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Abstract

The Remote Procedure Call (RPC) paradigm i s
reviewed. The concept is described, along with
the backbone structure of the mechanisms tha t
support it . An overview of works in support-
ing these mechanisms is discussed . Extensions
to the paradigm that have been proposed t o
enlarge its suitability, are studied . The main
contributions of this paper are a standard vie w
and classification of RPC mechanisms accord-
ing to different perspectives, and a snapshot o f
the paradigm in use today and of goals for the
future of RPC .

1 Introductio n

Over time, operating-system support as wel l
as language-level support have been designed
to ease the development of distributed applica-
tions . A distributed application is a set of re-
lated programs that execute concurrently or in
parallel, on the same or distinct autonomou s
processing nodes of a distributed system, inter-
changing information .

The decentralized configuration provided b y
a distributed system brought many benefits .
The interconnection of these processing units
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895 Don Mills Road, North York, Ontario, M3C 1W3 .

This work was partly supported by Brazilian Re-
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makes resources available to a wider commu-
nity . Both data and processes) can be repli-
cated thereby achieving greater performance
through parallelism, increased reliability and
availability, and higher fault tolerance. The re-
mote accessibility of specialized units provid e
better performance for applications with spe-
cific requirements.

Initially, only operating-system-level prim-
itives supported interprocess communication .
Unfortunately, the details of communicatio n
were not transparent to application program-
mers. To transmit complex data structures, i t
was necessary to explicitly convert them int o
or from byte streams . The programmer neede d
to be aware of heterogeneity at the machin e
level, as well as at the language level, betwee n
the sending and the receiving processes. No
compile-time support was offered by the lan-
guages, and debugging became an extremel y
difficult task . A higher level of abstraction was
needed to model interprocess communication .
A variety of language-level constructors and
operators were then proposed to address thi s
problem. They improved readability, portabil-
ity, and supported static type checking of dis-
tributed applications . A major achievemen t
in this area was the Remote Procedure Call
(RPC) .

The procedure mechanism, which is provide d
by most imperative nondistributed languages ,
was initially proposed to support code mod-

IA running program unit is a process .
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ularization, and to be an abstraction facility .
RPC extends this mechanism to a distributed
environment, whereby a process can call a pro-
cedure that belongs to another process . Inter-
process communication is then given the syn-
tax and semantics of a well-accepted strongly
typed language abstraction . Significant result s
have been achieved in the effort to better ac-
commodate in the model problems related not
only with interprocess communication issues ,
but also with distributed environment configu-
rations .

Computing systems continue evolving at
an astonishing speed, and parameters change
quickly . A high-speed network is capable of
continuously broadcasting a database, thu s
providing for an almost zero access time t o
data . An operating system today plays the role
of a decentralized manager that searches for fa-
cilities to provide applications with necessar y
resources . Users are close to a declarative en-
vironment where they specify what their need s
are, and the distributed system is supposed t o
select, based on the instantaneous configura-
tion of the system, how to provide it .

Much demand is placed on mechanisms tha t
isolate architectural dependent characteristic s
from the user . The RPC is an abstraction
which can make these dependencies transpar-
ent to the user . A system supporting RPCs
may provide for location transparency, where
the user is unaware of where the call is exe-
cuted .

The RPC constitutes, also, a sound basi s
for moving existing applications to the dis-
tributed system environment . It supports soft-
ware reusability, which can be one of the most
important medicines in attacking the softwar e
crisis [69] .

In this paper, the whole RPC concept is ex-
plored, and surveyed . In Section 2, the un-
derlying architecture is described, and in Sec-
tion 2.1 the concept of RPC is introduced . Sec-
tion 3 presents the major challenges in support -
ing the paradigm. The standard design of an
RPC system is described in Section 4, as well
as its major components, their function, and
how they interact . Sections 5, 6, and 7 sur-
vey each of those major components, analyzin g
the problems they are supposed to deal with ,
and describing several systems and their dis-

tinct approaches . In Section 8, extensions and
software support added to the RPC paradigm
are discussed. Finally, Section 9 describes mea-
surements that can be used to evaluate the per-
formance of RPC systems .

2 General Concepts

Before exploring the concept of RPC, the un-
derlying environment is described here. The
major environment requirements that RPC is
aimed to support are introduced . Other ap-
proachs that address these features are sur-
veyed .

A distributed computing system consists o f
a collection of autonomous processing nodes
interconnected through a communication net -
work. An autonomous processing node com-
prises one or more processors, one or mor e
levels of memory, and any number of exter-
nal devices [8, 47] . No homogeneity is as-
sumed among the nodes, neither in the proces-
sor, memory, nor device levels . Autonomous
nodes cooperate by sending messages over the
network. The communication network may be
local area (short haul), wide area (long haul) ,
or any combination local ones and wide ones
connected by gateways . Neither the network
nor any node need be reliable . In general, it is
assumed that the communication delay is long
enough to make the access to nonlocal data sig -
nificantly more expensive than the access to 10-

cal primary memory. It is arguable, though, as
to whether or not the nonlocal access is not sig-
nificantly more expensive than the local acces s
when secondary storage is involved [59] .

A distributed program consists of multiple
program units that may execute concurrently
on the nodes of a distributed system, and inter -
act by exchanging messages2 . A running pro-
gram unit is a process . The distributed pro-
gramming consists of implementing distributed
applications . The distributed languages consist
of programming languages that support the de-
velopment of distributed applications . There
are three important features that distribute d

2 1n shared memory distributed systems, progra m
units can also interact through shared memory. Thes e
systems will not be considered in this paper, and some
assumptions and assertions made may not be valid fo r
those environments .
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languages must deal with that are not presen t
in sequential languages [8] :

• Multiple program units

• Communication among the program unit s

• Partial failure .

A distributed language must provide sup -
port for the specification of a program compris-
ing multiple program units . The programme r
should also be able to perform process man-
agement . That is, to specify the location i n
which each program unit is to be executed ; the
mode of instantiation, heavy weighted or light
weighted ; and when the instantiation should
start . The operating system allocates a com-
plete address space for the execution of heav y
weighted processes . The address space con-
tains the code portion of the process, the dat a
portion with the program data, the heap for
dynamic allocation of memory, and the stack ,
which contains the return address linkage for
each function call and also the data elements
required by a function . The creation of a light -
weighted process causes the operating system
to accommodate the process into the addres s
space of another one . Both processes have th e
same code and data portions and share a com-
mon heap and stack spaces . Process manage-
ment can be used to minimize the executio n
time of a distributed program, where the par-
allel units cooperate rather than compete . A
full analysis of the limitations of synchronous
communication in languages that do not sup -
port process management is found in [46] . Pro-
cesses can be created either implicitly by thei r
declaration, or explicitly by a create construct .
The total number of processes may have to b e
fixed at compile time, or may increase dynam-
ically.

Language support is also needed to spec-
ify the communication and synchronization o f
these processes . Communication refers to the
exchange of information, and synchronizatio n
refers to the point at which to communicate .

For applications being executed in a single
node, the node failure causes the shutdown o f
the whole application . Distributed systems ar e
potentially more reliable . The nodes being au-
tonomous, a failure in one does not affect th e
correct functioning of the others . The failure

of only a subset of the nodes in an applica-
tion's execution, partial failure, leaves still the
opportunity for the detection and recovery of
the failure, avoiding the application's failure .
Considerable increase in reliability can also b e
achieved by simply replicating the functions o r
data of the application on several nodes .

Distributed languages differ in modeling pro-
gram units, communication and synchroniza-
tion, and recoverability . Some languages model
program units as objects and are distribute d
object-based . An extensive survey of dis-
tributed object-based programming systems i s
described in [16] . Others model the program
units as processes units and are named process -
oriented (Hermes [75], and NIL [76]) . Yet oth-
ers model program units into tasks, as well as
processes (Ada [20]), where a task is a less ex-
pensive instantiation of program units than the
other two methods .

Many languages model communication as
the sending and reception of messages, re-
ferred to as message-based languages, simulat-
ing datagram mailing (CSP [35], NIL [74]) . A
process P willing to communicate with a pro-
cess Q, sends a message to Q and can continue
executing . Process Q, on the other hand, de-
cides when it is willing to receive messages and
then checks its mail box. Process Q can, if nec-
essary, send messages back to P in response t o
its message . P and Q are peer processes, that
is, processes that interact to provide a service
or compute a result . The application user is re-
sponsible for the correct pairing and sequencin g
of messages .

Several languages require the processes t o
synchronize in order to exchange informa-
tion . This synchronization, or meeting, is ren-
dezvous, and is supported by languages such
as Ada [20], Concurrent C [27], and XMS [26] .
The rendezvous concept unifies the concept s
of synchronization and communication betwee n
processes. A simple rendezvous allows only uni -
directional information transfer, while an ex-
tended rendezvous, also referred to as transac-
tion, allows bidirectional information transfer .

The Remote Procedure Call (RPC) mech-
anism merges the rendezvous communicatio n
and synchronization model with the procedur e
model . The communication details are handled
by the mechanisms that support such abstrac -
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tion, and are transparent to the programmer .
Languages that support RPC are referred to as
RPC-based languages' (Mesa [13], HRPC [55] ,
Concert C [90, 7]) . For the synchronization is-
sue, RPC-based languages are classified as th e
ones that block during a call until a reply is re-
ceived, while message-based languages unbloc k
after sending a message or when the messag e
has been received .

A distributed language may provide excep-
tion handling mechanisms that allows the use r
to treat failure situations . The underlying op-
erating system may also provide some fault tol-
erance. Projects such as Argus [44] concentrat e
on techniques for taking advantage of the po-
tential increase in reliability and availability .

A survey of programming languages
paradigms for distributed computing is foun d
in [8], and an analysis of several paradigms fo r
process interaction in distributed programs i s
in [5] .

2 .1 RPC : The Concept

This paper assumes familiarity with the opera-
tional semantics of the procedure call binding .
Section A of the Appendix presents a quick re-
view of the concept .

RPC extends the procedure call concept t o
express data and control scope transfer acros s
threads of execution in a distributed environ-
ment . The idea is that a thread (caller thread )
can call a procedure in another thread (callee
thread), possibly being executed on another
machine . In the conventional procedure cal l
mechanism, it is assumed that the caller and
the callee belong to the same program unit ,
that is, thread of execution, even if the lan-
guage supports several threads of execution i n
the same operating-system address space as
shown in Figure 1 . In RPC-based distributed
applications, this assumption is relaxed, an d
interthread calls are allowed as shown in Fig-
ure 2 . Throughout this paper, local or conven-
tional call refers to calls in which the caller and
callee are inside the same thread, and remote
calls or RPC refers to calls in which the caller

'There exists a common agreement in the researc h
community on the viability of the use of RPC for dis-
tributed systems, especially in a heterogeneous environ-
ment [56] .

PU: Program Unit
Pi : Procedure i
—~► Control transfer
PCi: Procedure call i

Figure 1 : Conventional Procedure Call Sce-
nario

and callee are inside distinct threads . Section B
of the Appendix presents an extension of opera-
tional semantics of the procedure call presente d
in Section A, to handle RPCs .

Distributed applications using RPC are
then conceptually simplified, communicating
through a synchronized, type-safe, and well-
defined concept . A standard RPC works as
follows . Thread P that wants to communicat e
with a thread Q, calls one of Q's procedures ,
passing the necessary parameters for the call .
As in the conventional case, P blocks until the
called procedure returns with the results, if any .
At some point of its execution, thread Q exe-
cutes the called procedure and returns the re-
sults . Thread P then unblocks and continues
its execution .

The communication mechanism has a clean ,
general, and comprehensible semantics . At the
application level, a programmer designs a dis-
tributed program using the same abstraction
as well-engineered software in a nondistributed
application . A program is divided into modules
that perform a well-defined set of operation s
(procedures), expressed through the interfac e
of the module, and modules interact through
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Figure 3 : Possible configurations of RPC s

PU: Program Unit
Pi : Procedure i
— Control transfer
PCi : Procedure call i

Figure 2 : Remote Procedure Call Scenario

procedure calls . Information hiding, where a s
much information as possible is hidden within
design components, and largely decoupled com -
ponents are provided . For the application user ,
it is transparent where these modules are exe-
cuted, and all the communication details are
hidden. The implementation framework that
supports the concept is an RPC system or RPC
mechanism .

The application programmer or the RPC sys-
tem designer are responsible for mapping th e
application modules into the underlying archi-
tecture where the program is to be executed .
The RPC system designer must be prepare d
to deal with three possible configurations of
an RPC from a system-level point of view as
shown in Figure 3, where threads are abbre-
viated by the letter T, operating-system pro-
cesses by P and machines by M . An RPC can
be performed between two threads executing
inside a process (RPC1 in the Figure), betwee n
two processes running in the same machine
(RPC2), or between two processes running i n
different machines (RPC3). For each situation,
the communication media used may vary, ac-
cording to RPC system designers, environmen t
availability, and possibly the wants of the ap-
plication programmer . RPC1 could use shared
memory, RPC2 could use sockets [72], and
RPC3 could use a high-speed network. Com-
munication traffic on the same machine (suc h
as for RPC1 and RPC2) is cross-domain traf-

fic [9], and between domains on separate ma-
chines is cross-machine traffic (as for RPC3) .

3 Challenges of an RPC
Mechanis m

The ideal RPC mechanism is the one that pro-
vides the application user with the same syn-
tax and semantics for all procedure calls in-
dependently of being a local call or a remot e
one in any of the possible configurations . The
underlying system supporting the concept pro-
ceeds differently for each type of call, and i t
will be in charge of hiding all the details from
the application user . The system must be capa-
ble to deal with the following differences in the
source of the calls, that require development
and execution-time support :

• Artificialities may occur in extending the
conventional procedure call model, inde-
pendent of the RPC configuration . Some
aspects to be considered are :

With the relaxation of the single -
thread environment for the caller and
the callee, thread identifications and
addressing must be incorporated into
the model .

– In the conventional model, the failure
of the callee thread means the fail-
ure of the caller thread . In the RP C
model, this is not the situation and
new types of exceptions and recovery
are required.

– Caller and callee threads share the
same address space, in the conven-
tional case, and therefore have the
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same access rights to the system re-
sources . The implementation of the
information exchange protocol is sim-
ple . Global variables are freely ac-
cessed, and parameters, return val-
ues, and their pointers are manipu-
lated. In the RPC model, the RP C
mechanism has to move data across
address spaces and pointer-based ac-
cesses require special handling . Ad-
dresses need to be mapped across ad-
dress spaces and memory need to be
allocated to store a copy of the con-
tents of positions aliased by pointers .
By using pointers, cyclic structures
may be created, and the mechanism
must overcome infinite loops durin g
the copying of data .

• The presence of a communication networ k
between caller and callee can cause differ-
ences. The RPC mechanism has to han-
dle transport-level details, such as, flow
control, connection establishment, loss of
packets, connection termination, and so
on .

• The distributed environment configura-
tion can cause differences. Issues such
as availability, recovery, locality trans-
parency of processes, and so on, ca n
arise . Some of the problems of distribute d
environments result from heterogeneit y
at the machine level, operating-system
level, implementation-language level, o r
communication-media level . Distinct RPC
mechanisms support heterogeneity at dis-
tinct levels, the ultimate goal being to sup-
port heterogeneity at all levels in a way
completely transparent to the applicatio n
programmer .

Some mechanisms accommodate these re-
quirements by exposing the application pro-
grammer to different syntaxes, or semantics ,
depending on the configuration of the call be-
ing issued . Nelson [53] describes and analyzes
the major concerns of an RPC mechanism (an d
their complexity), which can be summarized as
follows :

• Essential properties of an RP C
mechanism:

– Uniform call semantics

– Powerful binding and configuration

– Strong type checkin g

– Excellent parameter functionality

– Standard concurrency and exception
handling .

• Pleasant properties of an RPC mech-
anism :

– Good performance of remote call s

– Sound remote interface design

– Atomic transactions, respect for au-
tonomy

– Type translation

– Remote debugging .

In Section 8 these issues are considered .
If a remote call preserves exactly the sam e

syntax as a local one, the RPC mechanism is
syntactically transparent . If a remote call pre-
serves exactly the same semantics of a local
call, the mechanism is semantically transpar-
ent . The term remote/local transparency refers
to both syntax or semantics transparency, o r
either of them (when there is no ambiguity) .

To support the syntax and semantics trans-
parency, even in the presence of machine or
communication failures, the RPC mechanism
must be very robust . Nevertheless, an RPC
must be executed efficiently, otherwise (experi -
enced) programmers will avoid using it, losing
transparency.

RPC mechanisms should provide for the easy
integration of software systems, thereby facili-
tating the porting of nondistributed applica-
tions to the distributed environment . The pro-
cedure model can limit the ratio of dependenc y
between components of a program, by coupling ,
increasing the potential for software reusabil-
ity [69] . In languages supporting RPCs, the in-
teraction between modules is specified through
a collection of typed procedures, the interface ,
which can be statically checked [29] . Inter-
faces, being well-defined and documented, give
an object-oriented view of the application .

An RPC mechanism must not allow cross -
domain or cross-machines access by unautho-
rized RPC calls . This provides for a large
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grained protection model [9], because the pro-
tection must be divided by thread domains .

Criticism of the paradigm exists [82] . Issues
such as the following are still undergoing anal-
ysis :

• Program structuring in RPC, mainly dif-
ficulties in expressing pipelines and multi-
casting .

• Major sources of transparency loss, suc h
as, pointers and reference parameters ,
global variables, and so on .

• Problems introduced by broken network s
and process failures .

• Performance issues around schemes to ,
transparently or gracefully set up dis-
tributed applications based on RPC in
such a way that the performance is not
degraded .

A survey of some features provided by a se t
of major RPC implementations (such as Ceda r
RPC, Xerox Courier RPC, SUN 4 ONC/RPC ,
Apollo NCA/RPC, and so on) can be foun d
in [83] . The implementations are mainly com-
pared considering issues such as design objec-
tives, call semantics, orphan treatment, bind-
ing, transport protocols supported, security,
and authentication, data representation, and
application programmer interface .

4 Design of an RPC Sys-
tem

The standard architecture of an RPC system ,
which is based on the concept of stubs is pre-
sented here . It was first proposed in [53] base d
on communication among processes separate d
by a network, and it has been extended and
used since then .

Stubs play the role of the standard proce-
dure prologue and epilogue normally produced
by a compiler for a local call. The prologu e
puts the arguments, or a reference to them, a s
well as the return address, in the stack struc-
ture of the process in memory, or in registers ,
and jumps to the procedure body. By the end

4 SUN is a trademark of Sun Microsystems, Inc .

of the procedure, the epilogue puts the value s
returned, if any, either in the stack of the pro-
cess in memory or in registers, and jumps bac k
to execute the instruction pointed to by th e
return address . Depending on the RPC config-
uration, stubs may simulate this behavior in a
multithread application .

Suppose two threads that want to commu-
nicate as shown in Figure 4 : the caller thread ,
issues the call to the remote procedure, and th e
callee thread executes the call . When the caller
thread calls a remote procedure, for example ,
procedure remote, it is making a local call as
shown in (1) in Figure 4, into a stub proce-
dure or caller stub. The caller stub has th e
same name and signature as the remote proce-
dure, and is linked with the caller process code .
In contrast with the usual prologue, the stub
packs the arguments of the call into a call mes-
sage format (the process is marshaling), and
passes (2) this call message to the RPC run-
time support which sends (3) it to the callee
thread . The RPC runtime support is a library
designed by the RPC system to handle the
communication details during runtime . After
sending the call message to the callee thread ,
the runtime support waits for a result messag e
(10), that brings the results of the execution of
the call . On the callee side, the runtime sup -
port is prepared to receive (4) call messages to
that particular procedure, and then to call (5 )
a callee stub . Similar to the caller stub, the
callee stub unpacks the arguments of the cal l
in a process referred to as demarshaling . After
that, the callee stub makes a local call (6) t o
the real procedure intended to be called in th e
first place (procedure remote, in our example) .
When this local call ends, the control returns
(7) to the callee stub, which then packs (that
is, marshals) the result into a result message ,
and passes (8) this message to the runtime sup-
port that sends (9) it back to the caller thread .
On the caller side, the runtime support that
is waiting for the result message receives (10 )
it and passes (11) it to the caller stub . The
caller stub then unpacks (that is, demarshals)
the result and returns (12) it as the result t o
the first local call made by the caller thread . In
the majority of the RPC mechanisms, the stub s
are generated almost entirely by an automati c
compiler program, the stub generator .
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Figure 4 : Basic RPC components and interac-
tions

4 .1 RPC System Component s

RPC systems must interact with a variety o f
computer system components, as well as sup-
port a wide range of functionality, exemplifie d
as follows . The system or the source language
must provide a minimum process management ,
that allows the design and execution of threads
(heavy-weight or light-weight), that constitut e
the distributed application . To issue an RPC ,
a process should acquire an identifier to the re -
spective procedure (name binding) so that i t
can refer to it . RPC systems must provide
means for processes to exchange bindings, us-
ing a binding discipline . The runtime suppor t
module must interact with the transport layer
to transport the data among the communicat-
ing processes should a cross-machine communi-
cation occur .

The major components of an RPC mecha-
nism can be divided into three categories :

• Application-development time com-
ponents : components used by the appli-
cation user during development time .

• Process modules : components that are
mainly dependent on the specific RP C
mechanism. Depending on the particu-
lar mechanism, they can be application -
development components, execution-tim e
components, or even components prede-
fined and available in the operating sys-
tem .

• Execution-time components : components
used only during run time .

RPC facilities can differ in any of these com-
ponents and in several dimensions . For in-
stance, the binding discipline (a process mod-
ule component) may differ from one RPC sys-
tem to another on the interface that they offe r
to the application user, on the time one pro-
cess should perform the binding (compilation
or run time), on the implementation details o f
how this binding is performed, on whether th e
binding deals with heterogeneity and how, an d
so forth . While these choices should be orthog-
onal, they are usually hard coded and inter -
wined. As a result, RPC mechanisms usually
cannot interact and are extremely difficult t o
modify to make such interaction possible .

In the following sections, the functionality of
each of the components is defined precisely, th e
dimensions of differences in RPC implementa-
tions are analyzed, and real systems and thei r
approaches are explored . A brief historical sur-
vey of the systems referred to is presented in
Appendix C .

5 Application-Develop-

ment Time Components

The interface description language (IDL) and
stub generator are two major application-
development time components . In designing a
program unit, the user specifies the procedure s
that the process can call remotely (importe d
procedures), and the procedures that other pro-
cesses can call (exported procedures) . The set
of imported and exported procedures of a pro-
cess is its interface and is expressed through
the interface description language (defined in
Section 5 .1) of an RPC facility.

For the imported and exported procedures of
a process, the stub generator creates the caller
and callee stubs, respectively. These stubs are
responsible for the marshaling of arguments ,
the interaction with the communication media ,
and the demarshaling of result arguments, if
any during run time .

5 .1 Interface Description Lan-
guage (IDL)

An interface description (ID), or module speci-
fication, consists of an abstract specification o f

caller process

----------------- -

(7) (6) LPC

callee stub

(8) (S)

RPCruntime

I	 5uPP sR _

---------------- -

communication
media

callee process

----------------- -

(9);
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a software component (program unit) that de -
scribes the interfaces (functions and supporte d
data types) defined by a component . It can be
interpreted as a contract among modules . An
interface description language (IDL) is a nota-
tion for describing interfaces . It may consist
of an entirely new special-purpose language, or
may be an extension of any general-purpose
language, such as, C .

The concept of an ID is orthogonal to
the concept of RPC . Its use motivates the
information-hiding concept, because module s
interact based on their interfaces and the im-
plementation details are nonapparent . Never-
theless, IDs are of major significance for RPC
mechanisms, which use them for generating
caller and callee stubs . In general, RPC pro-
tocols extend IDLs to support extra features
inherited solely from the RPC mechanism .

In specifying a function, an ID contains it s
signature, that is the number and type of its ar-
guments, as well as the type of its return value ,
if any . More elaborate IDLs also allow for th e
specification of the other important options :

• Parameter passing semantic s

• Call semantic s

• Interface identification .

It is not always possible to find out the di-
rectionality of the arguments in a function cal l
based only on its ID, because of the diver-
sity of parameter passing semantics (PPS) sup-
ported by high-level languages . By directional-
ity is meant the direction of the informatio n
flow, that is, whether the caller is passing val-
ues to the callee, or vice versa, or both . The
PPS specification explicitly determines how
the arguments of a function are affected by
a call . Concert [90, 7] defines a complete set
of attributes . As directional attributes, Con-
cert contains in, in (shape), out, and out

(value) . It makes a distinction between th e
value and the shape of an argument . The valu e
refers to the contents of the storage, while shape
refers to the amount of storage allocated, as
well as the data format. The in attribute
means that the information is passed from th e
caller to the callee, and because of that mus t
be initialized before the call . The in (shape)

attribute means that only the shape informa-
tion of the data is passed from the caller to th e
callee . The out attribute means that the infor-
mation is passed from the callee to the caller ,
and the callee can change the value of the pa-
rameter, as well as its shape information . The
out (value) attribute is similar to out, but
the shape information does not change. Only
the value of the parameter changes .

Concert also defines the following value -
retention attributes : discard, discard

(callee), discard (caller), keep, keep

(callee), and keep (caller) . These at-
tributes specify whether copies of storage gen-
erated by the runtime system during the pro-
cedure 's execution should remain or be deallo-
cated (discarded) . These allocations are gener-
ated as part of the interprocess operation . The
keep attribute and the discard attribute spec-
ify that both caller and callee can keep or dis-
card the storage allocated .

To deal with pointers across operating-
system address spaces or across machine
boundaries, Concert defines the following
pointer attributes : optional, required ,

aliased, and unique . A pointer to a required

type is pointer that cannot be NULL, whereas
a pointer to an optional type can be NULL ,
simply indicating the absence of data . A
pointer to a unique type is a pointer to data
that cannot be pointed to by any other pointer
used in the same call . In other words, it does
not constitute an alias to any data being passe d
during the call . Pointers to aliased types, on
the other hand, are pointers to data that may
also be pointed to by other pointers in the sam e
call . This property is expressed in the trans-
mission format, and reproduced on the othe r
side, so that complex data structures, such as
graphs, can be transmitted .

The call semantics, on the other hand, is
an IDL feature inherited from the RPC model .
In conventional procedure call mechanisms, a
thread failure causes the caller and callee pro-
cedures to fail . A failure is a processor fail-
ure, or abnormal process termination . If the
thread does not fail, the called procedure was
executed just once in what is called exactly-
once semantics . If the thread fails, the runtim e
system, in general, restarts the thread, the cal l
is eventually repeated, and the process contin -
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ues until it succeeds. Just as procedures may
cause side-effects on permanent storage, earlie r
(abandoned) calls may have caused side-effect s
that survived the failure . The results of the last
executed call are the results of the call . These
semantics are called last-one semantics, last-
of-many semantics, or at-least-once semantics .

In the RPC model, caller and callee may b e
in different operating system address spaces, a s
well as in different machines . If one thread is
terminated, the other may continue execution .
A failed caller thread may still have outstand-
ing calls to other nonterminated callee threads .
A callee, on the other hand, may fail before re-
ceiving the call, after having participated in the
call, or even after finishing the call . For callers
and callees on different machines, the network
can also cause problems . A call message can
be lost or duplicated, causing the RPC to be
issued none or several times. If the result mes-
sage is lost, the RPC mechanism may trigge r
the duplication of the call .

The RPC mechanism must be powerfu l
enough to detect all, or most of, the abnor-
mal situations, and provide the application user
with a call semantics as close as possible to the
conventional procedure call semantics . This i s
only a small part of semantics transparency of
an RPC mechanism, which is discussed thor-
oughly in Section 8 . Nevertheless, it is very ex-
pensive for an RPC system, to support exactly-
once semantics . The run time would recover
from the failure without the user being aware .
Weaker and stronger semantics for the RP C
model were, therefore, proposed, and some sys -
tems extended the IDL with notations that al-
low the user to choose the call semantics tha t
the user is willing to pay for a particular pro-
cedure invocation . The possibly, or maybe se-
mantics do not guarantee that the call is per-
formed. The at-most-once semantics ensures
that the call is not executed more than once . In
addition, calls that do not terminate normally
should not produce any side-effects, which re-
quires undoing of any side-effect that may hav e
been produced so far .

On the other hand, a procedure that does not
produce any side-effect can be executed sev-
eral times and yet preclude the same result s
without causing any harm to the system . Such
procedures are idempotent procedures, and, for

them, an at-least-once semantics are equivalen t
to an exactly-once semantics . Another way of
approaching the problem is to extend the ID L
so that the user can express such properties a s
idempotency of a procedure, and let the system
do the work .

Some RPC mechanisms extend IDLs to sup -
port the declaration of an interface identifier ,
which may be just a name, or number, or both ,
or it may include such additional informatio n
as the version number of the module that im-
plements it . This identifier can be particularl y
useful for RPC mechanisms that support the
binding of sets of procedures, rather than just
one procedure at a time. The binding can be
done through this identifier .

The Polygen system [14], within the UNIX 5
environment, extends the functionality of in-
terfaces a little further . In addition to a mod-
ule's interface, the interface describes proper -
ties that the module should pursue, and rule s
to compose other modules into an application .
A site administrator provides a characteriza-
tion of the interconnection compatibilities of
target execution environments, and an abstrac t
description of the compatibility of several pro-
gramming languages with these environments .
This characterization is in terms of rules . Ap-
plying these rules, Polygen generates, for a
particular interface, an interface software that
can be used to compose components in a par-
ticular environment . Besides the usual stubs ,
the stub generator creates commands to com-
pose and create the executables, including com-
mands to compile, link, invoke, and intercon-
nect them. The source programs, the gener-
ated stubs, and the generated commands ar e
brought together in a package . The activity
of analyzing program interfaces and generat-
ing packages is packing . This scheme allow s
for components to be composed and reused i n
different applications and environments with-
out being modified explicitly by the software
developer .

In Cedar [13], Mesa [51] is the language use d
as IDL and as the major host language for th e
programs. No extensions were added . The pro-
grammer is not allowed to specify arguments o r
results that are incompatible with the lack of

5 UNIX is a trademark of UNIX System Laborato-
ries, Inc .
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shared memory .

NIDL [22], the IDL of NCA/RPC, is a net -
work interface description language, because i t
is used not only to define constants, types, an d
operations of an interface, but also to enforc e
constraints and restrictions inherent in a dis-
tributed computation. It is a pure declara-
tive language with no executable constructs .
An interface in NIDL has a header, constan t
and type definitions, and function descrip-
tions . The header comprises a UUID (Univer-
sal Unique Identifier), a name, and a version
number that together identify an interface im-
plementation . NIDL allows scalar types an d
type constructors (structures, unions, top-leve l
pointers, and arrays) to be used as arguments
and results . All functions declared in NID L
are strongly typed and have a required handl e
as their first argument . The handle specifies
the object (process) and machine that receives
the remote call . A single global variable can
be assigned to be the handle argument for al l
functions in an interface, making the handle ar -
gument implicit and permitting the binding o f
all functions of an interface to a remote pro-
cess . This scheme disturbs the transparency
and semantic issues of RPCs somewhat . The
required argument reminds the user that th e
procedure that is being called is a remote one ,
losing transparency. Yet, the flexibility of mak-
ing it implicit, increases the chance of confusin g
the user who is used to local call interface and
who may not expect to be calling a remote func-
tion . Consequently, the user may not be pre-
pared to handle exception cases that can arise .
In the implicit situation, the application user i s
responsible for implementing the import func-
tion that is automatically called from the stubs
when the remote call is made .

Procedures declared in an interface can b e
optionally declared as idempotent . The NID L
compiler generates the caller and callee stubs
written in C, and translates NIDL definitions
into declarations in implementation language s
(C and Pascal are the supported languages so
far) . This scheme makes an interface in IDL
general enough to be used by any programming
language if the NIDL compiler can do the con-
version . These files must be included in th e
caller and callee programs that use the inter-
face . In this interface, the user has the flexibil -

ity of declaring transmissible types, which the
NIDL compiler cannot marshal . The user is re-
sponsible for the design of a set of procedure s
that convert the data to or from a transmissi-
ble type to or from types that NIDL can mar-
shal . This allows, for instance, the user to pas s
nested pointers as arguments to remote calls .

SUN RPC [79] defines a new interface de-
scription language, RPC Language (RPCL) . In
the specification file, each program has a num -
ber, a version, and the declaration of its proce-
dures associated with it . Each procedure has
a number, an argument, and a result . Multi-
ple arguments or multiple result values mus t
be packed by the application user into a struc-
ture type. The compiler converts the names
of the procedures into remote procedure names
by converting the letters in the names to lower
case and appending an underscore and the ver-
sion number . Every remote program must de-
fine a procedure numbered 0, a null procedure ,
which does not accept any arguments, and does
not return any value . Its function is to allow a
caller who, by calling it, can check whether th e
particular program and version exist . It also al-
lows the client to calculate the round-trip time .

In the Modula-2 extension [1] to support
RPC, the old Modula-2 external module defini-
tions were used as the interface description wit h
only a few restrictions and extensions added .
The idea was to make as few modifications a s
possible, allowing any external modules to b e
executed remotely . For restrictions, remote ex-
ternal modules cannot export variables and for -
mal parameters of pointer types do not have
the same semantics as when called locally . For
extensions to the syntax, a procedure can b e
defined as being idempotent, a variable can b e
defined as of type result (out parameter) or seg-
ment . The attribute segment allows the user t o
directly control the Modula/V system to mov e
exactly one parameter as a large block, and t o
move the other data needed in the call as a
small message .

5.2 Stub Generator

During runtime, the stubs are the RPC mecha-
nism generated components that give the user
the illusion of making an RPC like a local call .
The main function of stubs is to hide the imple -
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1: 1

Figure 5 : Stub Generator Global Overvie w

mentation details from the application designe r
and the user . They are usually generated at ap-
plication development time by the RPC mecha-
nism component, the stub generator . From the
interface description of an interface, the stu b
generator generates a callee header file, a caller
header file, a caller stub, and a callee stub for
each of the functions declared in the interfac e
as shown in Figure 5 . If the caller and callee
are written in the same language, the header
file can be the same for both the caller an d
callee . Some stub generators [29] also generat e
import and export routines. Such routines per-
form the binding of the respective interface o r
procedure .

Stubs are the RPC mechanism component s
responsible for the transmission of abstrac t
data types expressed in (high-level) program-
ming languages over a communication media .
A data representation protocol defines the map-
ping between typed high-level values and byte
streams. The marshaling is the process of con-
verting typed data into transmitted representa-

Lion (wire representation or standardized rep-
resentation) . The demarshaling is the reverse
process .

The data representation protocol is respon-
sible for defining the mapping at two lev-
els [73] : the language level and the machine
level . Caller and callee threads can be imple-
mented in the same language or different ones ,
which is homogeneity or heterogeneity at th e
language level or homogeneity or heterogeneity
at the abstract data type level . Different lan-
guages, such as, FORTRAN, LISP, COBOL ,
and C, have different abstract data types, and
data type conversion may be needed for the
communication . Existing compilers for nondis-
tributed languages already provide transforma-
tions in the same machine, in the same or dif-
ferent languages, and in the configuration o f
different data types . These conversions are im-

plicit conversion, coercion, promotion, widen-
ing, cast, or explicit conversion . An example
of implicit conversion is a function that accept s
only arguments of float type, and is called wit h
integer arguments .

Stubs are also responsible for giving se-
mantics to parameter passing by reference, or
pointer-based data in general, across a commu-
nication media . Several implementations have
been proposed . One possible solution would
be to pass the pointer (address) only . Any fu-
ture data access through the pointer sends a
message back to the caller to read or write th e
data [82] . Besides inefficiency issues, this im-
plementation requires that the compiler on th e
callee side treats local pointers differently fro m
remote ones . This violates one of RPC prin-
ciples : the compiler should not be affected b y
the presence of RPCs .

In some other systems [41], a dereference
swaps a memory page via the communication
media, and the data is accessed locally. This
scheme, however, requires homogeneous ma-
chines and operating systems, and must ensure
that only one copy of a page exists within the
system .

The threads can be executed on homoge-
neous machines presenting homogeneity at th e
machine level, or heterogeneous ones present-
ing heterogeneity at the machine level . Dif-
ferent machines have different primitive data
types. In a message-passing system, some con -

T
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version is required when sending data to a dis-
similar machine . In a shared memory system ,
a transformation is needed when the share d
memory is accessed by a processor that rep-
resents data in a different way than the share d
memory.

At the machine level, the data representation
protocol must select from three possible dimen-
sions of heterogeneity between machines : (1)
the number of bits used to represent a primitive
data type, (2) the order of bits, and (3) the cod-
ing method. Order of bits refers to choices such
as big endian, little endian, and so on. Coding
method refers to choices such as 2 's comple-
ment, sign magnitude, exponent bias, hidde n
bit, and so forth .

A hardware representation transformation
scheme for primitive data types in a heteroge-
neous distributed computer system is suggeste d
in [73] . It also performs an extensive analysi s
of the complexity of the several possible archi-
tecture models to implement it .

As observed in [73], the primitive data typ e
transformation can be local, central, or dis-
tributed through the system. In the loca l
model, the machine or a transformation unit
attached to it performs the transformation of
the data into a common format . This data in
a common format is sent to the destination ,
and the transformation unit there transforms
the data into the destination format . This
approach always requires two transformations ,
even when dealing with two homogeneous ma-
chines . It also requires the specification of a
powerful common format that can represent all
data types that may be transferred .

In the central approach, a central unit per-
forms all the transformations. The central uni t
receives the data in the source format, trans -
forms it to the destination format, and send s
it to the destination . This central unit keep s
information about all the interconnected ma-
chines, and each piece of data to be trans -
formed needs to have attached to it its sourc e
machine, its data type in the source machine ,
and the destination machine type .

In the distributed approach, specialize d
transformation units scattered throughout the
system perform the transformations . A spe-
cialized transformation unit can only perform
transformations from one source type into one

destination type . If no specialized unit exist s
to transform type A into type C, but there ar e
specialized units to transform type A to typ e
B, and from type B to C, a transformation from
A to C can be accomplished via A to B, and B
to C . The number of transformation units may
be reduced by using a partially connected ma-
trix, and by rotating the data through several
specialized transformation units .

At the software level the most common ap-
proaches to performing these transformation s
are the local method and a degeneration of th e
distributed one . In the local method, the caller
stub converts the data from the source repre-
sentation into a standard one . The callee stub
then does the conversion back to the original
format . This scheme requires that both calle r
and callee agree upon a standard representa-
tion, and that two transformations are always
performed . The use of a standard data repre-
sentation to bridge heterogeneity between com-
ponents of a distributed system is not restricted
to the communication level . One example is th e
approach used in [84] for process migration i n
heterogeneous systems by recompilation . The
strategy used is to suspend a running proces s
on one machine at migration points to which
the states of the abstract and physical machine s
correspond . Then the state of the binary ma-
chine program is represented by a source pro-
gram that describes the corresponding abstract
machine state . This source program is trans-
ferred to the remote machine, recompiled there ,
and continues execution there . The compiler
intermediate language is used to communicate
between a language-dependent front-end com-
piler, and a machine-dependent code generator .

In the degenerated distributed approach, ei-
ther the caller stub (sender makes it right
method) or the callee stub (receiver makes it
right method) does the transformation from the
source directly into the destination representa-
tion . Only one transformation is needed . Nev-
ertheless, the side performing the conversion
needs to know all the representation details
used by the other side to properly interpre t
the data . The caller packs the data in its fa-
vorite data format if the callee side recognize s
it . The callee needs only to convert the data if
the format used to transmit the data is not the
one used locally . This avoids intermediary con-
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versions when homogeneous machines are com-
municating, and makes the process extensible ,
because the data format can be extended to
specify other features such as new encodings o r
packing disciplines . In the local approach, the
connection of a new machine or language int o
the system requires only that the stubs for thi s
new component convert from its representatio n
to the standard one . In the distributed method ,
all the old components must be updated with
the information about this new component, o r
the new component must be updated about al l
the old ones .

When using the local approach, the stan-
dardized representation can be either self-
describing (tagged) or untagged . Self-
addressing schemes have benefits such as en-
hanced reliability in data transfer, potentia l
for programs to handle values whose types ar e
not completely predetermined, and extensibil-
ity. Untagged representations make more effi-
cient use of the bandwith and require less pro-
cessing time to marshal and demarshal . The
caller and callee must nevertheless agree on the
standard representation .

Heterogeneity at the representation level, o r
more specifically, at the mapping level betwee n
abstract data types and machine bytes, has al-
ready been studied in a nondistributed envi-
ronment . A mechanism for communicating ab-
stract data types between regions of a syste m
that use distinct representations for the ab-
stract data values is presented in [34] . A local
approach is used, in which the main concerns
is modularity. The implementation of each
data abstraction includes the transmission im-
plementation details of instances of that partic-
ular abstraction. Each data type implementa-
tion must then define how to translate between
its internal representation and the canonical
representation, and the reverse, which is don e
through the definition of an external represen-
tation type for that type . The system support s
the transmission of a set of transmissible types ,
that are high-level data types, including shared
and cyclic data structures . The external rep-
resentation type of an abstract type T is any
convenient transmissible type XT, which can
be another abstract type if wanted .

Stubs are responsible for conversion of dat a
at the language level as well as at the machine

level . Over the years, distinct approaches have
been developed to attack the conversion prob-
lem. Some of the approaches concentrate o n
solving only the machine level conversion prob-
lems, assuming homogeneity at the languag e
level . Others tried to solve only the language
level conversions, assuming that communica-
tion protocols at a lower level would be respon-
sible for performing the machine-level conver-
sions. More ambitious approaches tried to dea l
with both problems . In the following section ,
distinct approaches are studied .

5.2 .1 Stub Generator Designs

The Cedar [13] system designed the first stu b
generator, called Lupine [13] . The stub code
was responsible for packing and unpacking ar-
guments and for dispatching to the correct pro-
cedure for incoming calls in the server side . The
Mesa interface language was used without any
modifications or extensions . It assumed homo-
geneity at the machine level and the languag e
level.

Matchmaker [39, 38] was one of the earlies t
efforts toward connecting programs written i n
different languages . The purpose was to deal
with heterogeneity at the language level . The
same idea was later explored by the MLP [33]
system. On the other hand, HORUS [28], de-
veloped almost concurrently with MLP, aimed
at also dealing with heterogeneity at the ma -
chine level . These three systems shared th e
same approach of designing their interface de-
scription language, and generating the stub s
based on the interfaces .

The HORUS [28] was one of the primary ef-
forts in designing a stub generator for RPC
that would deal with heterogeneity at the dat a
representation level and at the language level .
All interfaces are written (or rewritten) in a
specific interface specification language. The
aim was to provide a clean way to restric t
the RPC system data structures and inter-
faces that could be reasonably supported i n
all target languages. This simplifies the stub
generator and provides a uniform documenta-
tion of all remote interfaces. The system use d
a single external data representation that de-
fined a standard representation of a common -
language and common-machine data types over
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the wire. Data types were then converted from
the source language into common-language ,
and later from the common-language into the
target language . This simplified the stub gen-
erator and stub design, because only one repre-
sentation was allowed. Nevertheless, the exter-
nal data representation may not represent effi-
ciently some data values from a source or target
language . On the other hand, new source lan-
guages and machine types can be added to the
system without requiring an update in the en -
tire network. The HORUS defined precisely the
classes of knowledge needed for a marshaling
system, and this classification can be consid-
ered one of its major achievements . The infor-
mation was classified as : language dependent ,
machine dependent, and language and machin e
independent . It also defined a format for this
knowledge that was easy to manipulate, that
was general enough to contain all the informa-
tion required, and that was self-documenting .
All the language dependent knowledge require d
for the marshaling is stored as language specifi-
cations . They contain entries for each common
language data type, and additional (data typ e
independent) specifications needed to correctly
generate the caller and callee stubs in the par-
ticular language. The machine dependent in-
formation, including primitive data type rep-
resentation, order of bits, and coding metho d
of all possible target machines is stored as
machine specifications . Entries for both, ma-
chine and language dependent information, ar e
expressed in an internal HORUS command-
driven language. The language specificatio n
entries contain a set of code pieces for eac h
pair of basic data types (or type constructors )
in the common language and a possible target
language . The set completely specifies all infor -
mation required by the stub generator to mar-
shal that type for that target language . It con-
tains a piece of code for generating a declara-
tion of the type in the target language, a piec e
of code to marshal an argument of this type ,
and a piece of code to demarshal . HORUS
works as a compile time interpreter as show n
in Figure 6. It generates the stubs and header
files by parsing the interface written in commo n
language and, for each declaration, it consult s
the corresponding table and entry, and executes
the appropriate piece of code associated with

User Supplied Interface Declaration

	 l	 l	

( caller stub )

	

r callee stub )

Figure 6 : Structure of HORUS Stub Generator

that entry, generating the stubs and headers .
HORUS provides IN, OUT, and INOUT param-
eter types to optimize passing data by value -
result . HORUS provides for the marshaling of
pointer-based data types, as well as arbitrary
graph structures . A pointer argument is mar-
shaled into an offset and the value it references .
The offset indicates where in the byte array thi s
value is stored . Pointers are chased depth firs t
until the entire graph structure is marshaled .
HORUS constructs a runtime table of object s
and byte array addresses to detect shared an d
repeated objects .

The Universal Type System [33] (UTS) lan-
guage, another effort towards the support of
heterogeneity at the language level was devel-
oped concurrently with HORUS . Unlike HO-
RUS, it did not deal with heterogeneity at
the machine level. The language was designed
to specify interfaces in the Mixed Languag e
Programming System (MLP System), where a
Mixed Language Program was written in two
or more programming languages . A program
consisted of several program components, each
written in a host language . The UTS, a set
of types, and a type constructor contain a lan-
guage for constructing type expressions or sig-
natures that express sets of types . The lan-
guage consists of the alternation operator or ,
the symbol — that indicates one unspecifie d
bound in an array or string, the symbol * tha t
indicates an arbitrary number of arguments o r
unspecified bounds, and the symbol ?, which i s
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the universal specification symbol that denote s
the set of all types. The representation of a
value of UTS type is tagged, usually indicatin g
the type and length of the data, and is stored
in a machine- and language-independent way .

For each host language in the MLP system ,
a language binding is defined, which is a set
of conventions specifying the mapping betwee n
the host language types and the language typ e
of the UTS language . The mapping is divide d
into three parts : mapping for types in which
the two languages agree, meaning that each
type has a direct equivalent in the other type
system; mapping for types that do not have a
direct counterpart, but that are representable
in the other language ; and mapping for UT S
types that do not fall in the above categories .
For each language binding, there is an agent
process that performs the mapping, and is writ -
ten in a combination of that language and a sys -
tem programming language. This use of mul-
tiple languages may be necessary, because th e
agents need to perform low-level data trans -
formations, and yet be callable from the host
language .

In the MLP system, there is a distinction
between the interface that a module export s
(exported interface), and the (possibly several)
interfaces that other modules import (importe d
interfaces) . These interfaces are specified i n
the UTS language as signatures that describe
the number and UTS type of the arguments
and returned values of a procedure . Signatures
that make use of the additional symbols in UT S
are underspecified, because the data types may
not map into only one host language-level type ,
but a set of legal types . The MLP linker, there -
fore, takes a list of program components tha t
constitute a mixed-language program and per -
forms static type checking of the arguments
and parameters of the intercomponent calls . In
UTS, a match between an exported signature
and an imported one has a more formal notio n
than simply determining if the signatures ar e
equivalent . As defined in [33] :

An import signature matches, or uni-
fies, with the corresponding export
signature if and only if the set denoted
by the former is a subset of the set de-
noted by the latter .

This rule guarantees that the conversion can
be done. When a signature does not unify ,
MLP delays the decoding of the UTS value an d
transfers the problem to the user to handle .
This is done through the use of a representa-
tive for an UTS value as the argument value .
MLP provides the user with a library of rou-
tines that can be called passing a representa-
tive value as an argument to inquire the UTS
type of the corresponding value, or to perfor m
explicit conversion of types . Valid operation s
for the host language types are not allowed t o
be applied on the representative itself, which is
maintained by the agent . Representatives ar e
similar to tickets that are presented to agents :
they provide access to the data .

Matchmaker [39, 38], an interface specifica-
tion language for distributed processing, was
one of the earliest efforts toward connecting
programs written in different languages . It pro-
vides a language for specifying the interfaces
between processes being executed within the
SPICE network, and a multitargeted compile r
that converts these specifications into cod e
for each of the major (target) languages used
within the SPICE environment . Matchmake r
was intended to be a language rich enoug h
to express any data structure that could b e
efficiently represented over the network, an d
reasonably represented in all target languages .
The major target languages were C, PER Q
Pascal, Common Lisp, and Ada .

Each remote or local procedure call contain s
an object port parameter, and a list of in and
out parameters . The object port specifies the
object in which the operation is performed . All
parameters, but the object port, are passe d
by value . Pointers, variable-sized arrays, an d
unions can only occur in top-level remote dec-
larations, and may not be used when construct-
ing other types . Time-out values can be spec-
ified, and the reply wait can be made asyn-
chronous as well .

The Matchmaker language is used to mask
language differences, such as language syntax ,
type representations, record field layout, pro-
cedure call semantics, and exception handlin g
mechanisms . Representation for argument s
over the network is chosen by the Matchmaker
compiler . A Matchmaker specification includes
complete descriptions of the types of every ar -
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gument that is passed, and the compiler gen-
erates the target language type declarations t o
be imported into the generated code . Match-
maker assigns a unique identification (id) to
each message, which is used at run time to
identify messages for an interface . After the
procedure (message) is identified, the types of
all fields within it are also known, because mes -
sages are strongly typed at compile time . The
compiler is internally structured to allow th e
addition of code generators for other language s
as they are added to the SPICE environment .
This allows a callee to be automatically acces-
sible to callers written in any of the supporte d
languages, regardless of the language in which
the callee is written .

The Abstract Syntax Notation One [37]
(ASN.1), a more general purpose interface de-
scription language, was later designed, an d
has been widely used in international standar d
specifications. The ASN.1 interfaces are com-
piled into its transfer syntax based on the Basic
Encoding Rules (BER), which is used as the ex-
ternal data representation . Each data type in
ASN.1 has a rule to translate it into its corre-
sponding transfer syntax . The ED [54] library
is an implementation of the ASN .1 BER. The
library includes encoding and decoding rou-
tines that can be used as primitive functions to
compose encoders and decoders for arbitraril y
complicated ASN .1 data types . It also contains
routines that translate data values directly be-
tween C and the BER transfer syntax withou t
converting it to an intermediate format . From
the ED library, CASN1, an ASN.1 compiler ,
was designed and implemented for translating
ASN .1 protocol specifications into C, and fo r
generating the BER encoders and decoders fo r
the protocol defined data types .

Because of the difficulty introduced with pa -
rameter passing by reference, or pointer-base d
data in general, in an RPC, some systems sim-
ply do not allow arguments of such type in the
declaration of functions that can be called re-
motely. An example is the SUN RPC [79] im-
plementation, which disallows it and restrict s
the number of arguments that can be passed i n
an RPC to one, as well as the return value . If
the user wants to pass more than one argument ,
or receive more than one value, the data mus t
be grouped into a structure data type . The

user then ends up being responsible for most
marshaling and demarshaling of data . The rpc-
gen [79], the SUN stub generator, generates ,
from an RPC specification file, the caller an d
callee stubs, as well as a header file . The rpc-
gen generates the remote procedure names b y
converting all letters in the names to lowercase ,
and appending an underscore and the program
version number to end of the names . The SUN
defined and used a canonical representation for
data over the wire, the eXternal Data Repre-
sentation [78] (XDR) protocol .

To avoid constrainting the user, another ap-
proach was to allow the user to implement spe-
cial routines for the marshaling and demar-
shaling of complex data structures . This ap-
proach was used, for instance, by the Networ k
Interface Definition Language (NIDL) of the
NCA/RPC [22] system and by HRPC [10] .

In NIDL, the routines convert the transmis-
sible types defined by the user to or from types
that the NIDL compiler can marshal . The het-
erogeneity at the data representation level was
dealt by NCA with a Network Data Represen-
tation protocol (NDR) . A set of values across
the communication media is represented by a
format label that defines the scalar value rep-
resentation, and a byte stream with the values .
The NDR does not specify the representation
of the information in packets, however . The
NIDL compiler and the NCA/RPC system en-
code the format label in packet headers, frag-
ment the byte stream into packet-sized pieces ,
and pack the fragments in packet bodies . Thi s
implementation is very flexible, allowing the re-
ceiver makes it right approach to deal with het-
erogeneity in the data representation level .

In HRPC [10], each primitive type or typ e
constructor defined by the IDL is translate d
from the specific data type in the host machin e
representation to or from a standard over-the-
wire format . No direct support is provided for
the marshaling of data types involving point-
ers, although the user can provide marshalin g
routines for complicated data types .

The main concern of other systems durin g
the design of the stub generator is the main-
tenance of location transparency . The Eden
system [2] consists of objects called Ejects that
communicate via invocations . It is transpar-
ent for the user whether the invocation is for a
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local Eject or a remote one . The system trans-
parently does the packing and stub generation
when required .

6 Process Modules
The binding disciplines, language support, and
exception handling are the main component s
of the process modules . The binding disci-
plines define a way of identifying and address-
ing threads, and binding procedure names t o
threads . The language support of the RPC
mechanism allows the user to make these map-
pings, and to issue the remote calls in situations
where syntax transparency is not supported .
The exception handling mechanism supports
the handling of abnormal situations.

6.1 Binding Disciplines
In conventional procedure call mechanisms, a
binding usually consists of finding the addres s
of piece of code, by using the name of a proce-
dure. In the RPC model, a binding disciplin e
has also to identify the thread in which the cal l
will be executed, and several approaches may
be taken. First of all, there may be severa l
threads that can or are willing to execute a
specific procedure . These threads are usuall y
server threads (server processes), because they
give the illusion that they exist to serve call s
to these procedures . Some implementations re-
quire the caller to identify a specific thread t o
execute its call . Some require only the name of
the machine in which the caller wants the call
to be executed, independently of the particula r
thread . Finally, some implementations require
that the caller identify only the procedure to b e
called, and dynamically and transparently, th e
runtime support locates the most appropriat e
thread to execute the call (Cedar [13]) . In this
way, an RPC binding can change during the
caller's execution, and a caller can be virtually
bound to several similar callees simultaneously .

The binding can be static, performed dur-
ing compilation or linkage time, or dynamic ,
performed during runtime . Static bindings are
useful if the application configuration is static
or seldom changes. They can also be used in
situations where the extra cost of binding im-
mediately before the call may, significantly, af-

fect performance, as may be the situation in
rising alarms in a process control application .

Two phases are involved in acquiring a bind -
ing that fully connects a caller and a callee :
naming, and port determination . The naming
is the process of translating the caller-specifie d
callee name into the network address of the host
on which the callee resides. The port determi-
nation identifies a callee thread in one host ma-
chine. The network address produced durin g
naming is not enough for addressing a callee ,
because multiple callees may be running on a
single host . So, each callee has its own com-
munication port and network address, which
uniquely identifies the callee thread . In the
conventional situation, the procedur e 's name is
enough, because everything else is known b y
default .

Some systems allow the threads to expor t
additional attributes associated with a binding
that provides the callees with more informa-
tion so that they can decide the thread to use ,
or with several ways of identifying a thread be -
sides its name. For instance, a thread may ex-
port the version number of its implementation ,
so a callee may choose the newest version, or
a particular version of interest . A thread may
also publish the data objects upon which it i s
updated, so a callee might choose a thread tha t
does, or does not, modify a piece of data . The
binding handler is all the information needed
to identify a port .

The binding process works as follows . A
thread willing to accept RPCs exports (pub-
lishes) its port address and the procedures that
it wants to execute . A thread willing to is-
sue RPCs imports the port information of a
thread or set of threads it thinks is adequat e
to execute its calls . The exported or imported
address information can connect the caller di-
rectly to the callee, or can connect the caller t o
the RPC runtime in the callee machine that will
act as bridge to the callee . The main goal is t o
make this process work as similar as possibl e
to the conventional procedure scheme, hiding
from the application user the import and ex-
port processes. Concert [90, 7] is the system
that supports the most conventional and flexi-
ble binding mechanism.

To import and export procedures, som e
systems (Cedar RPC [13], NCA RPC [22] ,
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HRPC [10, 55], and so on) manage a globa l
name space, that is, a set of names whose asso-
ciated data can be accessed from anywhere i n
the environment . Export corresponds to writ-
ing or updating information into this global
name space, whereas import corresponds to
reading this information . Some other system s
use well-known ports, where each callee is as-
signed a specific port number . Callers usu-
ally consult a widely published document t o
get the well-known port numbers. The handle r
consists of this port number and the home o f
the machine in which the callee is supposed t o
run. Because the global name service usually
involves permanent memory, systems should
detect when a callee no longer exists, and un-
export its associated information . Other sys-
tems use a Binding Daemon (SUN RPC [79]) ,
a process that resides at a well-known port on
each host and manages the port numbers as-
signed to callees running on that host . An-
other way would be to have a server-spawnin g
daemon process, a process that also reside s
at a well-known port on each host, but tha t
serves import requests by creating new port s
(through forking other processes) and passing
to the callee the new port number .

Some systems provide thread facilities to im-
port or export a single procedure, whereas oth-
ers provide only for the import or export of a
set of procedures (an interface) . In some situ-
ations the interfaces represent a functional re-
lated grouping of functions, that typically op-
erate on shared data structures . The unit of
binding being the interface is sometimes justi-
fied as a means of ensuring that all the func-
tions in that interface are executed by the
same server . This is a step towards an object -
oriented approach, where program objects ca n
only be accessed through an specific set of pro-
cedures .

Another aspect of the binding discipline i s
the interface exposed to the user . The most ad-
equate interface would be the one that would
provide the user with the same call inter -
face (syntax transparency), independently of
whether the user was making an RPC or a lo-
cal call . Most systems however require that
the RPC handler be an argument of any RP C
call (NCA/RPC [22], SUN RPC [79]) . This
RPC handler must also be the product of call -

ing an import function upon an interface or
procedure. Some other systems allow for the
declaration of an interface-wise global variable
that will keep the address of the handler . Al-
though the user interface is similar to a local
one, the side-effects of the call can be unfortu-
nate if the user is not careful enough to updat e
the handler when needed .

6 .1 .1 Different Binding Discipline De-
signs

In the Cedar RPC Facility [13], the unit ex -
ported or imported is an interface, and it i s
identified by its type and instance. The type
specifies in some level of abstraction the inter-
face functionality and the instance, the imple-
mentor . For each instance, the Grapevine dis-
tributed database is used to store the network
address of the machine where it is running . At
the application user point of view, for each in-
terface imported or exported there is a related
function to import or export the binding (net -
work address) of that interface . The export
function gets the type and instance name of a
particular instance of an interface as argument s
and updates the database with this informatio n
and the machine ' s network address . The set of
users that can export particular interfaces is re-
stricted by the access controls that restrict up -
dates to the database . The import function re-
trieves this information from the database an d
issues a call to the RPC runtime package run-
ning on that machine, asking for the binding
information associated with that type and in-
stance . This binding information is then ac-
cessible to the caller stubs of that interface . If
there is any problem in the callee side, by th e
time the binding is requested, the caller side is
notified accordingly and the application user i s
supposed to handle the exception . There are
several choices for the binding time, dependin g
on the information the application user speci-
fies in the import calls . If the user gives only
the type of the interface, the instance is chosen
dynamically at the time the call is made by th e
run time support . On the other hand, the user
can specify the network address of a particular
machine as the instance identification for bind-
ing at compile time .

In NCA/RPC [22], as mentioned previously ,
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RPCs require a first argument, a handle, tha t
specifies the remote object (process) that re-
ceives and executes the call . The primary goal
of this scheme is to support location trans-
parency, that is, to allow dynamic determi-
nation of the location of an object . The lo-
cal calls have the same syntax. Handles are
obtained by calling the runtime support an d
passing the object (process) identification, th e
UUID (Universal Unique Identification), an d
network location as input arguments . One flex-
ibility is the implicit semantics . The user de-
clares a global variable for each interface tha t
stores the information necessary to acquire th e
handle, and designs a procedure that convert s
this variable into a handle . The handle argu-
ment is not passed in the call and the con-
version procedure called automatically by th e
the stubs during run time . To import and ex-
port interfaces in NCA, the NCA/LB (Loca-
tion Broker) was designed, which retrieves lo -
cation information based on UUIDs . A callee
side process exports some functionality by reg-
istering its location and the objects, type of
objects, or interfaces that it wants to export a s
a global (to the entire network) or a local (lim-
ited users) service . The LB is composed of the
Global Location Database, a replicated objec t
that contains the registration information of al l
globally registered processes ; and the Local Lo -
cation Broker that contains the information o f
the local exportations. The Global Databas e
provides a weakly consistent replicated pack -
age, meaning that replicas can be inconsistent
at any time, but, without updates, all replicas
converge to a consistent state in a finite amoun t
of time . A caller process can inquire about th e
information of a specific node, or can make an
RPC by providing an incomplete binding han-
dle, and specifying, for instance, only an inter-
face, and not a specific process, and the run -
time system asks the Local Location Broker th e
reminder of the information .

In HRPC [10, 55], to support the heterogene-
ity at the data representation protocol, trans-
port protocol, and runtime protocol, the bind-
ing is much richer, containing not only the loca -
tion, but also a separate set of procedure point-
ers for each of these components . Calls to thes e
routines of these components are made indi-
rectly through these pointers .

Initially, the HRPC binding subsystem
queries the name service to retrieve a bind-
ing descriptor . A binding descriptor consist s
of, a machine-independent description of th e
information needed to construct the machine -
specific and address-space-specific binding . I t
indicates the control component, data repre-
sentation component, and transport compo-
nent that the callee uses, as well as, a net -
work address, a program number, a port num-
ber, and a flag indicating whether the bind-
ing protocol for this callee involves indirectio n
through a binding agent . The HCS Name Ser-
vice (HNS) applies the concept of direct-access-
naming, where each HCS system has a nam-
ing mechanism and HNS accesses the informa-
tion in these name services directly, rather tha n
reregistering all the information from all the ex-
isting name services . This design allows close d
systems named insular systems to evolve with-
out interfering with the HNS, and makes newl y
added insular services immediately available ,
eliminating consistency and scalability prob-
lems. The HCS name service (HNS) can be
viewed as a mapping between the global nam e
of an object and the name of that object in its
local system. The local system is the one re-
sponsible for the final name to data mapping .
Each HNS name then consists of two pieces :
the context, which determines the specific nam e
service used to store the data associated with
the name, and the individual name or loca l
name . Each name service connected to HNS
has a set of name semantics managers (NSMs) .
These routines convert any HNS query call t o
the interface, format, and data semantics o f
a local call to the name service. These rou-
tines are remote routines and can be added to
the system dynamically without recompilatio n
of any existing code . For a new system to b e
added to the HNS, NSMs for that system ar e
built and registered with the HNS ; the data
stored in them becomes available through th e
HNS immediately.

Using the context part of the name and the
query type, the HNS returns a binding for th e
NSM in charge of handling this query type for
this context . The caller uses this binding t o
call the NSM, passing it the name and quer y
type parameters as well as any query type spe-
cific parameters . The NSM then obtains th e
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information, usually by interrogating the nam e
service in which it is stored .

SUN RPC [79] has no strongly expressed
binding model . Some procedures take the I P
host name of the machine to which the caller
wants to communicate . Others simply take fil e
descriptors to open sockets that are assumed t o
already be connected to the correct machine .
Each callee 's host machine has a port mapper
daemon that can be contacted to locate a spe-
cific program. The caller has to make an ex-
plicit call to the port mapper to acquire a n
RPC handler . The caller specifies the callee's
host machine, program number, version num-
ber, and TCP or UDP protocol to be used . The
RPC handler is the second argument of the
RPC. The port mapper also provides a more
flexible way of locating possible callees . The
caller sends a broadcast request for a specifie d
remote program, version, and procedure to a
particular port mapper's well-known port . If
the specified procedure is registered within th e
port mapper, the port mapper passes the re-
quest to the procedure. When the procedure
is finished, it returns the response to the por t
mapper instead, which forwards it to the caller .
The response also carries the port number o f
the procedure so that the caller can send later
requests directly to the remote program .

In the Template-Based model [68] for dis-
tributed applications design, an application
consists of modules that communicate with
each other via RPC . Each module can have
only one exportable procedure, but it can cal l
any of its local (internal to the module) proce-
dures, as well as any procedure exported b y
other modules . The module's interaction i s
expressed through a set of attribute binding s
known as template attachments . A template i s
a set of characteristics that can be used to spec-
ify the scheduling and synchronization struc-
ture of a module in an application . It describes
the interaction of one module with others. Ev-
ery module can have up to three templates t o
specify its behavior : input, which describes the
correct scheduling and synchronization of in -
coming calls, output, where similar to input for
calls originated by the module, and body, which
describes attributes that can modify the mod-
ule 's execution behavior in the distributed en-
vironment . In this model, the unit of binding is

a module, which can have only one exportable
procedure. The binding is done at call time .

Concert [90, 7] expresses a binding in th e
most transparent way : as a function pointer .
Languages like C, which have already function
pointers, need no extensions . Concert simply
treats functions as closures . The closures iden-
tify a code body and a process environment
in which the body is executed . In Concert ,
when a process assigns the address of a function
body to a function pointer, not only is the func-
tion body address implicitly assigned, but also
the encompassing process environment . Any
function pointer passed to another process pre-
serves this information, exporting a function
pointer or binding .

6.2 Language Support

In the traditional procedure call model, the
callee process, being the same as the caller pro-
cess, by default, is always active . In the RPC
model, an issue exists as to when to activat e
the process in which the callee is supposed to
run. These problems are called activation prob-

lem or callee management problem or callee se-
mantics problem . In some systems, the applica-
tion user is responsible for this activation. In
others, callees processes are activated by the
underlying process model. There is a callee
manager that can create callee processes on de-
mand, spawn new processes, or simply act as a
resource manager that chooses an idle process
from a pool of processes created earlier . Such
callees can remain in existence indefinitely, an d
can retain state between successive procedure
calls; or they may last a session as a set of
procedure calls from a specific client, or they
may last only one call, which is a instance-per-
call strategy. When the activation process is
controlled by the runtime system, several in-
stances of a callee can be installed on the sam e
or different machines transparently to the user .
This may be only to provide either load bal-
ancing, or some measurement of resilience to
failure . The binding mechanisms would allow
one of these instances to be selected at import
time.

Some languages allow the user to start pro-
cesses that will either be caller or callee fro m
the operating-system level, and also offer Ian -
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guage support to start new processes durin g
run time. In the latter situation, an interfac e
should be powerful enough to allow passing ar-
guments between the parent and the children ,
as pointed out in [89] . Supporting parameter
passing for newly created processes allows fo r
compile-time protection, more readability, an d
structuring . Concert [90] allows the passing of
arguments between parent and children, an d
these arguments can be remote procedure ref-
erences as well .

In Athena RPC [70], callees are character-
ized by their lifetime, whether they are share d
among clients or are private, and the means
through which they are instantiated . In the in-
terface definition, the user specifies these char-
acteristics through attributes that are associ-
ated with callee's stubs. The system is very
flexible, allowing callee processes to be instan -
tiated either manually or automatically in re-
sponse to a request from a caller, or bein g
long-lived, belonging to a pool, and potentially
answering multiple callers . This instantiated
mode is transparent to the caller .

RPC systems also differ in the way callees re -
spond to the calls . For the syntax of the calle e
reception, the receive can be explicit or im-
plicit . In explicit mode, the language provides
a function that can be called by an already ac-
tive process just like any other. In the implici t
mode, the language provides a mechanism for
handling calls or messages . The receive is not
performed by any language-level active process .
The callees are dedicated processes that per -
form only remote calls . This mode may loo k
more like the behavior in a sequential proce-
dure environment, where the arrival of the cal l
triggers the execution of an appropriate body
of code, much as an interrupt triggers its han-
dler (see [65] for further discussion) . In essence ,
a classification can be made [65] in which ex-
plicit receive is a message based-mode, whereas
implicit receipt is a procedure-based one . The
issue of synchronization, though, is orthogonal
to the issue of the syntax of how the callee pro-
cess responds to it .

In Cedar [13], for instance, there is no user -
level control to the service of calls on the callee
side. There is a pool of callee side processes
in the idle state waiting to handle incoming
calls . In this way, a call can be handled without

the cost of process creation and initialization of
state . In peak situations, additional processe s
can be created to help and terminated after th e
situation returns to normal . This scheme i s
very efficient, because it reduces the number
of process switches in a call, but the user has
no control during run time of the callee side
processes .

In explicit mode, one of the most common
statements is the accept statement that ac-
cepts a procedure name, or a set of proce-
dures, as input and blocks until a call to one of
the specified procedures is made. The select
statement allows the callee to express Boolean
expressions (guards) that must be attended to
before the callee accepts a call for the corre-
sponding procedure . Most of the languages
that do have a select construct on the callee
side such as Ada [20], do not allow RPC call s
to be part of the Boolean expressions, that is ,
act as a guard. A discussion about situation s
in which the absence of such a construct cause s
loss of expressiveness, of robustness, and even
of the wanted semantics, is presented in [25] .
An expressive extension of Ada's select con-
struct that solve the problem in an elegant wa y
is also described. Having RPC calls as guards
in select constructs is an advantage in situa-
tions such as : conjunctive transmission (broad -
casting), disjunctive transmission, pipelining ,
transmission stopped by a signal, and so on .
The broadcasting occurs when the RPC caller
gets some information that it wants to broad-
cast to a specific set of processes . It has the
calls it is to make, but the order in which the
callees are ready to answer the call is unknown .
The caller does not want to block waiting fo r
a busy callee to answer while it can be call-
ing other callees and afterwards try the bus y
one again. The disjunctive transmission oc-
curs when a caller wants to call any potential
callees . The pipelining happens when processes
P1 , . . . , P„ are to form a pipeline, where proces s
Pi receives items from P;_ 1 and sends them t o
Pi+ 1 . Each Pi is simultaneously ready to eithe r
accept an item from Pi_ 1 or to send an item to
Pi +1, and is willing to choose by the availabilit y
of its neighbors . The transmission stopped b y
a signal occurs when mixed calls and accept s
are necessary—for example, when you want a
process to continuously make specific calls un -
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til another process calls it when it is supposed
to accept and stop calling .

Concert [90] presents a set of language sup -
ports for the handling of RPCs in the explicit
mode, which is discussed in Section C of the
Appendix .

6.3 Exception Handlin g

In a single thread of execution, there are tw o
modes of operation : the whole (including calle r
and callee) program works, or the whole pro-
gram fails . With RPC, different failure mode s
are introduced : either the callee or the caller
malfunction, or the network fails . Even with
good exception raising schemes, the user i s
forced to check for errors or exceptions where
logically one should not be possible, making the
RPC code different from the local code, and vi-
olating transparency.

Transparency is lost either because RPC has
exceptions not present in the local case, or be -
cause of the different treatment in the RPC or
local case of exceptions common to both . The
programming convention in single machine pro -
grams is that, if an exception is to be notified
to the caller, it should be defined in the inter -
face module, while the others should be han-
dled only by a debugger [13] . Based on thi s
assertion, Cedar RPC [13] emulated the seman-
tics of local calls for all RPC exceptions defined
in the interfaces exported . The exception for
call failure is raised by the runtime support if
any communication difficulty should occur .

To prevent a call from tying up a valuabl e
resource in the callee side, the callee should
be notified of the caller's failure [86]. For a
caller's failure, or any other abnormal termi-
nation, the resource should be freed automati-
cally. The general problem of garbage collectio n
in a distributed system could be very expen-
sive . The NCA/RPC [36] exposes to the client
exceptions that occur during the execution of
RPCs . It also propagates interrupts occurring
to the caller process, all the way to the calle e
process executing on the caller's behalf .

7 Execution-Time Compo-
nents

The runtime support and communication me-
dia support constitute the execution time com-
ponents of RPC . The runtime support consists
of a set of libraries provided by the RPC sys-
tem. Its a software layer between the other
RPC components and the underlying architec-
ture . It receives and enqueues calls to the callee
stubs, sends the call messages generated by the
caller stubs, guarantees that calls are executed
in the correct order, and so on . The commu-
nication media support is the transport media
that carries the messages. At the operating-
system level, there are several possible configu-
rations for an RPC call, as shown previously i n
Figure 3 . Depending on the particular syste m
and the underlying architecture, the communi-
cation media chosen for each particular config-
uration varies . Nevertheless, when the caller
and callee threads reside on different machines ,
network transport support is needed . This sup -
port has been the subject matter of severa l
RPC systems, and it is discussed in the fol-
lowing section .

7.1 Network Transport Support

For the network transport support, the primar y
question is which protocol is the most suitable
for the RPC paradigm .

For better performance in the extended ex -
change case, TCP could be chosen, since it pro-
vides better flow and error control, with negli-
gible processing overhead after the connectio n
is established. It also provides the predictabil-
ity required for RPC. On the other hand, it is
typically expensive in terms of space and time .
In space, it requires the maintenance of connec-
tion and state information, and, in time, during
connection establishment, it requires usuall y
three messages to set it up, and three more t o
tear it down . RPC systems usually have shor t
periods of information exchange between caller
and callee (the duration of a call), and a calle e
must be able to easily handle calls from hun-
dreds of callers . Network implementations usu-
ally are strict about the number of concurrently
open connections. Even without this restric-
tion, it would be unacceptable for a callee t o
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maintain information about such a large num-
ber of connections .

Datagram-oriented network services (such as
UDP) do not provide for all the security an
RPC mechanism needs, but are inexpensive
and are available in any network .

In general, RPC-based systems make use of
the datagram service provided by the network ,
and they implement a transport protocol on
the top of the datagram, which meets RPC re-
quirements . This protocol, usually, performs
the flow and error control of TCP protocols ,
but the connection establishment mechanism i s
light weight .

The designers of the Cedar RPC Facility [13 ]
found that the design and implementation of a
transport protocol specifically for RPC woul d
be a great source of performance gains . First ,
the elapsed real-time between initiating a cal l
and getting results should be minimized. The
adequacy for bulk data transfer, where mos t
of the time is spent transferring data, was not
a major concern in the project . Second, the
amount of state information per connection ,
and the handshaking protocol to establish one ,
should be minimized . Finally, at-most-once se-
mantics should be used .

The scheme adopted bypasses the software
layers that correspond to the normal layer s
of a protocol . The communication cost was
minimized when all the arguments of a cal l
fit in a single packet . The protocol work s
as follows. To issue a call, the caller sends
a packet containing a call identifier, a proce-
dure identifier, and the arguments . The cal l
identifier consists of the calling machine iden-
tifier, a machine-relative identifier of the call-
ing process, and a sequence number . The pair
[machine identifier, process] is named ac-
tivity . Each activity has at most one outstand-
ing remote call at any time. The sequence num-
ber must be monotonic for each activity. The
call identifier allows the caller to identify th e
result packet, and the callee to eliminate du -
plicate call packets . Subsequent packets ar e
used for implicit acknowledgment of previous
packets . Connection state information is sim-
ply the shared information between an activ-
ity on a calling machine, and the RPC runtim e
support on the callee machine, making possible
a light-weight connection management . When

the connection is idle, the caller has only a
counter, the sequence number of its next call ,
and the callee has the call identifier of the las t
call . When the arguments or results are too
large to fit in a single packet, multiple packets
are sent alternatively by the caller and callee .
The caller sends data packets, and the callee re-
sponds with acknowledgments both during ar-
guments transmission, and the reverse, durin g
results transmission . This allows the imple-
mentation to use only one packet buffer at each
end for a call, and avoids buffering and flo w
control strategies in normal-bulk data transfer
protocols . In this way, costs for establishin g
and terminating connections are avoided, and
the cost of maintenance is minimized .

The NCA/RPC [22] protocol is robus t
enough to be built on top of an unreliable net-
work service and yet to deal with lost, du-
plicated, out-of-order, long-delayed messages
that cause callee side processes to fail. It
also guarantees at-most-once semantics when
necessary. A similar approach to the Cedar
project is used . The connection information
kept between processes constitutes, basically, a
last-call sequence number. This number can
be queried from both ends for synchronization
purposes through ping packets . The runtim e
support, though, uses the socket abstraction t o
hide the details of several protocols, allowing
protocol independent code in this way. A pool
of sockets is maintained for each process : allo-
cated when a remote call is issued, and returne d
to the pool when the call is over . A similar
end-to-end mechanism is implemented by th e
Athena RPC [70] and by NCS/RPC [22] .

SUN RPC [79] allows the user to choose th e
transport protocol based on the user 's needs .
SUN RPCs require an RPC handler as the sec-
ond argument . This handler is obtained by call-
ing the port mapper, and passing the transpor t
protocol type specified by the user, TCP, or
UDP. When using TPC, there is no limit t o
the size of the arguments or result values . An
integer at the beginning of every record deter -
mines the number of bytes in the record . With
UDP, the total size of arguments must not gen-
erate a UDP packet that exceeds 8,192 bytes in
length . The same holds for the returned values .

ASTRA [3] developed RDTP/IP, a reliabl e
datagram transport protocol, that is built on
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UDP. It provides a low-cost reliable transport ,
where calls and replies are guaranteed through
a connectionless protocol . For flow and error
control, it uses a stop and wait protocol. It
also provides an urgent datagram option tha t
causes RDTP to push the packet out to th e
network immediately. On the callee side, the
urgent datagram is stored in a special buffer ,
and a signal is raised to the user . A user can
receive urgent datagrams by specifying the ur-
gent datagram option in receiving statements .

The synchronized clock message protocol [48]

(SCMP) is a new protocol that guarantees at-
most-once delivery of messages at low cost an d
is based on synchronized clocks over a dis-
tributed system . It assumes that every nod e
has a clock and that the clocks of the node s
are loosely synchronized with some skew e, les s
than a hundred milliseconds . Nodes carry out a
clock synchronization protocol that ensure suc h
precision. This synchronization protocol is be-
ing used for other purposes, such as for authen-
tication and for capabilities that expire .

The protocol can be summarized as follows :
every thread of control T has a current time ,
T.time, that is read from the clock of the nod e
in which T is running. Every message has a
timestamp, m.ts, that is T.time of the sending
thread at the time m is created . Each messag e
contains a connection identifier, m.conn, cho-
sen by the client without consultation with th e
server . Each server maintains a connection ta-
ble, T. CT, that is a mapping from connection
identification to connection information . One
piece of information is the timestamp of th e
last message accepted on that connection . Not
all connections have an entry in T.CT. Any T i s
free to remove an entry T .CT[C] for a connec-
tion C from its table, if T .CT[C] .ts < T.time
—p, where p is the interval during which a con-
nection information must be retained . A callee
also keeps the upper bound, T.upper, on the
timestamps that are removed from the table .
Because only old timestamps are removed from
the table, T .upper < T.time —p. The mech-
anism then distinguishes new from duplicated
(old) messages, based on the notion of boun d
of a particular connection . On the callee side ,
the bound of a connection is the timestamp of
the most recent previously accepted message ,
if the message 's connection has an entry in the

table. Otherwise, the global bound T .upper i s
used. Because no information is in the table for
this connection, the last message on this con-
nection, if there was any, had a time stamp <
T.upper . Provided that p is sufficiently large ,
and having T .upper < T.time —p, the chances
of mistakenly assuming a message as duplicat e
is very low .

The above protocol is nevertheless for callees
that do not survive failures . For resilient
callees, it is necessary to determine by the time
of a message arrival, whether the message is a
new one or a duplicate of a message that ar-
rived before the failure . An estimate of the
timestamp of the latest message that may have
been received before the failure occurred . The
system operates as if no message with a times-
tamp greater than the estimate was received
before the failure, and therefore, messages older
than the estimate are new. An upper bound
on the timestamps of accepted messages is en-
forced and is named T.latest . After the failure ,
T.latest is used to initialize T .upper . Roughly
speaking, a server periodically writes T .time
to stable storage . After a failure, T .latest i s
the most recent value written to stable storage .
For example, SCMP can be used by higher-
level protocols to establish connections . It can
be used as a security reinforcement mechanism
that allows only new messages to be passed t o
higher-level mechanisms that use it . Perfor-
mance measurements [48] show that at-most-
once semantics for callers calling callees oc-
casionally are achieved with about the same
cost as UDP-based SUN RPC, and with signifi-
cantly better performance than the TCP-based
SUN RPC. If the caller makes several calls to
the same callee, none major overhead cost is
added over the UDP, and it performs bette r
than the TCP-based RPC .

When the RPC involves processes connecte d
through a wide-area network, the protocol
must support location services and transparent
communication among the distant connecte d
processes. An adequate protocol for local-are a
networks would be inappropriated for wide-
area networks, because the latter has a very
high latency rate . Amoeba distributed operat-
ing system [85] introduced a session layer gate-
way to support the interconnection of local -
area networks . Through a publish function,
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target servers (callees) export their port an d
wide-area network address to other Amoeba
sites. When receiving this information, each
site installs a server agent . The server agen t
acts as a virtual server (callee) for all calls t o
that service, listening locally to requests to that
port from that site . When issuing an RPC, the
callee calls the server agent, which forwards the
request across the wide-area network using the
published address . When the request arrive s
at the remote Amoeba site, a client agent pro-
cess is created there that acts as the virtua l
client (caller) of the target server and starts
a local call to it . After execution, the tar-
get server sends the results to the client agent ,
which forwards the results through the wide-
area network to the server agent . The server
agent then completes the call, returning the re-
sults to the real client . Amoeba provides ful l
protocol transparency for the user . For wide-
area communication, it uses whatever protocol
is available and without the client and server
processes knowing about it . For local commu-
nication, it uses protocols optimized for local
networks. The error recovery is very powerfu l
in this model, because the client agent notifie s
the server agent, and the reverse, when a shut-
down of the client occurs .

REX [57] is a remote execution protocol tha t
extends the RPC concept to a wider range o f
remote process-to-process interactions for a n
object-oriented distributed processing architec-
ture .

8 Supporting and Extend-
ing the RPC Mechanism

This section discusses several implementation
techniques to enhance the RPC mechanism ,
and extensions added to the concept . The ex-
tensions try to model the RPC paradigm s o
that it will be more efficient, or more suitable ,
for particular applications .

8 .1 Process Management

Of foremost concern in designing and imple-
menting an RPC mechanism are three factors :
the language that is extended to support RPC ,
the operating system in which the mechanism

is built, and the networking latency of the un-
derlying implementation .

An operating system should be capabl e
of supporting several threads of control [82] .
Single-threaded environments do not provid e
for the performance and ability for concurren t
access of shared information required for the
implementation of the mechanism . An attempt
at implementing an RPC prototype as part o f
the MIT's Project Athena, around 1986, on th e
top of 4 .2 BSD, is described in [70] . There were
no support for more than one thread of execu-
tion within a single address space. The com-
munication protocol was a user mode request
and response layered on UDP (UDP-RR) . The
4.2BSD does not provide the low latency re-
quired. The process scheduling algorithm i s
nonpreemptive, which tends to increase the cal l
latency.

One of the most useful properties of a lan-
guage that is to be extended with RPC, or
any synchronous mechanism, is the support
of process management . This topic is dis-
cussed in detail in [46], where the limitation s
of synchronous communication with static pro-
cess structure are presented. Two situation s
in which a process could block are identified :
local delay and remote delay . When the cur-
rent activity needs a local resource that is un-
available, the activity is said to be blocking be-
cause of a local delay . A callee in this situa-
tion should suspend the execution of this call ,
and turn its attention to requests from other
callers . If the current activity makes a remot e
call to other activity and is delayed, the othe r
activity is blocked because of a remote delay .
A remote delay can actually be a communi-
cation delay, which can be large in some net-
works. It can also happen because the calle d
activity is busy with another request, or must
perform considerable computing in response t o
the request . The caller process, while waiting ,
should be able to work on something else . The
user should be able to design several threads o f
execution inside a process . This provides the
operating system with alternative functions t o
execute while that call, on the callee or caller
side, is blocked .

Several alternative ways to avoid or overcom e
the blocking in the absence of dynamic process
creation are described as follows and the de-
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ficiencies inherited in the alternative ways ar e
analyzed [46] . Examples of some solutions are :

• Refusal: a callee that accepts a request
and is unable to execute it, because of a
delay, returns an exception to the caller to
indicate that the caller should try agai n
later .

• Nested accept : a callee that encounters a
local delay accepts another request in a
nested accept statement . This scheme re-
quires that the new call is completed be-
fore the old call is completed. This may
result in an ordering that may not corre-
spond to the needs of applications .

• Task families : instead of using a single
process to implement a callee, a family
of identical processes is used. These pro-
cesses together constitute the callee, and
synchronize with one another in their use
of common data .

• Early reply : simulate asynchronous prim-
itives with synchronous primitives . A
callee that accepts a call from a caller sim-
ply records the request and returns an im-
mediate acknowledgment .

• Dynamic task creation in the higher-leve l
callee : the higher-level server uses early
reply to communicate with callers . When
it receives a request, it creates a subsidiary
task (or allocates an existing task) and re-
turns the name of the task to the caller .
This would handle remote delay.

A synchronization mechanism may provid e
adequate expressive power to handle local de-
lays only if it permits scheduling decisions t o
be made on the basis of the the name of th e
called operation, the order in which requests
are received, the arguments of the call, and th e
state of the resource [46] .

NIL [76] was one of the primary efforts i n
having processes as the main program structur-
ing construct at the language level, which ar e
both units of independent activity, and unit s
of data ownership . Processes can be dynam-
ically created and destroyed in groups called
components, and each component accepts a list
of creation-time parameters . These parameters

are used to pass initial data to an initializatio n
routine within each process being created. The
choice of processes to load into a componen t
is made at run-time. Hermes [75] and Con-
cert [90] are languages that came afterwards ,
also based upon the process model .

8 .2 Fault Tolerance

The fault tolerance and recoverability are pri-
mary issues in distributed environments . A dis-
tributed environment provides a decentralized
computing environment . The failure of a sin-
gle node in such environments represents onl y
a partial failure, that is, the damage (loss) is
confined to the node that failed . The rest of
the system should be able to continue process-
ing. A system is fault tolerant [8] if it contin-
ues functioning properly in the face of proces-
sor (machine) failures, allowing distributed ap-
plications to proceed with their execution an d
allowing users to continue using the system .
The recoverability refers to the ability to re-
cover from a failure, partial or not .

There are three sources of RPC failures :

• Network failure : The network is down, o r
there is a network partition. The caller
and callee cannot send, or receive any
data .

• Caller site failure : The caller process o r
the caller host fails .

• Callee site failure : The callee process or
the callee host fails . This might cause th e
caller to be indefinitely suspended while
waiting for a response .

The system may hide the distributed envi-
ronment, or other underlying details from th e
user, thus providing transparency . The sys-
tem can provide location transparency, mean-
ing that the user does not have to be aware
of the machine boundaries and the physical 10-
cations of a process to make an invocation on
it . On the other hand, the simplest approach
to handling failures is to ignore them, or to let
the user take care of them .

The fault model for node failures is as fol-
lows: either a node works according to its spec-
ifications, or it stops working (fails) . After
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a failure, a node is repaired within a finit e
amount of time and made active again .

Usually, the receipt of a reply message from
the callee process constitutes a normal termi-
nation of a call . A normal termination is pos-
sible if [58] :

• No communication or node failures occur
during the call .

• The RPC mechanism can handle a fixed
finite number of communication failures .

• The RPC mechanism can handle a fixed
number of communication failures an d
callee node failures .

• The RPC mechanism can handle a fixe d
number of communication failures and
callee node failures and there is tolerance
to a fixed finite number of caller node fail-
ures .

The appropriate choice of fault tolerance ca-
pabilities and the semantics under normal an d
abnormal situations, are among the most im-
portant decisions to be taken in an RPC de-
sign [58] . A correctness criterion for an RPC
implementation is described in [58] . Let C; de-
note a call, and W; represent the correspond-
ing computation invoked at the callee side . Let
C; and C1 be any two calls made such that :
(1) C; happens after C; (denoted by C; then
C;), and (2) computations W; and W1 share
some data such that W; and/or W1 modify the
shared data. The correctness criterion (CR)
then establishes that an RPC implementation
must meet in the presence of failures the fol-
lowing CR :

CR: C; then C; implies Wt then W1

A call is terminated abnormally if the termi-
nation occurs because no reply message is re-
ceived from the callee . Network protocols typ-
ically employ time-outs to prevent a process
that is waiting for a message from being held
up indefinitely.

If the call is terminated abnormally (the
time-out expires), there are four mutually ex-
clusive situations to consider :

• The callee did not receive the request, bu t
it was made .

• The caller did not receive the reply mes-
sage, but it was sent .

• The callee failed during the execution of
the respective call. The callee either re-
sumes the execution after failure recovery ,
or does not resume the execution even af-
ter starting again .

• The callee is still executing the call, but
the time-out was issued too soon .

There are two situations in which the ab-
normal termination can cause the caller to is -
sue the same call twice. If the time-out is is -
sued too soon for a particular call, the caller
may erroneously assume that the call coul d
not be executed, and might decide to call an-
other callee process, while the former one is
still processing the call . If the two executions
share some data, the computations can inter-
fere with each other . Another situation can
occur when the caller recovers from a failur e
but does not know whether the call was alread y
issued or not, and makes the call again . Exe-
cutions that are failed are orphans, and many
schemes have been devised for detecting an d
treating orphans [40, 53] .

Network failures can be classified [58] as fol-
lows :

• A message transmitted from a node does
not reach its intended destination (a com-
munication failure) .

• Messages are not received in the same or-
der as they are sent .

• A message is corrupted during its trans -
mission .

• A message is replicated during its trans -
mission .

There are well-known mechanisms (based on
checksums and sequence numbers) that a re-
ceiver can use to treat messages that arrive out
of order, are corrupted, or that are copies of
previously received messages . Therefore, net-
work failure is the treatment of communication
failures only. If the message handling facilit y
is such that messages occasionally get lost, a
caller would be justified in resending a messag e
when it suspects a loss . This can sometimes
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result in more than one execution at the callee
side .

When a process survives failures on its node ,
the process is a resilent process . It might re-
quire maintenance of information in a log on a
nonvolatile storage medium .

Because of the difficulties in achieving con-
ventional call semantics for remote calls, be-
cause of problems with argument passing an d
problems with failures, some works [31] argu e
that remote procedures should be treated dif-
ferently from the start, resulting in a com-
pletely nontransparent RPC mechanism .

8.2 .1 Atomicity

A major design decision of any RPC mecha-
nism is the choice of the call semantics of an
RPC in the presence of failures . Some systems
adopt the notion that RPC should have only
last-of-many semantics when failures occurre d
to model procedure calls in a centralized sys-
tems [53] . In Argus [45], RPC has at-most-onc e
semantics and malfunctions are treated by ex-
ception handling . The Cedar [13] implementa-
tion enforces at-most-once semantics by send-
ing probe messages, and by using Mesa's power-
ful exception handling mechanism . Other sys-
tems [67, 80] follow the idea that RPC shoul d
have exactly-once semantics to be useful .

An implementation of an atomic RPC mech-
anism, which maintains totality and serializ-
ability, is presented in [42] . Serializability is
guaranteed through concurrency control by at-
taching a call graph path identifier to each mes-
sage representing a procedure call . Each pro-
cedure keeps the message path of the last ac-
cepted call . This path is used to make compar-
isons with incoming message paths, and only
calls that can be serialized are accepted. In
this system, procedures are separated entities .
A procedure's data can be either static or au-
tomatic . The automatic data is deleted after a
procedure 's activation, while static data is re-
tained . Associated states of static variables are
saved in backup processors to survive failures .

Because of concurrency control and to main-
tain atomicity, some calls to procedures wit h
static data can be rejected . For instance, sup-
pose a procedure A that concurrently invokes
calls on procedures B and C, both of which call

A

B

	

C

Figure 7 : Concurrent Call of D by B and C

procedures D, which has static data (Figure 7) .
If B calls D first, C's call to D should be rejected
until B returns to A . If C's call is accepted, an d
if B calls D again later, B 's and C 's effects on
D cannot be serialized, violating the atomicity
requirement .

Procedure calls can be atomic, that is, to-
tal and serializable, or nonatomic . Exactly-
once semantics are guaranteed for atomic calls ,
while only at-most-once semantics are assured
for nonatomic ones.

Calls invoked by the callees of an atomic cal l
are also executed as atomic calls . The total-
ity property requires that when a caller mal-
functions and recovers to an old state, all the
states of its callees must also be restored . If
a callee fails and recovers, its caller is not af-
fected, but the call must be repeated . The al-
gorithm recovers a failed procedure's data state
to its state after the last time it finished a n
atomic call . A procedure that was called by
a failed atomic procedure is recovered to the
state before the failed atomic procedure mad e
the first direct or indirect call to the procedure .
The backup states for a procedure are Associ-
ated States (AS) . An AS is the procedure's dat a
state (static variable and process identification )
that is tagged with a version number, which is
increased by one every time a new AS is cre-
ated . An AS is created on procedure initiatio n
and updated every time after the procedure re-
turns from an atomic call .

A Transactional RPC design and implemen-
tation is presented in [23] . The design consists
of a preprocessor, a small extra runtime library,
and the usual RPC components . The prepro-
cessor accepts interfaces written in DCE ID L
and generates, for each procedure, a shado w
client stub and a shadow manager stub (shadow
server stub) . It also generates an internal in-
terface, which contains a new version of the
procedures declared in the original interface ,
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where an extra in-out argument is inserted .
This extra argument contains the data infor-
mation needed for the transaction system . The
internal interface is the input to the stub gen-
erator .

When issuing the RPC, the user calls th e
shadow client stub, which communicates wit h
the transaction subsystem. The shadow client
registers the call, obtains some registering data
(piggyback data), and updates the log file . Af-
ter that, it calls the shadow manager stub gen-
erated for the internal interface and passes the
piggyback data as the extra argument . On
other side, the manager stub receives the call .
It recovers the piggyback data argument, an d
interacts with the transaction system to com-
municate the acceptance of the request . There -
after, it calls the real caller stub with the re-
minder of the arguments . A similar protocol
is used when the call is finished . The shadow
server interacts with the transaction system
communicating the completion of the call, an d
obtaining some more piggyback data . It then
passes the piggyback data and the procedur e
results back to the client shadow . The client
shadow, once again, interacts with the trans-
action system by passing this piggyback data ,
and then returns the results of the procedure t o
the original caller . The user interfaces are no t
modified, and the user with transactional ap-
plications benefits in a completely transparen t
manner .

A reliable RPC mechanism that adopts th e
exactly once semantics is described in [67] . At
the RPC system language level, the user can
specify additional information that enables th e
underlying process to manage the receipt an d
sending of messages . Orphans are not treated
at this level . The level immediately above thi s
requires that all programs be atomic action s
with the all or nothing property. Executing
callees in an atomic way guarantees that the
repeated execution at the callee side is per -
formed in a logically serial order with orphan
actions terminating without producing any re-
sults . The syntax transparency is lost, and an
RPC call requires, at least, the name of the
callee's host and a status and a time-out ar-
gument . The time-out specifies how long the
caller is willing to wait for a response to his
request . The status indicates whether the call

was executed without problems, whether th e
call was not done, whether the callee was ab-
sent or could not execute the call . The system
assigns sequence numbers (SN) to messages .
SNs are unique over the entire system . A callee
maintains only the largest SN received in a fail -
ure proof storage . All retry messages are sent
by a sender with the same SN as the origina l
message . A callee accepts only messages whos e
SN is greater than the current value of the las t
largest SN. A similar approach is provided at
the caller's side. For the generation of network-
wide unique sequence numbers, the loosely syn-
chronized clock approach is used . Each node i s
equipped with a clock and is also assigned a
unique node number . A sequence number a t
each node is the current clock value concate-
nated with the node number .

8.2.2 Replication

Some systems use replication to support faul t
tolerance against hardware failure. Schemes
that use replication can be classified in two cat-
egories : primary standby and modular redun-
dancy . In the primary standby approach on e
copy is the active primary copy and the oth-
ers are passive secondary copies . The primary
copy receives all the requests and is responsi-
ble for providing the responses . It also updates
periodically the checkpoints of the passive sec-
ondary copies, so that they can assume the role
of primary copy, if this is the case . If the pri-
mary copy fails, a prespecified secondary cop y
assumes its role . The major drawback of such
a scheme is the considerable system support re-
quired for checkpointing and message recovery .
In modular redundancy scheme, all the repli-
cated copies receive the requests, perform th e
operation, and send the results . There is no dis-
tinction made between the copies . The calle r
usually waits for all the results to be returned ,
and may employ voting to decide the correct
result . The major disadvantage of this scheme
is the high overhead of issuing so many request s
and so many responses . If there are m requests
and n copies of the requested service, the num-
ber of messages needed to complete the request
is O(m x n) .

The Replicated Procedure Call [18] is an ex-
ample of modular redundancy-based mecha-
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Caller troupe

	

Callee troupe

Figure 8 : Replicated Procedure Call

nism for RPC-based environments . The set
of replicas (instances) of a program module i s
a troupe . A replicated procedure call is made
from a caller troupe to a callee troupe . Each
member of the caller troupe makes a one-to-
many call to the callee troupe, and each callee
member troupe handles many-to-one call from
the caller troupe as shown in Figure 8 . Each
member of the callee troupe only performs th e
requested procedure once, while each member
of the caller troupe receives several results . To
the programmer this looks like normal proce-
dure calls . Distributed applications continue
to function normally despite failure if at least
one member of each troupe survives . The de-
gree of replication can be adjusted to achiev e
varying levels of reliability . Increasing the num-
ber of nodes spanned by a troupe increases its
resilience to failures .

To issue a replicated procedure call, the
caller's side of the protocol sends the same cal l
message, with the same sequence number, t o
each member of the callee troupe . On the
callee's side, a callee member receives call mes-
sages from each caller's troupe member, per -
forms the procedure once, and sends the same
result to each member of the caller 's troupe .
For this call, each troupe has a unique troup e
id, assigned by a binding agent, and each mes-
sage contains the caller's troupe id . When a
request arrives, the callee checks the member s
of the caller 's troupe id, and determines fro m
whom to expect call messages as part of the
many-to-one call . The callee also needs a way

of grouping the related requests, that is, to de-
cide whether the requests are unrelated or are
part of the same replicated call, because the
requests may not be synchronized or identical .
The system does not require complete deter-
minism, that is, that each member of a troup e
reaches the same stable state through the ex-
ecution of the same procedures with the same
arguments in the same order . The system is
based on the notion of state equivalence rela-
tion between modules, and parameter equiva-
lence and result equivalence among procedure
calls . Procedure executions in a module hav e
an equivalence relation induced by the rela-
tions . Two executions are equivalent if : (1) th e
results are result equivalent, (2) the new states
are state equivalent, (3) the traces are identica l
up to parameter equivalence of the remote pro-
cedures called . A module is deterministic up t o
equivalence if : (1) all executions of a procedur e
with a specific set of arguments in a specifi c
state are equivalent, or (2) whenever a param-
eter is equivalent to another parameter, and a
state is also equivalent to another state, all ex-
ecutions of a specific procedure in the forme r
state with the former arguments are equivalen t
to the executions of the same procedure with
the second argument in the second state .

To assure the deterministic up to equivalence
relation, the notion of call stack is extended
to distribute call stack, which consists of the
sequence of contexts, possibly across machin e
boundaries, that were entered and not returne d
from yet. At the base of the stack is the
top-level context that originated the chain o f
stacks . The distribute call stack is, once again ,
extended to replicated call stack, in which an
entry for an active procedure consists of a set of
contexts, one from each member of the troup e
implementing that procedure . Given an active
replicated procedure call, the replicated cal l
stack can be traced back, and a unique troup e
can be found at the base level . This is the root
troupe of the replicated procedure call .

In this way, a root id is added to each cal l
message . A root id contains the troupe id of
the root troupe of the call, and the sequence
number of the root troupe's original replicated
call . The root id is a transaction identifier, an d
whenever a callee makes a replicated call on
behalf of a caller, it propagates the root id of

Call P
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the call that it is currently performing . The
root ids have the essential property that two
or more call messages arriving at a callee have
the same root id if they are part of the same
replicated call . This allows a callee to handle
many-to-one calls .

A combination of the modular redundanc y
approach and the primary standby is describe d
in [88], which provides for an RPC mechanis m
tolerant to hardware failures . Whereas all the
replicated copies execute each call concurrently ,
as in the modular scheme, the caller only make s
one call, which is then transmitted to the oth-
ers . The mechanism exposes to the user a clus-
ter abstraction, which constitutes a group of
replicated incarnations of a procedure . The in-
carnations are identical, but reside in different
nodes . An RPC call is issued by a caller clus-
ter, and the callee cluster is the one that exe-
cutes the call . The caller process, the proces s
that starts the call, is not replicated, and is
a special instance of a caller cluster with only
one instance . In recursive and nested calls, a
cluster can function both as a caller and as a
callee .

There are primary and secondary incarna-
tions of a procedure . During cluster creation
time, an incarnation is designated primary ,
and is responsible for handling the communica-
tion between clusters . All others are considered
secondary . If the primary incarnation fails, a
secondary incarnation assumes its function an d
becomes the primary incarnation . A secondar y
incarnation can only interact with other clus-
ter's processes, if all its superior incarnations
fail and it has become primary. The incarna-
tion hierarchy in a cluster is determined whe n
the service is created . All incarnations play an
active role : all the incarnations in the callee
cluster execute a call, and every incarnation in
a caller cluster receives a copy of the result . In
the absence of failure, though, the caller make s
a single call and only one copy of the result i s
sent to the caller cluster . The system assumes
that a cluster is deterministic : when receiving
the same call each of its incarnations produce s
the same result and has the same side-effects .
The callee procedures must be idempotent .

8.2 .3 Orphan Detection

Rajdoot [58] uses three built-in mechanisms to
cope with orphans in an efficient way . It adopt s
exactly once semantics . For callee failure, the
call is guaranteed to be terminated abnormally.
There are three orphan handling mechanisms :

• (M1 :) If a client call is terminated abnor-
mally, any computations that the call may
have generated are also terminated .

• (M2 :) Consider a node that fails an d
makes a remote call to node C after recov-
ery . If C has any orphans because of th e
caller's failure, they are terminated befor e
the execution of the call starts at C .

• (M3 :) If the node remains down, or if af-
ter recovery never makes calls to C, an y
orphans on C are detected and remove d
within a finite amount of time .

To ensure M1, every call has a deadlin e
(time-out) argument that indicates to the calle e
the maximum time available for execution .
When the deadline expires, the callee termi-
nates the execution and the call is terminate d
abnormally . To ensure M2, every node main-
tains a crashcount in permanent storage. The
crash count is a counter that is incremented im-
mediately after a node recovers from a failure .
Also in stable storage, a node maintains a table
of crashcount values for callers that made call s
to it . Every call request contains the caller' s
crashcount value . If the value in a request
is greater than the value in the callee's table
for that caller, orphans may be at the callee .
These orphans are terminated before the callee
proceeds with the call . To ensure M3, ev-
ery node runs a terminator process that occa-
sionally checks the crashcount values of other
nodes by sending messages to them and receiv-
ing replies, and then terminates any orphans
when it detects failures .

The RPC call syntax is as follows, where pa-
rameters and results are passed by values :

RPC(server :

	

. . . ; call : . . . ;

time-out : . . . ; retry : . . . ;

var reply : . . . ;var rpc_status : . . .) ;

The first parameter specifies the callee's host .
The second parameter, which is the name of the
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function and the arguments. The retry indi-
cates the number of times that the call is t o
be retried (the default value being zero) . If af-
ter issuing a call, no reply is received within
the duration specified by time—out, the call
is reissued . The process is repeated a maxi-
mum of retry times . The manager processes ,
which are run by each process and accessed via
a well-known address, are responsible for cre-
ating callee processes that execute remote calls
of a client . All remote calls of the client ar e
directed to the callee process .

SUN RPC does not specify the call seman-
tics to be supported and has no provision for or -
phan treatment . The transport protocol chosen
at the time that the RPC handler is acquire d
determines the call semantics . Similarly, Xerox
Courier RPC [87] appears to support exactly
once semantics, but its description is not pre-
cise about its fault tolerance capabilities and
no support for orphan treatment is provided .

8 .3 Debugging and Monitorin g
RPC Systems

Concurrency and communication among th e
concurrent parts of a distributed program
greatly increase the difficulty associated wit h
program debugging . For this reason, a system
for prototyping and monitoring RPCs was de -
signed [91] . From programmer-written callee
definition files, the system can prototype calle e
programs, caller driver programs, interface de-
scription files written in NIDL for each callee ,
stubs, and prototype programs of RPC proce-
dures for each callee .

The system consists of two parts : a prototyp-
ing generator and a monitor . The prototypin g
generator gets the callees' definition files, an d
generates the above-mentioned files . It consist s
of a set of specialized generators that provid e
for the gradual development of the component s
of a distributed environment . The server pro -
gram generator generates a callee stub and a
callee program for each callee definition file .
The sequential client program generator gen-
erates, for each callee, a caller stub and a
caller driver program . The parallel client pro -
gram generator generates a driver program for
each callee which can make use of any num-
ber of remote procedures provided by the callee

concurrently. For a group of callees, the dis-
tributed client program generator generates a
driver program that can make use of any num-
ber of remote procedures provided by thes e
callees .

The produced programs are monitored b y
the monitor when the debug option is on ,
and during prototyping generation . The mon-
itor has a controller and a group of managing
servers . The controller offers a user interface
and has a filter . Each host that has monitored
program parts on it has a managing server con-
sisting of a server (MS) and an event database .

The monitoring is done in three steps . Dur-
ing the monitoring step, all events that occu r
on one host are monitored by the local M S
and recorded into the local event database . An
event is an RPC and execution, a process cre-
ation (through a fork), and termination, or any
combined event defined by the user through th e
Event Definition File (EDF) . During the sec-
ond step, the ordering step, the events saved in
the local event databases are ordered through
messages interchanged among the MSs . The
controllers can be invoked by any host . The
last step, the replaying step, consists of combin-
ing the results on all related event databases .
The filter presents the execution trace of the
distributed program to the user . After the pro-
gram is debugged, the user needs only to pro-
gram the RPC body and the application inter-
face .

8 .4 Asymmetry

Another aspect of the RPC mechanism tha t
might not be appropriate for certain applica-
tions is the asymmetry inherited by the RPC
model . In the RPC model, the caller can choose
the particular callee, or at least the callee' s
host machine . Seldom can the callee mak e
any restrictions about the caller, because the
callee cannot distinguish among callers to pro-
vide them with different levels of service or t o
extend to them different levels of trust . Callees
must deal with callers that they do not under -
stand, and certainly cannot trust [64] .

This issue is referred as naming (or address-
ing) of the parties involved in an interaction [8] .
A communication scheme based on direct nam-
ing is symmetric if both the sender and re -
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ceiver can name each other . In an asymmet-
ric scheme, only the sender names the receiver .
When the interprocess communication mecha-
nism provides for explicit message receipt, th e
receiver has more control over the acceptance .
The receiver can be in many different states
and accept different types of messages in each
state. The indirect naming involves an inter-
mediate object, usually called a mailbox, to
which the sender directs its message and t o
which the receiver listens .

In LYNX [64], a link is provided as a built-i n
data type, and is used to represent a resource .
Although the semantics of a call over a link ar e
the same as an RPC, both ends of the call can
be moved . Callees not only can specify the set
of callers that might be connected to the othe r
side of the link, but also are free to rearrang e
their interconnection to meet the needs of a
changing user community, and to control access
to the resources they provide .

Also related to symmetry is the nondeter-
minism issue . A process may want to wait fo r
information from any of a group of other pro-
cesses, rather than from one specific process .
In some situations, it is not known in advanc e
the member (or members) of the group tha t
will have its information available first . Such
behavior is nondeterministic .

On the other extreme, communication
through shared data is anonymous . A process
accessing data does not know or care who sent
the data .

Another criticism of the RPC model is the
passiveness of the callee [82] . Except for the
results, a callee is not able to initiate action t o
signal the caller . The point is that the proce-
dure call model is asymmetric and the callee
has no elegant way of communicating or awak-
ing the callers . One example [17] where th e
callee should call the caller is when the net -
work server (callee) needs to signal to an uppe r
layer in a protocol, or when a window manage r
server needs to respond to user print .

The procedure mechanism provides a syn-
chronous interface to call downward through
successive layers of abstraction . RPCs exten d
the mechanism and allow the layers to reside
in different address spaces . The distributed Up-
Calls mechanism [17] is a facility which allows a
lower level of abstraction to pass information to

a higher level of abstraction in an elegant way .
It is implemented as part of a server structuring
system called CLAM. Users can layer abstrac-
tions in caller processes (statically bound) or
dynamically load layers into the callee process .
Consider two abstractions P and Q in differen t
layers with P in a higher layer than Q . The P
passes to Q pointers to functions in which P i s
willing to accept UpCalls . To pass pointers, P
calls a Q registering function, with the functio n
pointers as arguments, which is similar to ex-
porting in normal RPC. When an event occurs
that requires an UpCall to be made, Q decide s
the higher level of abstraction that should re-
ceive the call, which could be P. The P and Q
can be in the same address space (local Up-
Calls) or in different ones (remote UpCalls) .
This is a different way of expressing, for in -
stance, exception handling .

8 .5 Lack of Parallelism

The inherited lack of parallelism between th e
caller and the callee, in an RPC model, is an-
other feature that deserved a lot of attention
by the scientific community. With RPC, whil e
the callee is active, the caller is always idle an d
waiting for the response [82] . Parallelism is
not possible. To gain performance, the calle r
should continue computing while the callee is
working . Related to the above issue, is the fac t
that there is no way of interleaving between the
caller and the callee [82] .

A caller can only have one outstanding call a t
a time. The RPC paradigm is inherently a two-
party interaction [82] . With the large number
of available processors possible in a distribute d
environment, the caller is actually forbidden by
the mechanism to use such parallelism . Many
distributed applications could benefit from con -
current access to multiple callees [86] .

A caller may wait to make several calls si-
multaneously. This is bulk data situations for
an RPC environment .

A solution would be to build RPC-based ap-
plications with several threads, so that, while
waiting for a call, only that call's thread block s
and the others proceed being executed . This
solution does not scale well [3] . Since the cumu-
lative cost of thread creation, context switch-
ing, and thread destruction can be too great
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in large distributed environments, where the
number of RPC calls grows and shrink dynam-
ically . Moreover, threads are not universally
supported .

The interactions between a caller and a calle e
can be classified as follows [3] :

• Intermittent exchange : the caller makes
a few intermittent request-response typ e
calls to the callee .

• Extended exchange : the caller is either
involved in bulk data transfer, or makes
many request-response type calls to a
callee .

Several solutions have been proposed to ex -
tend the RPC concept, so that it is both more
efficient for bulk data transfer, and so that i t
allows for asynchronous communication . All
solutions try to maintain as much as possible
the semantics of a procedure call .

A call buffering approach [30] is a mechanism
that provides a call buffering server, where
the requests and replies are stored (buffered) .
An RPC call results in a call to the buffer-
ing server, which stores the request, the caller
names and the callee name . After that, the
caller makes periodic requests to the call buffer-
ing server to check whether the call is executed .
In the meantime, callees poll the call buffe r
server to check whether there are any call s
waiting. If so, the arguments are retrieved, th e
call is executed, and the callee calls the cal l
buffer server back to store the results . The
next time the caller pools the buffer, the re-
sults can be retrieved .

In the Mercury System [45], a mechanis m
is proposed that generalizes and unifies RP C
and byte-stream communication mechanisms .
The mechanism supports efficient communica-
tion, is language independent and is called cal l
stream or stream . To add the mechanism to
a particular language, a few extensions may be
added to the language . Such extensions are lan-
guage veneer . Veneers for three languages have
already been provided : Argus, C, and Lisp .

A call stream connects two components of a
distributed program . The component sender
makes calls to the component receiver . The
next call can be made before the reply to th e
previous call received . The mechanism can de-
liver the calls in the order they are made, and

deliver the replies from the sender in the or-
der of the corresponding calls . The purpose
of the proposed mechanism is to achieve hig h
throughput where calls are buffered and flushe d
when convenient . Low latency can be achieved
by explicitly flushing the calls . The call stream
relies solely on a specific, reliable byte-strea m
transport such as TCP, making it more suitable
for bulk data transfer . The use of TCP lead s
to higher overhead for most transactional ap-
plications in which a request-response protoco l
is more appropriate .

The mechanism offers three types of calls :

• Ordinary RPCs: the receiver can make an-
other call only after receiving the reply .

• Stream calls : the sender can make mor e
calls before receiving the reply. To the
user, the sequence of calls has the same
effect as if the user had waited to receiv e
the nth reply before doing the (n + 1)-th
call . The system delivers calls and replie s
in the correct order .

• Sends: the sender is not interested in the
reply.

The receiver provides a single interface, and
does not distinguish among the three kinds
of calls . The underlying system takes care of
buffering messages where appropriate, and de-
livering calls in the correct order . At the mo-
ment of the call, the senders can choose inde-
pendently the particular type of call desired .

To minimize the delay for the ordinary RP C
mode, requests and replies are sent over th e
network immediately, that is, as soon as the y
are issued or available . On the other hand ,
stream calls and sends are buffered and sent
when convenient .

The paradigm also introduces the abstrac-
tion of entities . An entity has a set of port
groups and activities (processes) . The port
groups group ports for sequencing purposes .
On the sender side, entities have agents and
a port group that define the sending end of a
stream. In this way, the user and the system es-
tablish the sequencing in which calls from port s
of the same group, calls from different stream s
but from the same entity, or calls from different
streams and different entities must be executed .
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In the CRONUS [3] system, Future is de-
signed only for low latency, and yet the orde r
of execution in Future may vary with the orde r
called . Stream and Future do not optimize fo r
intramachine calls .

Another extension to the RPC paradigm was
the new data type introduced in the work de-
scribed in [43], promise . The goal was to pre-
serve the semantics of an RPC call, yet pre-
vent the caller from blocking until the momen t
the caller really needs the values returned b y
the call . An RPC is declared as returning a
promise, a place holder for a value that will
exist in the future. The caller issues the call ,
and continues executing in parallel with the
callee . When the callee returns the results, the y
are stored in the promise, where they can b e
claimed by the caller when needed . The sys-
tem guarantees that the calls are executed i n
the order that they were called, even if the re-
sult of call i + 1 is claimed before the result o f
call i, if this result is ever claimed . The pro-
grammer explicitly claims the result, and th e
introduction of this data type shows the user
the distinction between call time and claimin g
time. Functions are restricted to have only ar-
gument passing by value and return only on e
value that constitutes the promise value .

The extension is language independent an d
the abstraction can be incorporated in any lan-
guage. An RPC mechanism could implement
the idea behind the mechanism in a transpar-
ent way, confining the problem at the imple-
mentation level, but not at the language level .
The system could do some data flow analysis i n
the program and allow the parallel execution of
caller and callees, blocking the caller only when
values that are expected to be affected by RPC
calls are claimed. The complication here is t o
take care of pointer-based arguments that are
modified as a side-effect of the remote execu-
tion .

ASTRA [3] tries to combine low-latency and
high-throughput communication into a singl e
asynchronous RPC model, and provides the
user with the flexibility of choosing among dif-
ferent transport mechanisms at bind time . It
uses the methodology that the programmer
user knows better, letting the programmer de-
cide whether a specific call requires low latency
or high throughput . The system does all the

optimizations necessary . The caller does not
block during a call, and the replies can b e
claimed when needed similar to promises . All
calls are executed in the same order as called . I f
the reply is not available when the caller claim s
it, the caller can unblock the receive operation
by specifying a no delay option . ASTRA also
provides optimized intramachines calls, bypass-
ing the data conversion and network communi-
cation . For binding it uses a superserver dae-
mon that must reside on every machine tha t
runs a callee process, and also detects whether
a particular server is still active . The major
drawback of such a design is the loss of trans-
parency between local and remote procedure
calls .

Another new data type, Pipes [29], propose s
to combine the advantages of RPC with the
efficient transfer of bulk data . It tries to com-
bine low-latency and high-throughput commu-
nication into a single framework, allowing fo r
bulk data incremental results to be efficiently
passed in a type safe manner . RPCs are first -
class values, that is, have the same status as
any other values . They can be the value of an
expression, or they can be passed as an argu-
ment . Therefore, they can be freely exchange d
among nodes . Unlike procedure calls, pipe call s
do not return values and do not block a caller .
Pipes are optimized for maximum throughput ,
where RPCs are optimized for minimum la-
tency. RPC and pipes are channels used in the
same manner as local procedures. The node
that makes the call is the source node, and the
node that processes calls made on a channe l
is the channel ' s sink node . For timing and se-
quencing among calls, channels can be collecte d
into a channel group . A channel group is a set
of pipes and procedures that share the same
sink node and that observe a sequential order-
ing constraint for a source process . This order-
ing constraint guarantees that calls made by a
process on the members of a channel group ar e
processed in the order that they were made .
The user makes the grouping .

A survey of asynchronous remote procedure
calls can be found in [4] .
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8.6 Security

A major problem introduced by an external
communication network is the providing of
data integrity and security in such an open
communication network . Security in an RPC
mechanism [71] involves several issues :

• Authentication : To verify the identity of
each caller .

• Availability: To ensure that callee access
cannot be maliciously interrupted .

• Secrecy: To ensure that callee information
is disclosed only to authorized callers .

• Integrity: To ensure that callee informa-
tion is not destroyed .

Systems treat these problems differently ,
providing more insight or priority according t o
their most suitable applications .

The Cedar RPC Facility [13] uses th e
Grapevine [12, 62] Distributed Database as an
authentication service or key distribution cen-
ter for data encryption . It treats the RP C
transport protocol as the level of abstraction a t
which to apply end-to-end authentication and
secure transmission measures [61] . The An-
drew system [61] independently chose the same
approach .

Andrew's RPC mechanism [61] supports se-
curity. When a caller wants to communicat e
with a callee, it calls a bind operation . The
binding sets up a logical connection at one of
the four levels offered by the system :

• OpenKimono : the information is neithe r
authenticated nor encrypted .

• AuthOnly : the information is authenti-
cated, but not encrypted .

• HeadersOnly : the information is authen-
ticated, and the RPC packet headers, bu t
not bodies, are encrypted .

• Secure : the information is authenticated ,
and each RPC packet is fully encrypted .

When establishing the connection, the caller
also specifies the kind of encryption to be used .
The callee rejects the kinds of encryption that
it cannot handle. The bind operation involves

a 3-phase handshake between the caller and th e
callee. By the end of the operation, the calle r
and the callee share one handshake key . The
caller is assured that the callee can derive this
key from its identification, and the callee is as-
sured that the caller possesses the correct hand -
shake key . The RPC mechanism does not hav e
access to the format of a caller's identification ,
nor the way in which the key can be derived
from this identification. All this functionality
is hidden by function pointers with which the
security mechanism supplies the RPC runtim e
system. The code for the details of the authen-
tication handshake is small, self-contained, an d
can be treated as a black box, allowing for alter-
native mutual authentication techniques to be
substituted with relative easy. A call to an un-
bind operation terminates the connection, an d
destroys every state associated with that con-
nection .

One way of guaranteeing security in RP C
systems, is to enhance the transport layer pro-
tocol at the implementation level and to extend
the call interface at the user level, as in [11] .
The new abstraction data type conversations i s
introduced, through which users interact wit h
the security facilities . To create a conversation ,
a caller passes its name, its private key, and the
name of the other principal to the RPC runtim e
system. That conversation is then used as an
argument of an RPC, and the runtime system
ensures that the call is performed securely us-
ing a conversation key known only to the two
principals .

The scheme is based on the use of privat e
keys and built upon an authentication servic e
(or key distribution center) . Each principa l
has a private key known only to the princi-
pal and the authentication service. A caller
and a callee that want to communicate nego-
tiate with the authentication service to obtain
a shared conversation key . This key is used
to encrypt subsequent communication between
the two principals . The federal Data Encryp-
tion Standard [52] (DES) is used for encryp-
tion, because very fast and inexpensive hard -
ware implementations are broadly available .

For example, if principal A wants to commu-
nicate securely with principal B, A 's program
includes a call on the RPC runtime system i n
the form :
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cony <- R .P .C .Creat e

Conv[from : nameOfA ,

to :

	

nameOfB ,

key : privateKeyOfA]

Principal A can then make remote calls to pro-
cedure P.Q implemented by B, such as :

x <- P .Q[thisConv :conv,arg :y]

Inside the implementation of P .Q, principal B
can find the identity of the caller by a call in
the RPC runtime system in the form :

caller <- RPC .GetCaller[thisConv]

The concept of conversation is orthogonal t o
the other abstractions in a call . Multiple pro-
cesses can participate in a conversation, an d
multiple simultaneous calls may be involved in
a conversation .

8.7 Broadcasting and Multicast-
ing

It is argued in the research community tha t
there are applications to which RPC seems t o
be an inappropriate paradigm . Several exten-
sions to this model have therefore been pro-
posed. One extension is applications based on
the necessity for multicasting or broadcasting .

Programming language support for multicas t
communication in distributed systems that ca n
be built on RPC is presented in [19] . The callee
interface has no modifications at all . The caller
has additional binding disciplines, which pro -
vide for binding a call to a group of callees ,
and additional linguistic support . Callers have
to deal with several replies, instead of just one ,
and may have to block only until the first n
replies are received .

8 .8 Remote Evaluation

One of the main motivations behind interpro-
cess communication and distributed environ-
ments is that specialized processors can be in-
terconnected . This kind of environment seems
like a single, multitarget system able to ex-
ecute, possibly efficiently, several specialize d
computations . In an RPC model, the special-
ized processors are generally mapped to callee
processes that offer (export) a certain interface .

Because of the wide range of applications to
which these processors may be applicable, ther e
may be no ideal set of remote procedures tha t
a callee should provide [71] . In the worst sit-
uation, the RPC model requires as many cus-
tomized interfaces from a set of callee processes
as there are applications that may make use of
it . Without an appropriate RPC interface, a
distributed application can suffer degraded per-
formance because of the communications over-
head . It is claimed in [71] that, in the RP C
model, a program has a unique partition int o
fragments for local and remote execution .

Remote Evaluation (REV) is the ability to
evaluate a program expression at a remote com -
puter [71]. A computer that supports REV
makes a set of procedures available to other
computers by exporting them. The set of
procedures exported by a computer is its in-
terface . When a computer (client computer )
sends a program expression to another com-
puter (server computer), this is a REV request .
The server evaluates the program expressio n
and returns the results (if any) to the client .

Before sending the program expression, the
client prepares the code portion for transmis-
sion, in the encoding process . The end result
of this encoding is a self-contained sequence of
bits that represents the code portion of the re-
quest in a form that can be used by any serve r
supporting the corresponding service . It may
consist of compiled code, source code, or othe r
program representation . This choice affect s
mainly the run-time performance and server se-
curity .

The use of precompiled REV requests can
improve run-time performance, because th e
servers directly execute the REV requests in-
stead of using an interpreter . It may not be
very useful in a heterogeneous computing en-
vironment, and has the potential for compro-
mising server security. Dynamic compilation
of REV requests at servers is certainly possi-
ble, but the net effect on performance depend s
on the REV requests . The performance of an
RPC mechanism is bounded by the overhead of
internode communication . The REV may elim-
inate such overhead. Because trade-off is be-
tween generality and performance when RPCs
are used, service designers typically choose per -
formance over generality. When REV is avail-
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able, however, programmers can construct dis-
tributed applications that need both. While in
the RPC model, a callee process exports a fixe d
set of procedures, a REV environment allows
the application programmer to compose serve r
procedures to create new procedures that have
equal standing with the exported ones .

The RPC REV relationship is compared wit h
the relationship between built-in data type an d
new data type definitions . The REV is claime d
to be a generalization of, and an alternative to ,
RPCs .

One of the drawbacks of REV is that it does
not allow functions to be passed as arguments
of REV program expressions . The Network

Command Language [24] (NCL) defines a new
programming model that is symmetric, that is ,
not restricted to caller and callee network archi -
tectures . Both callers and callees are allowe d
to use NCL to send expressions that specify an
algorithm for an operation .

To communicate with a remote host, th e
caller has to establish a session with it, which
is equivalent to logging into a server by passing
appropriate credentials . If the caller fulfills the
authorization requirements, it enters an inter-
active LISP read-eval-print loop with the hos t 's
evaluator (server) . The server connects back
with the caller in the same way. The calle r
and server exchange NCL expressions repre-
senting requests and responses over this ses-
sion as if each were a user typing to an interac -
tive evaluator . A caller or server can vary the
programming dynamically to suit changing re-
quirements within a heterogeneous distribute d
system. In this way, a server can perform all of
the operations necessary for a collection of het -
erogeneous callers without previous definition ,
linkages, or interfaces modules for every combi -
nation of primitives . As a result, the ultimate
point of compatibility for distributed systems
shifts to the NCL syntax, libraries, and canon-
ical data formats .

The primary advantage of this scheme i s
that many application programs can be buil t
that translate tasks from the language that the
client is used to, to expressions to be evaluated
remotely . This advantage makes this software
highly extensibly .

To transmit expressions, LISP-like represen -
tations are used that are very economical . On

the other hand, it can be rather inefficient hav-
ing these expressions interpreted on the server' s
machine . The integration with RPC-based sys-
tems is also not easy.

9 Performance Analysi s
It is a common practice for experienced pro-
grammers to use small procedures instead of in-
line code, because it is more modular and doe s
not affect performance too much [82] . If such
procedures are run remotely however, instead
of locally, the performance may be severely de-
graded .

RPCs incur an overhead between two an d
three orders of magnitude greater than local
calls [86] . The cost of making an RPC in th e
absence of network errors can be classified as
follows [86] :

call time = parameter packing

+ transmission queuing

+ network transmission

+ callee queuing and

scheduling

+ parameter unpacking

+ execution

+ results packing

+ transmission queuing

+ network transmission

+ caller scheduling

+ results unpacking

It can be rewritten as:

call time = parameter transformations

+ network transmission

+ execution

+ operating-system delay s

Programs that can issue RPCs can b e
modeled, and a cost analysis can be devel-
oped based on simple measurements, as shown
in [50] . RPCs can be classified according t o
the size of input, the size of output, and th e
amount of computation performed by the pro-
cedure. Application programmers are provided
with some guidelines, such as, how often the
user can afford to call an expensive RPC con-
sidering the degradation of performance be-
cause of remote execute instead of local exe-
cution, the cases in which the remote host can
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perform the computation faster and the speed-
ing up factor, or, more generally, the expecte d
execution time of a program with a certain mix
of RPCs .

An extensive analysis of several RPC pro-
tocols and implementations developed befor e
1984 was presented in [53], and the firs t
measurements of a real implementation given
in [13] . The measurements were made for
remote calls between two Dorados connected
by an Ethernet with a raw data rate of 2 .94
megabits per second, lightly loaded . Table 1
shows the time spent on average, and the frac-
tion of that time that was spent in transmissio n
and handling of local calls in the process . These
measurements are made without using any en-
cryption facility from the moment an RPC i s
requested to the moment at which the result is
in the final destination .

In the Modula-2 extension [1] to suppor t
RPC, it was also observed that RPC timings
are directly affected by the number and size of
parameters, as shown in Table 2 . The perfor-
mance was much better also for out arguments ,
than for in-out, and for idempotent procedures
than for non-idempotent ones .

In distributed (RPC or message passin g
based) operating systems, large percentage
(94% to 99%) of the communication is onl y
cross-domain, not cross-machine [9] . Effort has
been made to optimize the cross-domain im-
plementation of RPCs to bring considerable
performance improvements . The Lightweigh t
RPC [9] (LRPC) consisted of a design and
implementation effort to optimize the cross -
domain use for the TAOS operating system o f
the DEC SRC Firefly multiprocessor worksta-
tion . The improvements are the result of thre e
simple aspects :

• Simple control transfer: the caller's threa d
executes the requested procedure in the

Procedure Average
Time

Trans .
Time

Loca l
Call Time

no args/results 1097 131 9
10 args/results 1278 239 1 7
240 word array 2926 1219 98

Table 1: RPC Performance in the Cedar
Project (in ps) .

Number

	

Time for

	

Time
of bytes

	

Local Calls
for

RPCs
1 1 .05 3 .5 1
25 1 .79 4 .1 7

1016 2 .99 8 .22
3000 6 .66 19 .19

Table 2: RPC Performance in Extende d
Modula-2 (in ms) .

callee 's domain .

• Simple data transfer : a shared memory ex-
ists between the caller and the callee, and
the arguments are copied only once for all
situations .

• Simple stubs : are a consequence of the
simple model of control and data transfe r
between threads .

The system adopts a concurrency-based design
that avoids shared data structure bottlenecks .
It also caches domains context on idle proces-
sors, avoiding context switch . A performance
of 157 ms is achieved for the null cross-domai n
call, and of 227 ms for the 200-byte in-out ar-
gument .

Another approach used to improve perfor-
mance was to carefully analyze the steps taken
by an RPC, and to precisely identify the bot-
tlenecks [63] . An optimization for the RP C
mechanism for the Firefly multiprocessor com-
puter is described in [63] . The architecture
is based on multiprocessors in the same ma -
chine sharing only one I/O bus connected to
the CPU 0. This feature could affect RPC
latency on other processors if a high load o n
this particular CPU occurs . Great performance
increases are achieved through the identifica-
tion of the major bottlenecks in the mechanism
and the optimization of the process in the par-
ticular points . During marshaling, the stub s
use customized code that directly copy argu-
ments to and from the call or result packet ,
instead of calling library routines or an inter-
preter . The RPC and transport mechanism s
communicate through a buffer pool that resides
in a shared memory accessible to all user ad-
dress spaces, to the Nub, and which are als o
permanently mapped into the I/O space . In
this way, all these components can read an d
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write packet buffers in the same address spac e
with no need for copying or extra address map -
ping operations. Nevertheless, no protection
has been added and this strategy can lead t o
leaks into the system . An efficient buffer man-
agement is done, making the 1server stub reuse
the call packet for the results, and the receiver
interrupt handler to immediately replace the
buffer used by an arriving call or result packet ,
checking for additional packets to process be -
fore termination . A speedup by a factor of al-
most three was obtained rewriting a particula r
path in assembly language . The demultiplex-
ing of RPC packets is done at the interrupt rou-
tine, instead of the usual approach of awaken-
ing an operating-system thread to demultiple x
the incoming packet . The Firefly RPC offer s
the choice of different transport mechanism s
at bind time . The integration of Firefly RPC
into a heterogeneous environment, where RP C
can be especially beneficial, is not discussed .
Heterogeneity is also a potential source of per-
formance optimization problems, because dif-
ferences in machine architecture and informa-
tion representation can make time-consumin g
conversion operations unavoidable . Portions of
the software are implemented in assembly lan-
guage, which may cause portability and main-
tenance problems . Possible additional hard -
ware and software speedup mechanisms are dis-
cussed, offering estimated speedups of 4% t o
50% .

An effort was made to take some of the op-
erations in communications in distributed sys-
tems to the hardware level . Hardware support
for message passing at the level of the oper-
ating system primitives was proposed in [60] .
A message coprocessor is introduced that in-
teracts with the host and network interface
through shared memory, and provides concur-
rent message processing while the host execute s
other functions . In control of the network in-
terface the coprocessor takes care of the com-
munication process . This involves checking the
validity of the call, addressing and manipu-
lating control blocks, kernel buffering, short -
term scheduling decisions, and sending net -
works packets, when necessary, and so on .

10 Conclusion

Distributed systems provide for the intercon-
nection of numerous and diverse processing
units . Software applications must relish such
broad functionality, the inherited parallelism
available, and the reliability and fault toler-
ance mechanisms that can be provided . Sev-
eral language-support paradigms have been
proposed to the modeling of applications i n
distributed environments . An inappropri-
ate choice of language abstractions and dat a
type constructors may only add to the ever -
increasing software development crisis. It may
prevent software maintenance, portability and
reusability. Today's conception of a distributed
system is far behind the desirable model o f
computation . It is mandatory that new soft-
ware paradigms be as independent as possibl e
of the intrinsic characteristics of a specific ar-
chitecture and, consequently, must be more ab-
stract .

In this work, we studied RPC, a new pro-
gramming language paradigm. A survey of the
major RPC-based systems and a discussion of
the major techniques used to support the con-
cept were presented . The importance of RPC i s
because of its conservative view toward alread y
developed software systems . The goal of RP C
development is to provide easy interconnection
of new and old software systems, despite it s
language, operating system, or machine depen-
dency . To achieve this goal, the foundation of
RPC is based upon a strong language construc-
tor, the procedure call mechanism, which exist s
in almost any modern language .

This work may inspire important futur e
work . Syntax and semantic transparency ar e
ever-challenging research topics and the suit -
ability of the RPC paradigm for new dis-
tributed systems applications, such as multi -
media, is also an important topic to be studied .
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Appendix

A Operational Semantics
of Procedure Call Bind-
ing

Programming languages, together with the op-
erating systems, provide the programmer user
with an abstract view of the underlying physi-
cal architecture . From the user point of view ,
a program manipulates entities such as vari-
ables, statements, abstract data types, proce-
dures, and so on, that are identified through
their names . To do the appropriate mappin g
between these entities and the physical ma-
chine, the language designers usually maintain
a list of attributes (properties) associated with
each entity . For instance, an entity of typ e
procedure must have attributes that represent
the name and type of formal parameters, it s
result 's name and type, if any, and parame-
ter passing conventions . It also maintains an
instruction pointer (ip) and an environment
pointer (ep or the access environment) . The
ip allows for the localization of the code o f
the procedure inside the current address space .
The ep provides access to the context for resolv-
ing free variables (global variables) in a proce-
dure body . In this way, when the programmer
refers to a specific entity through its name, th e
system can access a list of attributes and per -
form the correct mapping . The attributes mus t
be specified before an entity is processed durin g
run time. The binding corresponds to the spec-
ification of the precise value of an attribute of
a particular entity. This binding information is
usually in data structure descriptor of the en-
tity . Some attributes can be bound at compila-
tion time, others at run time (so that they can
change dynamically), and some are defined b y
the language designers (the user cannot change

them) . Programming languages differ (1) o n
the kind of entities that they support, (2) on
the kind of attributes they have associated with
one entity type, and (3) on the binding time for
each attribute .

In conventional procedure call mechanisms, a
binding usually consists of finding the addres s
of the respective piece of code (ip) by using the
name of a procedure. The context in which
free variables are to be resolved is the context
of the caller procedure at the moment of th e
call accessed through the ep . This binding can
be done during compilation time, if the bod y
of the function is defined in the same module
that the call is ; during link-editing time if th e
procedure's body is in a module different fro m
the caller's module; or during run time if th e
procedure 's name is stored in variables (point-
ers in C) whose values can only be determined
dynamically. In the last case, the compiler pro-
duces a mapping between a procedure's nam e
and its address that can be accessed indirectl y
during run time .

B Operational Semantic s
of RPC Binding

An RPC is as an extension of the conven-
tional procedure call mechanism to which a lit-
tle binding information must be added . In a
conventional situation, it is assumed that th e
caller and callee belong to the same program
unit, that is, thread of execution, even thoug h
the language supports several threads of exe-
cution in the same operating system addres s
space or in distributed programs as shown in
Figure 1 . In other words, there are no in-
terthread calls, only intrathread calls, wher e
the binding limits its search space to the pro-
gram unit in which the procedure is called . The
same happens with the execution environment
when the called procedure is being identified .
The callee also inherits the caller 's context .

In RPC-based distributed applications, the
same thread assumption is relaxed and in-
terthread calls are allowed, as shown in Fig-
ure 2 . The binding information must then
contain additional attributes that allow th e
identification of the particular thread in whic h
the callee procedure is to be executed (callee
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thread) . The callee thread now has its own con-
text, perhaps completely apart from the calle r 's
context, and the threads exchange information
only through the parameters passed . Some ad-
ditional semantics is needed, though, to defin e
the behavior of parameter passing by reference
and pointer-based memory access .

C Brief Historical Survey

The idea of extending the concept of proce-
dure calls to distributed environment was firs t
introduced in Distributed Processes [32] . In
Distributed Processes, a distributed applica-
tion consisted of a fixed number of sequen-
tial processes that could be executed simulta-
neously. A process has variables that are no t
directly accessible to other processes, has an
initial statement, and has some common proce-
dures . A process can call local common proce-
dures or the common procedures of other pro-
cesses (external-request RPC) . An external re-
quest call has the syntax :

call <process_name> .<proc_name>

(<expressions>, <variables> )

where <processmame> identifies the process in
which the common procedure <proc_name> i s

to be executed . Before the procedure is ex-
ecuted, the <expressions> values of the call
are assigned to the input parameters . After
execution, the output parameters are then as -
signed to the <variables> of the call . Dis-
tributed Processes also provided guarded com-
mands and guarded regions to allow nondeter-
ministic execution of statements . They allow a
process to make arbitrary choices among sev-
eral statements based on the current state of
its variables .

One of the major pioneers of RPC-based Dis-
tributed Environment was the Cedar [21, 81 ]
project that was developed around 1984 . The
RPC Facility was mostly based on the con-
cepts described in [53]. The Interface De-
scription Language used was Mesa [51] with
no extensions, and the user could import an d
export only interfaces, not procedures . The
Grapevine [12, 62] distributed database was
used as a means to store the exported infor-
mation. The user was responsible .for export-
ing and importing the interfaces before making

the corresponding RPC . There was a flexibilit y
in the binding time, which could be at com-
pilation or runtime. Only a fixed, restricte d
set of data types, not including pointers, coul d
be passed as arguments or returned in RPCs .
The environment assumed was completely ho-
mogeneous . The callee processes were starte d
and terminated by the runtime support acting
as permanent servers of their interface, and ex-
ecuting no other computation and leaving no
control to the user application to manage the
service of the calls . An independent transport
protocol was entirely developed, and was con-
cerned mainly with efficient establishing and
canceling of connections, and with their light -
weight management . For system malfunctions ,
the Cedar mechanism did not use time-outs t o
prevent indefinite waiting by a client, but mad e
use of special probe messages to detect whether
the called server was still running .

An extension of P+, a language for applica-
tions in control system, to support RPC was
proposed in [15] . The control system in which
P+ was implemented already had a remote ex-
ecution protocol . Any programmer could re-
quest the remote execution of any part of the
program, which was written in a specialized
syntax. This part was transmitted in ASCII
code to an interpreter (server) in the remot e
machine . The server executed the transmit-
ted source code interpretatively, and returned
the results to the calling program, using a spe-
cialized syntax . To extend P+, routine REM
was introduced . The REM accepted a runtime
call descriptor, which includes the remote pro-
cedure name, the remote computer name, and
for each parameter, a tag that indicates the pa-
rameter type and mode (read-only, read-write ,
write-only), the size of an array, and the ad -
dress of the parameter . The REM encoded the
descriptor in a datagram format written in th e
specialized syntax (containing the necessary in -
terpretative code in ASCII) and binary values
of the parameters . Making use of the remot e
protocol already present in the system, REM
sent the datagram to the server and waited for
the results . The server executed the code re-
ceived interpretatively, which was a single pro-
cedure call, that was unaffected by the call is-
sued by REM.
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ARGUS [47] is an integrated programmin g
language and system for distributed program
development . The fundamental concept in the
language is atomicity . The logical units of dis-
tribution are guardians and an atomic activity
is an action . An action can be completed either
by committing, when all involved objects take
on their new states, or by an abort procedure ,
where the effect is as if the action had never
started. A distributed application consists of a
set of guardians that control access to a group
of resources available to its users only through
functions named handlers (local and possibly
remote functions) . A guardian contains pro-
cesses that execute background tasks and han-
dlers . Each call to a handler triggers the spawn -
ing of a separate process inside that guardian ,
which can execute many calls concurrently . A
guardian can be created dynamically, and th e
user need only specify the node in which it mus t
be created . Guardian and handler names are
first-class elements. They can be exchanged
through handler calls, which avoids the explicit
importing and exporting of functions . Handler
calls are location independent, and continue t o
work even though the corresponding guardian
changes its location . They have at-most-once
semantics (defined in Section 5 .1) and they ar e
based on the termination model of exception ,
terminating either normally or in one of several
user-defined exception conditions .

In the Eden system [2], a distributed appli-
cation is a collection of Eden objects or Ejects .
Each Eject has a concrete Edentype, the piece
of code executed by the particular Eject, an d
an abstract Edentype, which describes its be-
havior . Several concrete Edentypes can imple-
ment the same abstract Edentype . Ejects com-
municate via invocations procedures from one
Eject to another . To issue an invocation, an
Eject must have a capability for the callee Eject .
Each Eject has one capability to which invoca-
tions can be addressed . Invocation procedures
have CallersRights as a parameter, allowing th e
callee Eject to check the caller's right . The
Eden Programming Language (EPL) provides
facilities to control concurrency within Ejects .
If the code fragments appear in different Ejects ,
it is the the job of the EPL to ensure parame-
ter packing and stub generation . On the callee
side, the translator builds a version of CallInvo -
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cationProcedure that is tailored to the invoca-
tion procedure it defines. On the caller side, th e
usual stub is built . On the EPL level, the lan-
guage provides ReceiveOperation, ReceiveSpe-
cific, and ReceiveAny that are used directly by
the programmer . The Receive Operation takes a
set of operations, and returns only when one o f
them is called, whereas ReceiveSpecific is pro-
vided only when universal or singleton sets are
wanted.

Modula-2 was also extended to support RPC
calls [1], on top of the V System implemen-
tation for SUN workstations . The goal was
to allow entire external modules, as defined in
Modula-2, to be remote, that is, a callee woul d
be defined by the definition module and imple-
mented (specified) by the implementation mod-
ule . A major effort was made to generate as fe w
as possible dissimilarities between a remote ex -
ternal module and a local module . Only a few
attributes and constraints were added to th e
definition module ; a stub generator was imple-
mented for a particular definition module that
generated the callee and caller stubs as well a s
headers ; and a small runtime module was de-
veloped that supported the paradigm during
execution time. The binding was done auto-
matically the first time that a remote function
was called, and this binding lasted for the en -
tire execution time. Null RPCs, with no argu-
ments, executed in around 3 .32 milliseconds .

SR [6] is a distributed programming languag e
that was concerned mainly with expressivenes s
(to make it possible to solve relevant problems
in a straightforward way), efficiency in com-
piling and executing, and simplicity in under -
standing and using the language . The proble m
domain was distributed programming . SR pro-
vides primitives, which, when combined in a va-
riety of ways, support semaphores, rendezvous ,
asynchronous message-passing, and local and
remote procedure calls . SR's main component
is resources, which have a specification part and
an implementation part . The specification part
defines the operations provided by the resource
that is implemented by possibly several pro-
cesses running on the same processor . All re-
sources and processes are created dynamicall y
and explicitly by execution statements . To cal l
operations, SR provides mainly the call and
send statements . The call statement has the
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semantics of a procedure call, either locally o r
remotely, while send has the semantics of semi -
asynchronous message passing . A send invoca-
tion is returned after the call message is deliv-
ered to the remote machine . On the callee side ,
SR provides proc and in statements to deter-
mine the operations execution time . An oper-
ation declared as a proc operation triggers a
separate process to execute each call received .
The in statement provides for the execution of
a selected operation using the value of its as-
sociated Boolean expression . A receive state-
ment waits for a call of an specified operation ,
and then saves the arguments of the call, but
the call is not executed . To allow the early
termination of an operation, the return state-
ment terminates the smallest enclosing in stat-
ment or proc statement . Similarly, the reply
statment terminates the respective statement s
without terminating the process . It provides
for conversations, in which caller and callee
continuously exchange information .

LYNX [64] supports RPC calls on the top of
links, which are built-in data types . A link is
a virtual circuit abstraction that represents a
resource . Callee processes can specify the pro-
cesses that can be bound to the other end of th e
link. In this way, LYNX provides for some sym-
metry between caller and callee, because bot h
can choose with whom to communicate . Pro-
cesses can exchange link bindings, and once ex-
changed, the previous owner loses access to th e
link. Procedures are called through connect

statements that use a specified link to send a
call through it . This operation blocks until the
results are returned in a way similar to proce-
dure calls . The process bound to the other end
of the link accepts the call, executes it, and
replies the results back, unblocking the caller
process . A process can contain a single threa d
of control that receives requests explicitly, or a
process can receive them implicitly, where each
appropriate request creates its own thread au-
tomatically . A link end can be bound to more
than one operation, which leads to a type se-
curity check on a message-by-message basis .

Around 1987, Apollo presented the Net-
work Computing Architecture [22] (NCA), a n
object-oriented environment framework for the
development of distributed applications, to-
gether with the Network Computing System

(NCS), a portable NCA implementation . Het -
erogeneity was then included in the RPC
designers concerns, but mainly at the leve l
of the machine data representation. To in-
terconnect heterogeneous distributed systems ,
NCA designed an RPC facility support calle d
NCA/RPC, a Network Interface Definitio n
Language called NIDL, and a Network Dat a
Representation called NDR . The NCA/RPC is
a transport-independent RPC system built o n
multiple threads of execution in a single ad-
dress space . A replicated object location bro-
ker is used for location purposes. The con-
cept of object-oriented programming was ex-
tended to abstract the location (where it is
going to be executed) from the user, making
objects the unit of distribution, reconfigura-
tion, and reliability. The unit to be exporte d
or imported was an object, an object type, o r
an interface . Location transparency was en-
forced by the flexibility of importing only ob-
jects or functionality independently of thei r
location. The replication aspect of the sys-
tem as a whole brought failure transparency,
because several objects (processes) could ex-
port the same functions . One important exten-
sion was the flexibility of having user-designed
procedures to marshal and demarshal complex
data structures, thereby widening the usability
of the paradigm. It also provided the possi-
bility of attaching binding procedures to dat a
types defined in the interface, allowing the de-
velopment of even more customized code . An
extensive analysis of the major advantages of
Apollo NCA over the SUN/ONC (Open Net-
work Computing) system is presented in [36] .

SUN RPC system [79] is a stub generator
called rpcgen, an eXternal Data Representa-
tion [78] (XDR), and a runtime library. From
an RPC specification file, rpcgen generates the
caller and callee stubs, and a header file that
is included by both files . Each callee 's host
must have a daemon that works as a port map-
per that can be contacted to locate a specific
program and version . The caller has to spec-
ify the host 's name and the transport protocol
to acquire an RPC handler . The RPC han-
dler is used as the second argument of an RP C
call . SUN supports either TCP or UDP (ex-
plained in Section 7 .1) . An RPC call returns a
NULL value in case any error occurs . An effort is
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made to provide at-most-once semantics . Each
RPC handler has a unique transaction identi-
fier (id) . Each distinct request using the RP C
handler has a different value that is obtained
by slightly modifying the id . On the caller side ,
the protocol uses tests to match this id before
returning an RPC value. This matching guar-
antees that the response is from the correct re -
quest .

If the protocol chosen is UDP, the UDP calle e
has an option of recording all of the caller's re-
quests that it receives . It maintains a cache
with the result values obtained that can be in-
dexed by the transaction id, program number ,
version number, procedure number, and caller's
UDP address . Before executing a request, the
callee checks into this cache, and if the call is
duplicated, the result value saved into the cache
is simply returned, on the assumption that the
previous response was lost or damaged .

For security, SUN provides three forms of au -
thentication . The Null authentication is the de-
fault situation, where no authentication occurs .
The Unix authentication transmits with every
ROC request a timestamp, caller 's host name ,
caller ' s user id, calle r 's group id, and a list of al l
other group ids to which the caller belongs to .
The callee decides, based on this information ,
whether it wants to grant the caller's request .
The DES authentication uses the SUN RP C
protocol .

Mainly concerned with heterogeneity, and
searching for accommodation of old and new
distributed systems in a single environment ,
HCS [55, 10] was designed . Major component
was the HCS Remote Procedure Call (HRPC) ,
designed on a plug replacement basis, where
the basic components could be independentl y
built and plugged together . The goal of HRP C
was to identify (factorize) the major compo-
nents of an RPC system, and to define pre-
cisely their interfaces . In this way, component s
could be replaced easily, if the new compo-
nents supported the interface and functional-
ity of the former one and hide the implemen-
tation details . The interconnection of close d
systems (systems in which changes were nei-
ther possible nor wanted) were accomplished b y
simply building components that emulated the
behavior of the systems . This interconnection
made possible the interconnection of different
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RPC mechanisms that were heterogeneous on
several levels, but mainly on the system level .
There was considerable and broad reusabilit y
of components already built . HRPC divided an
RPC System into five major components : the
compile-time support (programming language ,
IDL and stub generator), the binding protocol ,
the data representation, the transport proto-
col, and the control protocol (basically a run-
time support). The localized translation was
another basic principle adopted by HRPC : if
there exists an expert to do the job, let it do it ,
instead of concentrating a narrower knowledg e
in a more-general purpose component . For in-
stance, one way of implementing a name serve r
to deal with heterogeneous databases is to build
a centralized database capable of doing all the
different searches and conversions between sys-
tems. HRPC's name service (NSM) is a simpl e
bridge between the several homogeneous name
services that are connected to the RPC mecha-
nism. Lazy decision making or procrastination ,
was also adopted, because in dealing with het-
erogeneous systems, an a late-as-possible com-
mitment represents the most flexible one .

Marionette [77] is a software package base d
on the master/slave model for distributed en-
vironments . A distributed application in thi s
model is one master process and many slave
processes, all of them sequential . The interac-
tion is done either through shared data struc-
tures created and updated by the master pro-
cess, or through operation invocation, whic h
can be a worker operation or a context opera-
tion . The context operations modify the slaves '
process state and are executed by all slaves .
Worker operations are each executed in a single
slave, are not specified by the master, and are
invoked through asynchronous RPC. Later, the
master explicitly accepts the operation's result .
To deal with heterogeneity at the data repre-
sentation level, all data exchanged between ma -
chines is translated into SUN External Dat a
Representation [78] (XDR). The conversion is
done through user-defined routines . The im-
port and export of functions is avoided by hav-
ing all programs specify linkage arrays . One
linkage array contains descriptors for worke r
operation functions, another contains descrip-
tors for context operation functions, and an-
other contains descriptors for types of share d
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data structures . An index into one of the ar-
rays works as a function identifier .

C++ was also extended to support RPC ,
concurrency, exception handling and garbage
collection to form a superset of C++ name d
Extended-C++ [66] . A translator was designe d
to compile code in Extended-C++ into C+ +
code, that along with a runtime library, sup-
ported the extensions . For the support of RPC ,
attributes were added to the syntax that al-
lowed the declaration of classes as remotable :
its member functions were called remotely. A
class was instantiated only for executing th e
callee side of RPCs. In this situation, only the
class declaration was required in the caller' s
side code, avoiding linking the code with the
definitions of the functions that can be made re -
mote. There is an explicit distinction between
a pointer to a local value and a pointer to a
remote value, and the user must be careful t o
dereference correctly, or else a compilation er-
ror occurs . The pointer is declared as being
remotable and the syntax used for dereferecing
it is different from the syntax to dereference a
local pointer . Only a subset of the types can
be used as the types of remotable function ar-
guments or returned values . A type in this se t
is a transmissible type . The fundamental dat a
types and a remotable pointer are transmissi-
bles. A local pointer is not transmissible : a
user-defined encoder and decoder are neede d
for each class to make it a transmissible class .
For encoding and decoding complex structures ,
such as, circular linked list the degree of shar-
ing of remotable objects can be controlled . An
object in Extended-C++ can be encoded an d
decoded as a shared object or as a value object .
During a remotable call, a shared object can
be encoded (decoded) at most once, whereas
a value object has no limit on the number o f
times it can be encoded (decoded) . This avoids
looping during encoding (decoding) for circular
lists, for instance, through the correct specifi-
cation of an object encoder (decoder) function .

DAPHNE [49] consists of language-indepen-
dent tools and runtime support to allow pro-
grams to be divided into parts for distributed
execution on nodes of a heterogeneous com-
puter network. A callee process is not share d
between concurrent callers belonging to differ -
ent users, and is private and created on de-

mand. A caller process can issue the parallel
execution of several callees and resumes con-
trol only when it receives a reply from all calls .
Each machine has a spawner process that sup-
ports the creation of callee processes on de-
mand . It is reached via RPC using a well -
known transport address .

In Concert [90, 7], a distributed process
model and an interface description language
are designed . The ultimate goal of Concert
is to allow the interprocess communication of
processes that support its process model an d
IDL. The interoperability is possible even i n
the presence of heterogeneity at the languag e
level, operating-system level, or machine level .

The process model is integrated at the lan-
guage level, which provides greater portabil-
ity of the concept . Languages usually must
be minimally extended to support the model .
Extensions encompass process dynamics, ren-
dezvous, RPC, and asynchronous RPC. The
model defines additional operations and thre e
data abstractions : processes, ports, and bind-
ings . The processes consist of a thread of con-
trol and some encapsulated data local to a pro-
cess . Processes can be dynamically created an d
terminated at the language level, and may no t
correspond to operating-system processes . The
interprocess communication is achieved via di-
rected typed channels, whose receiving ends ar e
represented by ports . The bindings represent
the capability to call a port or to send a typed
message to. The operations allow the manipu-
lation of these abstract types, such as, the dy-
namic creation of processes, ports, and bind-
ings, the query as to whether the ports hav e
messages queued, the ability to wait for mes-
sages to arrive on specific ports, and the abil-
ity to process these messages and to reply if
needed .

The ports introduce a new storage class ,
which have queues associated with them t o
hold calls . Functions can be declared to b e
in the port storage class, and can be passed
to other processes, and can then be used fo r
interprocess communication . On the callee
side, the function accept() receives a collec-
tion of port storage-class functions and exe-
cutes a rendezvous on one of the ports . If
no calls are pending on any of the port func-
tions, the accept function waits for a call to
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become pending on at least one of the ports .

Otherwise, it selects one of the port functions
nondeterministically. The accept function de-
marshals the arguments, invokes the respective
function, and transmits the results to the caller
after the function is finished .

Concert is an ambitious design in which no t
only RPC but also asynchronous communica-
tion and process dynamics are provided at the
language level . To support asynchronous com-
munication, Concert adds two new data types
and five new operators . The receiveport op-

erator specifies ports for one-way messages; the
cmsg (call message) operator specifies a two-
way message that was received, but not replie d
to yet; the send operator sends a message in a
non-blocking manner, that is, the caller is un-
blocked right after the message is sent, proba-
bly before it is received and processed ; the poll
operator allows a process to check whether mes-
sages are present at any of a collection of ports ,
but without processing the messages ; the send

operator is similar to the poll operator, but
blocks if no call is pending and until some
other process makes a call ; the receive oper-
ator receives (dequeues) a message of any kin d
from any kind of port ; and the reply oper-
ator replies to a two-way message which wa s
received and represented as a cmsg operator .

Hermes [75] was the first language of th e
Concert family to be implemented . Hermes i s
a process-oriented language that fully supports
all of the Concert process model in type-safe
manner .
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