time since each redirected request requires a new

client-server connection.
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Figure 7: Packet redirection by the server.

6.2 Packet redirection by the server

Distributed Packet Rewriting (DPR) uses a round robin DNS mechanism to carry out the �rst

scheduling of the requests among the Web-servers [7]. The server reached by a client request is

able to reroute the connection to another server through a packet rewriting mechanism that, unlike

HTTP redirection, is quite transparent to the client. Figure 7 shows the initial request distribution

achieved through the DNS (step 1, 1', 2, 3, 3') and the case where the server 1 decides to redirect

the received request (step 5, 6) to the server 2 without a�ecting the client.

Two load balancing algorithms are proposed to spread clients requests. The �rst policy uses a

static (stateless) routing function, where the destination server of each packet is determined by a

hash function applied to both the sender's IP address and the port number. However, this simple

policy is not practicable because IP packet fragmentation does not provide the port information

in each fragment. The second stateful algorithm relies on periodic communications among servers

about their current load. It tends to redirect the requests to the least loaded server. DPR can be

applied to both LAN and WAN distributed Web-server systems. However, the packet rewriting and

redirecting mechanism causes a delay that can be high in WAN distributed Web-server systems.

7 Comparison of the di�erent approaches

7.1 Qualitative comparison

Load balancing is critical in managing high performance Web-server clusters. Request load must

be spread across the Web-server nodes, so as to reduce the response time and provide WWW users

with the best available quality of service. Load balancing among the servers can be achieved by

several approaches with di�erent degrees of e�ectiveness.

A summary of the policy features and main tradeo� of the various approaches is outlined in

Table 1. Below we give additional explanations.
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Client-based approach. The client-based approaches have the advantage of reducing the load

on Web-server nodes by implementing the routing service at the client side. However, they

lack general applicability since the client must be aware that the Web site is distributed.

DNS-based approach. Unlike other solutions, the DNS-based approaches do not directly route

client requests. They only a�ect the destination of client requests through address mapping.

However, due to address caching mechanisms, DNS can control only a very small fraction

of address mapping requests. That is to say, the address caching permits only a coarse-

grained load balancing mechanism if the assigned TTL is greater than zero. So the DNS

scheduler needs to use sophisticated algorithms to achieve acceptable performance. They are

typically based on additional state information such as hidden load weight from each domain,

client location, and server load conditions. Furthermore, by adaptively setting the TTL value

for each address mapping request, the performance can be greatly improved and applied to

heterogeneous server environments.

The DNS-based architecture does not present risk of bottleneck and can be easily scaled from

LAN to WAN distributed Web-server systems. On the other hand, this approach cannot use

more than 32 Web-servers for each public URL because of UDP packet size constraints [22].

Dispatcher-based approach. The main drawback of dispatcher-based solutions comes from the

presence of a single decision entity which can become a bottleneck when the system is subject

to ever growing request rate. Furthermore, in a centralized approach the system can be

disabled by the failure of the dispatcher. On the other hand, the dispatcher acting as a

centralized scheduler with full control on the client requests can achieve �ne grained load

balancing. Furthermore, the single virtual IP address prevents problems arising from client

or network level address caching that a�ect DNS-based solutions. As to server topology,

it should be noted that the solutions that adopt the packet rewriting mechanism (with the

exception of the WAN Network Dispatcher) is most applicable to server clusters on a LAN or

high speed Intranet. Otherwise, the delay caused by the modi�cation and rerouting of each

IP packet that 
ows through the dispatcher can degrade the performance.

Server-based approach. The distributed scheduler solution proposed in the server-based archi-

tectures can provide scalability and does not introduce a single point of failure or potential

bottleneck in the system. Furthermore, it can achieve the same �ne grained control on the

request assignment as the dispatcher-based solutions do. On the other hand, the redirection

mechanism that characterizes the server-based architectures typically increases the latency

time perceived by the users.

To face the high variability of both o�ered load and system con�guration, the scheduling tech-

nique should be able to take the heterogeneity of the computing resources into consideration and to

implement a dynamic assignment of incoming requests among the clustered nodes. An evaluation

of the previously discussed scheduling mechanisms used by the various approaches is outlined in

Table 2. The factors considered include control granularity, state information overhead, general

applicability to popular Web sites subject to continue clients requests, bottleneck risk, geographi-

18



Approach Scheduling Pros Cons

Client-based client-side no server overhead limited applicability

distributed LAN and WAN solution medium-coarse grained balancing

DNS-based cluster-side no bottleneck partial control

centralized LAN and WAN solution coarse grained balancing

Dispatcher-based cluster-side �ne grained balancing dispatcher bottleneck

centralized full control (typically) LAN solution

packet rewriting overhead

Server-based cluster-side distributed control latency time increase (HTTP)

distributed �ne grained balancing packet rewriting overhead (DPR)

LAN and WAN solution

Table 1: Main pros and cons of the approaches.

cal scalability, and availability which is the ability to avoid routing requests to failed or overloaded

servers in the cluster.

Approach Control State information General Bottleneck Geographical Availability

granularity overhead applicability risk scalability

Client-based

Netscape coarse no no no yes no

Smart Clients �ne very high no no yes yes

Client-side proxies �ne high no no yes yes

DNS-based

RR-DNS coarse no yes no yes no

lbmnamed medium low no (TTL=0) medium yes no

SunSCALR medium low yes medium yes yes

Hidden load weight coarse high yes no yes yes

Geographic medium very high no (TTL=0) medium yes yes

Adaptive TTL coarse high yes no yes yes

Dispatcher-based

TCP-router �ne low yes high no yes

Magicrouter �ne low yes very high no yes

LocalDirector �ne medium yes very high no yes

Network Dispatcher (LAN) �ne low yes high no yes

Network Dispatcher (WAN) �ne low yes high yes yes

ONE-IP �ne no yes high no partial

Distributed Server Groups �ne high yes high yes yes

DistributedDirector �ne high yes high yes yes

Server-based

Synchronous, Asynchronous �ne high yes no yes yes

SWEB �ne high no (TTL=0) medium yes yes

DPR-stateless �ne no no no no no

DPR-stateful �ne high yes no yes yes

Table 2: Scheduling mechanisms.

7.2 Quantitative comparison

In the previous section we examine the load balancing characteristics of the di�erent approaches

with some brief analysis of the response time implication. A detailed quantitative analysis of the

various features is beyond the scope of this paper. Here, we focus on investigating the impact of

the scheduling algorithms on avoiding that some server node becomes overloaded, while others are
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underutilized. Indeed, the main goal of the Web site management is to minimize the worst case

scenario, i.e., to avoid that some server node drops requests and eventually crashes. To this purpose,

we de�ne the cluster maximum utilization at a given instant as the highest server utilization at that

instant among all servers in the cluster. Speci�cally, our performance criterion is the cumulative

frequency of the cluster maximum utilization, i.e., the probability (or fraction of time) that the

cluster maximum utilization is below a certain value. By focusing on the highest utilization among

all Web-servers in the cluster, we can deduce whether some node of the Web-server cluster is

overloaded. Hence, we developed a simulator to evaluate the performance of the various load

balancing approaches by tracking at periodic intervals the cluster maximum utilizations observed

during the simulation runs and plotting their cumulative frequencies as in [13].

The simulation experiments are carried out with an o�ered load equal to 2/3 of the cluster

capacity. Since the performance are evaluated from the Web-server cluster's perspective, we did

not model the Internet traÆc, but we consider major WWW components that impact the perfor-

mance of the Web-server clusters. These include the intermediate name servers and all the details

concerning a client session, i.e., the entire period of access to the Web site from a single user. The

clients have a (set of) local name server(s) and are connected to the network through gateways.

We assume that clients are partitioned among these network sub-domains based on a Zipf's distri-

bution. Two main models have been considered for representing the client load: the exponential

distribution model and the heavy-tailed distribution model.

In the exponential distribution model, the number of page requests per session and the time

between two page requests from the same client are assumed to be exponentially distributed.

Analogously, the hit service time (i.e., the time to serve each object of an HTML page) and the

inter-arrival time of hit requests to the servers are also assumed to be exponentially distributed.

The parameters of the distributions and other details about the experiments are similar to those

reported in [13].

On the other hand, the heavy-tailed distribution model can incorporate all main characteristics

of real Web workload, and in particular the self-similar nature of Web traÆc [15]. The high

variability in the client load is represented through heavy-tailed functions, such as the Pareto and

Weibull distributions. The adopted model following the Barford and Crovella results [5] is similar

to that described in [9].

Below we consider some representative (ideal) version of the approaches described in the previ-

ous sections.

DNS-based approach. We implement two DNS-based algorithms: the constant TTL algorithm

with server and client information, and the adaptive TTL algorithm. Moreover, for compar-

ison purposes we consider even the DNS-RR used by NCSA. For all these approaches the

percentage of requests that need to have address mapping resolved by the cluster DNS is kept

below 5%.

Dispatcher-based approach. We consider a distributed Web cluster where the scheduler has full

control on the incoming requests. Here we do not investigate the bottleneck issue, i.e., the

dispatcher is assumed to have suÆcient processing capacity. Nevertheless, in the real scenario,

to reduce the likelihood that the dispatcher becoming a bottleneck, one needs to keep the
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amount of processing per request carried out by the dispatcher to a minimum. Thus, the

load balancing algorithms cannot be too complicated. Typically, stateless algorithms such as

round-robin or hash function, and simple algorithms such as least-loaded node are used. Our

implementation of the dispatcher-based architecture uses round-robin which in our simulation

experiment has demonstrated even better performance than the least-loaded node approach.

Served-based approach. The implemented server-based solution is a simpli�ed version of the

policies discussed in Section 6. A server node replies to a client request unless its load is over

an alarm watermark. In such a case, it redirects the requests to the least loaded server in

the cluster. This policy requires that each server be kept informed of the load on every other

server. We observed in the simulation that the frequency of this information exchange should

be rather high to achieve acceptable results.

For each of these approaches under the exponential distribution model, Figures 8 shows the

cluster maximum utilization and its cumulative distribution on the x-axis and y-axis, respective-

ly. Clearly, the (idealized) dispatcher-based architecture outperforms all other approaches be-

cause it always keeps the utilization of Web-server nodes below 0.8. Nevertheless, the DNS-based

with adaptive TTL and the server-based policies also work quite well, because for all them the

Prob(ClusterMaxUtilization < 0:90) is almost 1, i.e., there is no overloaded server. On the other

hand, the DNS-based architecture with constant TTL has at least one Web node overloaded (i.e.,

utilized above 0.90) for almost 20% of the time. However, both constant and adaptive TTL DNS-

based architectures have performance results much better than the basic DNS-RR solution that

causes at least one overloaded server for more than 70% of the time.
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Figures 9 shows the performance of the same architectures under the more realistic heavy-tailed

distribution model. As expected, the results degrade for all approaches. Although the o�ered load in

average is still kept to 2/3 of the cluster capacity, it can now have more frequent server overloading
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as most of the used distributions have in�nite variance. Nevertheless, dispatcher-based and DNS-

based with adaptive TTL continue to provide good performance. The DNS-based approach can

be a realistic alternative to the dispatcher-based solution as it shows slightly worse results with no

risks of bottleneck. The server-based approach has very poor performance (at least one server is

overloaded for more than 50% of the time). However, we note that the implemented server-based

approach shown here redirects the requests to the least loaded server. Although this policy works

�ne when the client load has a limited variability such as in the exponential distribution model, it

becomes unacceptable when the past and future node load are poorly correlated as in the heavy-

tailed distribution model. That is to say, to make the server-based architecture work even under

this high variability scenario, more sophisticated scheduling policies have to be devised, such as

those proposed in [10].

8 Conclusions

Load balancing is critical in operating high performance distributed Web-server systems. It can

be achieved by various approaches with di�erent degrees of e�ectiveness. In this paper, we have

proposed a classi�cation of existing solutions based on the entity that dispatches the client requests

among the distributed Web-servers: client-based, DNS-based, dispatcher-based and server-based.

The di�erent techniques are evaluated primarily with respect to compatibility to Web standards,

geographical scalability, and to what extent they achieve load balancing. We did not consider other

Internet entities that may dispatch client requests, such as intelligent routers or intermediate name

servers, because they are a�ected by the same problem that limits the portability of client-based

approaches.

A more detailed quantitative comparison of the various architectures would be necessary to have

major insights on the tradeo�s of the di�erent mechanisms discussed in this paper. Furthermore,

the performance constraints may often due to the network bandwidth than the server node capacity.

Thus LAN distributed Web-server clusters are a limited solution to handle the increasing demand

of client requests. The more e�ective solution is to distribute the Web-servers geographically so

that they reside on separate networks. In such a case, the role of the dispatching algorithm can

be ever more critical because the scheduler could then also take network load and client proximity

into account when dispatching requests. A diÆcult issue that these approaches have to address is

determining the client proximity and bandwidth availability in a dynamic way as they change very

frequently in the Internet environment.
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