Group Communication as an Infrastructure for
Distributed System Management *

Y. Amir

Department of Computer Science
The Johns Hopkins University
Baltimore MD 21218
and the NASA Center of Excellence

in Space Data and Information Sciences
yairamir@cs.jhu.edu

Abstract

In the past, system management tools for computer
systems were oriented towards managing a single com-
puter with, possibly, many users. When the networked
system concept became widespread, centralized solu-
tions such as the Network Information Service (NIS')
were developed to help the system manager to control
a network of workstations. Today, when many sites
contain hundreds of workstations, these solutions may
no longer be adequate.

This paper proposes the usage of techniques, devel-
oped for group communication and database replica-
tion, for distributed cluster management. We show
how group communication can be exploited to provide
three classes of frequently needed operations: simulta-
neous erecution of the same operation in a group of
workstations; software installation in multiple work-
stations; and consistent network table management
(improving the consistency of NIS)

1 Introduction

The rapid growth of distributed environments is
motivated by a number of advantages provided by
a distributed architecture over a centralized one.
Among them are the better cost-performance ratio,
potential for higher availability, provision for geo-
graphical spread of organizations, and, from the user
point of view, more autonomy for users.

Unfortunately, distributed environments are harder
to manage. Often they require management data to be
scattered and duplicated in several sites. When sys-
tem size grows, controlling the management data and
keeping 1t consistent becomes a complex and tedious
task.

This paper shows how group communication mech-
anisms can help in building efficient solutions for dis-
tributed system management. Our proposed architec-

*This work was supported by United States - Israel Bina-
tional Science Foundation, grant number 92-00189.

INIS was formerly called Yellow Pages, but later renamed
to avoid confusion with other trademarks.

D. Breitgand, G. V. Chockler, D. Dolev

Institute of Computer Science
The Hebrew University of Jerusalem

Jerusalem 9190/ Israel
{davb, grishac, dolev}@cs.huji.ac.il

ture exploits a group communication service to mini-
mize communication costs and to help preserve com-
plete and consistent operation, despite of potential
network partitions and site crashes. Although we fo-
cus on the Unix environment, a de-facto standard for
distributed environments, the same mechanisms are
applicable for other settings as well.

We address problems in three areas of distributed
system management:

o Table Management: Examples for table manage-
ment include the management of user accounts,
maintenance of a unified file system and various
network tables. We will show how new group
communication and replication techniques can
render table management services efficient, sym-
metric, consistent and highly available, while pre-
serving the existing interface to these services.

e Software Installation
and Version Control: Presently, software installa-
tion is mostly done manually by the system man-
ager on a per-machine basis. We will show how
group communication techniques can exploit the
multicast and broadcast capabilities of local area
networks to speed up the installation process and
to minimize latency and network load during the
installation process.

o Simultaneous Erecution: It is sometimes neces-
sary to invoke the same management command
on several machines. For example, if an electricity
shutdown time is expected, it might be advisable
to shut down the whole system. Consequently, it
is beneficial to have a method to invoke the shut-
down command from one control station. We will
show how such a centralized management tool can
be easily constructed within our architecture.

The rest of this paper is organized as follows: the
next section briefly describes existing work in the area.
Section 3 describes Transis, our group communication
toolkit. Section 4 presents the proposed architecture



for distributed system management. Sections 5-7 fo-
cus on simultaneous execution, software installation,
and table management respectively, and Section 8 of-
fers concluding remarks.

2 Related Work

In this section we briefly survey some existing solu-
tions for distributed system management. In partic-
ular, we consider Network Information Service (NIS)
as a configuration management framework and Dis-
tributed SMIT as a tool for concurrent execution of
system administration tasks in a heterogeneous en-
vironment. In addition, Tivoli Management Environ-
ment (TME) is discussed as an example of a leading in-
tegrated solution for distributed system management.

Network Information Service.

The Network Information Service (NIS) [10] is sup-
plied as a part of the operating system by all major
UNIX vendors. In NIS, a collection of network tables
(maps) constituting a configuration database, can op-
tionally be replicated among a group of servers. Up-
dates to the configuration database are always made
at the distinguished server, termed master, and later
may be propagated to the other servers, called slaves
(if such exist). In this architecture, the master cen-
tralizes the configuration management, and the slaves
are for higher availability and better performance.

While this architecture has proved to be successful,
current implementations of NIS lack built-in facilities
for guaranteeing consistency of replicas in the presence
of network partitions and server crashes.

In particular, propagation of updates is not done
automatically on a natural, per-update basis, but is
relayed over the system administrator to be performed
periodically. This may lead to undesirable temporal
inconsistencies even when the system is stable. After
each update, the corresponding table is completely re-
built, and the whole table is sent over the network.
Since TCP/IP is used, the number of slaves which can
be reasonably employed is limited. Slaves are not al-
lowed to propagate updates to other slaves. Thus, the
system cannot reach a consistent state if the network
partitions and the master is not present in a partition.
If the master crashes, NIS cannot continue to operate
without a complete reconfiguration.

In Section 7 we show how NIS implementation can
be substantially improved while preserving all of its
appealing features.

Distributed SMIT

Distributed SMIT[5] (DSMIT) presents an integrated
tool for heterogeneous system management. DSMIT
consists of clients which emit management commands
to servers in a unified platform-independent syntac-
tic form. The servers translate the commands into a
platform-specific form and perform them in parallel.
DSMIT utilizes a reliability layer built on top of
UDP 2. This layer makes extensive use of end-to-end

2TCP could not be used as a transport layer because it limits

acknowledgments in order to cope with omission faults
not handled by UDP. To monitor the status of each
participating server, DSMIT clients retain the last ac-
knowledged transmission. In contrast to this, our so-
lution monitors the status of the whole group of man-
agement servers. The need to care about each par-
ticular target arises only upon a membership change,
reported by the group communication layer.

The primary reason for DSMIT not to use group
communication toolkits (such as Transis) was that ef-
ficient group communication solutions were restricted
to LANs at the time of DSMIT’s development. Re-
cent work ([1, 3, 8]) demonstrates that the group com-
munication paradigm can be effectively extended to
WAN environment. As group communication tech-
nology over WAN matures, the reliability layer imple-
mented in DSMIT will become less-effective.

Sections 5, 6 show how a group communication
transport layer can be utilized for building effective
and reliable solutions for problems DSMIT was de-
signed to tackle.

Tivoli Management Environment

The Tivoli Management Environment [12] (TME) is
probably the most comprehensive integrated solution
for distributed system management existing today.
We focus on two components of TME: Tivoli/Admin
which deals with system configuration management,
and Tivoli/Courier which addresses software distribu-
tion.

Both Tivoli/Admin and Tivoli/Courier use a com-
munication toolkit, named MDist (multiplexed distri-
bution) [11]. MDist is designed to distribute a large
amount of data to a predefined set of target machines
using point-to-point communication. These targets
can be either end-receivers or repeaters, which can
in turn become distributors. All participants are or-
ganized into a tree which 1s constructed in order to
speed-up data distribution and to improve scalability.

Tivoli/Admin allows replication of certain configu-
ration data in order to increase availability and per-
formance. Consistency among the different copies is
maintained using the two phase commit protocol [6].
Two phase commit performs end-to-end acknowledg-
ment between all of the replicas for each update.
Therefore, it is resource consuming and achieves lim-
ited performance which deteriorates linearly as the
number of replicas increases.

While the concepts developed by Tivoli certainly
constitute an integrated and comprehensive dis-
tributed system management solution, its infrastruc-
ture can be improved. Thanks to the open design of
TME, our solutions can be integrated into it and co-
exist with other approaches.

3 The Transis System

Transis [3] is a group communication sub-system
developed at the Hebrew University of Jerusalem.
Transis supports the process group paradigm in which

the number of simultaneously opened connections and, hence,
limits system scalability.



16 Pentiuns

2500

2000 T

1500 +

1000 +

Messages/ Second

500 T

<~

2 o 9 9 9o 9o
S & & &8 o o
4 8 ® ¥ B ©

Message Size (Bytes)

Wilization

o o
S o
© &

1000
1100
1200
1300
1400

Figure 1: Throughput as a function of message size.

a process can join groups and multicast messages to
groups. Using Transis, messages can be addressed
to the entire process group by specifying the group
name (a character string selected by the user). The
group membership changes when a new process joins
or leaves the group, a processor containing processes
belonging to the group crashes, or a network partition
or re-merge occurs. Processes belonging to the group
receive configuration change notification when such an
event occurs.

Transis incorporates sophisticated algorithms for
membership and reliable ordered delivery of messages
that tolerate message omission, processor crashes
and recoveries, and network partitions and remerges.
High performance is achieved by utilizing non-reliable
broadcast or multicast where possible (such as on lo-
cal area networks). Transis performance can be seen
in Figure 1.

Transis application programming interface (API)
provides a connection oriented service that, in princi-
ple, extends a point-to-point service such as TCP/IP
to a reliable multicast service. The API contains en-
tries that allow a process to connect to Transis, to join
and leave process groups, to multicast messages to pro-
cess groups, to receive messages and to disconnect.

Transis is implemented as a daemon. The Tran-
sis daemon handles the physical multicast communi-
cation. It keeps track of the processes residing in its
computer which participate in group communication,
and also keeps track of the computer’s membership
(i.e. connectivity). The benefit of this structure are
significant. The main advantages in our context are:

e Message ordering and reliability are maintained
at the level of the daemons and not on a per
group basis. Therefore, the number of groups in
the system has almost no influence on system per-
formance.

e Flow control is maintained at the level of the dae-
mons rather than at the level of the individual
process group. This leads to better overall per-
formance.

e Implementing an open group semantics is easy

(i.e. processes that are not members of a group
can multicast to that group).

A process is linked with a library that connects it
to the Transis daemon. When the process connects to
Transis, an inter-process communication handle (simi-
lar to a socket handle) is created. A process can main-
tain multiple connections to Transis. A process may
voluntarily join specific process groups on a specific
connection. A message which is received can be a reg-
ular message sent by a process, or a membership no-
tification created by Transis regarding a membership
change of one of the groups to which this process be-
longs. Transis service semantics is described in [2, 9].

Transis 1s operational for almost three years now. It
is used by students of the Distributed Systems course
at The Hebrew University and by the members of The
High Availability Lab. Several projects were imple-
mented on top of Transis. Among them were highly
available mail system, two types of replication servers
and several graphical demonstration programs.

Ongoing work on the Transis project focuses,
among other things, on security and authentication of
users which is important for useful distributed system
management tools.

4 The Architecture

The architecture 1s composed of two layers as de-
picted in Figure 2. The bottom layer is Transis, our
group communication toolkit, which provides reliable
multicast and membership services. The top layer is
composed of a management server and a monitor. Al-
though we use Transis as our group communication
layers, other existing toolkits such as Totem [4], Ho-
rus [13] or Newtop [7] could have been used.

The management server provides two classes of ser-
vices: long-term services and short-term ones. Long-
term services provide consistent semantics across par-
titions and over time. They are used for replication of
network tables (maps) such as the password database,
which are maintained on a secondary storage. These
services implement an efficient replica control protocol
that applies changes on a per-update basis.

Short-term services are reliable as long as the net-
work is not partitioned and the management server



Ext er nal

Appl i cation

Managenment Server

\ Long Term | Short Ter \

\ Repr esent at i on
\ Convert er

L Transi s API

(-

Ext er nal
Appl i cati on

Management Server

Long Term | Short Ter [ Moni t or \
Repr esent ati on Management
Converter Server API

L Transi s API k Transis APIJ

Figure 2: Two levels architecture.

does not crash. In case of a network partition or a
server crash, the monitor and the management servers
receive notification from Transis. The application may
be informed and may take whatever steps necessary.
Short-term services include simultaneous task execu-
tion and software installation.

The monitor provides a user interface to the ser-
vices of the management server. The monitor is a
process which may run on any of the nodes that run
Transis. Several monitors may run simultaneously in
the network.

The management server runs as a daemon on each
of the participating nodes. It is an event driven pro-
gram. Events can be generated by the monitor, an-
other server or Transis.

Each server maintains a vector of conteaxts, with
one entry for each monitor it is currently interacting
with. Fach entry contains (among other things) the
current working directory of the server as set by the
corresponding monitor.

The long-term services are a non-intervening ex-
tension of the current standard Unix NIS. Since the
hosts NIS map repositories retain their original for-
mat, applications (e.g. gethostbyname) that use RPC
to retrieve information from them are not changed,
The service quality 1s improved because the replication
scheme implemented by the management server guar-
antees consistency and is much more efficient com-
pared to the ad-hoc solution provided by NIS.

The management server API contains the following
entries:

e Status. Return the status of the server and its
host machine.

e Chdir. Change the server’s working directory
which corresponds to the requesting monitor.

e Simex. Execute a command simultaneously
(more or less) on a number of specified hosts.

The command is executed by each of the rele-
vant servers relatively to the working directory
that corresponds to the initiating monitor.

e Siminst. Install a software package on a num-
ber of specified hosts. The installation is per-
formed relatively to the working directory that
corresponds to the initiating monitor.

e Update-map. Update map while preserving con-
sistency between replicas.

e Query-map. Retrieve information from a map.
e Exit. Terminate the management server process.

In practice, sites may be heterogeneous both in
terms of software (e.g. operating system) and hard-
ware. We make use of a generic platform-independent
representation for management commands and for the
reports of their execution. This representation is the
only format used for communication between the pro-
tocol entities. The Representation Converter (see Fig-
ure 2) is responsible for converting this generic repre-
sentation into a platform-specific form. This archi-
tecture enables the support of new platforms with a
relative ease.

A prototype of the presented architecture was im-
plemented on top of Transis and was tested in a clus-
ter of Unix workstations. The code, developed in the
C programming language, spans approximately 6500
lines. The table management protocol (the more so-
phisticated part) constitutes about half of the code.

5 Simultaneous Execution

The system manager may frequently need to in-
voke an identical management command on several
machines. Potentially, the machines may be of differ-
ent types. The activation of a particular daemon or
script on several machines, or the shutdown operation



Initially:

CONNECT to Transis;

JOIN private group;

JOIN group Cluster;
while(true) {

m = RECEIVE();

switch(m.type)

case command from a user:

Initially:
CONNECT to Transis;
JOIN private group;
JOIN group Cluster;
while(true) {
m = RECEIVE();
switch(m.type)
case Chdir(dir) from the monitor M:

NR = M;
MULTICAST(command, Cluster);
while(NR # 0)
m = RECEIVE();
switch(m.type)
case view change message:
NR=NR\ M\ mM);
M = m.M,;
case result of execution from server:
NR = NR\ server;
return the result;
case view change message:
M = m.M,;
}

command can be one of the following:
Chdir, Status, Simex or Exit

(a) The Monitor

case Status from the monitor M:

case Stmex(command) from the monitor M:

case Euxit:

(b) The Management Server

contexts[M].working_dir = dir;
send ACK to M’s private group;

get status of my machine;
convert status to a system-independent form;
send status to M’s private group;

convert command to a system-specific form;
chdir(contexts[M].working_dir);

result = execute(command);

convert result to a system-independent form;
send result to M’s private group;

terminate my process;

Figure 3: The Simultaneous Execution Protocol

of several machines are good examples. Another ex-
ample is the simultaneous monitoring of CPU load,
memory usage and other relevant system parameters
on all or part of the machines in a cluster.

Figure 3(a) and Figure 3(b) present the pseudo-
code of the relevant parts of the management server
and the monitor respectively. The management server
maintains two sets: M and NR. M is the most re-
cent membership of the group Cluster as reported
by Transis. N R is the set of the currently connected
management servers which have not yet report the
outcome of a command execution to the monitor.

It is easy to see how other tasks are integrated with
the simultaneous execution task to form our proposed
architecture.

6 Software Installation

Software installation and version upgrade consti-
tute one of the most time-consuming system manage-
ment tasks. In large heterogeneous sites which com-
prise tens or even hundreds of machines, there are of-
ten subgroups of computers with identical (or similar)
architecture running copies of the same application
software and operating system. Presently, 1t is a com-
mon practice to perform installation or upgrade by re-
peating the same procedure at all locations in the sub-
group separately. Installation or upgrade procedures
include the transfer of the packages, the execution of
installation utilities and the update of relevant config-
uration files. Traditionally, all the above mentioned
operations are performed using the TCP/IP protocol.
This approach is wasteful in terms of both bandwidth

and time, due to the point-to-point nature of TCP/IP.
In addition, repeating the same procedure many times
is prone to human errors resulting in inconsistent in-
stallations.

In contrast, we use Transis to disseminate the rel-
evant files to the members of the subgroup efficiently.
We use the technique presented in Section 5 to exe-
cute the installation commands simultaneously at all
the involved locations. Each command 1s submitted
only once, reducing the possibility of human errors.
Using the process group paradigm, the system admin-
istrator can dynamically organize hosts with the same
installation requirements into a single multicast group.

Our installation protocol proceeds in the following
steps. First, the monitor multicasts a message adver-
tising the installation of a package P, the set R, of its
installation requirements (e.g. disk space, available
memory, operating system version etc.), the installa-
tion multicast group G, and the target list 7,. Upon
reception of this message, the management server joins
Gy, if the system which it controls conforms to R,
and belongs to 7,,. When all the management servers
from T, have either joined G, or reported that they
will not participate in the installation, the monitor be-
gins multicasting the files comprising the package P to
the group (. Finally, the status of the installation at
every management server is reported to the monitor.
The Transis membership service helps detecting hosts
which may not have completed the installation due to
a network partition or host crash.

The same protocol may later be repeated for a more
restricted multicast group G/ C G. The monitor ques-



tions the members of G’ about the missing files prior
to the redistribution, and only the needed files are
multicast to G’ in order to save bandwidth and time.

7 Table Management

This section presents the protocol for efficient and
consistent management of the replicated network ta-
bles, each of which represents a service. Servers which
share replicas of the same table form the same ser-
vice group (SG). A service group consists of an ad-
ministratively assigned primary server and a number
of secondary ones. For the sake of simplicity we will
consider a single SG in the following discussion.

The primary server enforces a single total order on
all the update messages inside the SG. This is achieved
by forwarding each new request for update from a
client to the SG’s primary. The primary creates an
update message from the request, assigns it a unique
sequence number, and multicasts this update message
to the SG. Each secondary server applies the update
messages to the SG’s table in the order consistent with
the primary’s one. This guarantees that all the servers
in the same network component remain in a consistent
state. If the network partitions, at most one compo-
nent (the one that includes the primary) can perform
new updates. Therefore, conflicting updates are never
possible.

When a membership change (network partition or
merge, or server crash) is reported by the group com-
munication layer, the connected servers exchange in-
formation and converge to the most updated consis-
tent state known to any of them. Note that this hap-
pens even if the primary is not a member of the cur-
rent membership. The information exchange is done
in two stages. In the first stage, the servers exchange
state messages containing a vector, representing their
knowledge about the last update known to each server.
In the second stage, the most updated server multi-
casts updates that are missed by any member of the
currently connected group. 3

Each server logs all the update messages from the
primary on a non-volatile storage. This log is used
for restoring of a server’s state when a server recovers
from a crash. A server discards an update from the
log when it learns that all the other servers have ap-
plied this update to their table (and hence, no server
will need to recover that update in the future).

Data Structures

Each management server S € SG maintains the
following data structures:

e my_id: a unique identifier of S.
e p_id: the identifier of SG’s primary server.
o MQ: alist of the updates received by S. MQ is

retained on a non-volatile storage.

3If the primary server is present in a component, it will be
the one performing the retransmission. Otherwise, one of the
most updated secondary servers is deterministically chosen.

e Vec: a vector of sequence numbers containing one
entry for each of the SG’s members. If Vec[i] = n
then S knows that server i has all the updates
up to n. Initially, all Vec’s entries are 0. Vec is
retained on a non-volatile storage.

o SGT: the Transis group name of SG.

o Memb: the current membership of SGT as re-
ported by Transis. This is a structure which
contains a unique identifier of the membership
(memb_id) and a set of currently connected
servers (set).

o ARU: * a sequence number such that S knows
that all the updates with sequence numbers no
greater than ARU were received and applied to
the table by all the members of SGT. Note that
ARU = minlgigved(Vec[i]).

e min_sn, mar_sn: the minimal and maximal se-
quence numbers of update messages that need to
be retransmitted upon a membership change.

o Memb_counter: variable that counts the State
messages during the information exchange upon
a membership change.

Message Types

e Req: a new request to perform an update to the
table. This request is sent by a client to one of
the servers. The update operation is stored in the
action field of this message.

e Upd: an update message multicast by SG’s pri-
mary to SGT'. This message carries a unique se-
quence number in the sn field in addition to the
fields of a Req message.

e M: a membership change notification delivered
by Transis. This message contains the same two
fields as the Memb structure.

e Stale: a state message which carries the Vec
and the identifier of the sender. This message
is stamped with the membership identifier of the
membership it was sent in.

e StateP: similar to the state message which is used
for garbage collection when the membership con-
tains all the members of SG.

e Qry: a query message from a client.

In addition, a type field is included with each message.

The Pseudo Code

The following subsections present the pseudo-code
of the table management protocol.

4+ ARU stands for “all-received-up-to”



Request from a client

The server which receives an update request from a
client, forwards 1t to the primary server. The pri-
mary server creates an update message from this re-
quest, applies it to the SG’s table and multicasts 1t to
the group. Procedure HANDLE-REQUEST details these
steps.

HANDLE-REQUEST (m)

if (my_id == p_id) then
Vec[my_id] = Vee[my_id] + 1;
m.sn = Vee[my_id];
m.type = Upd,
append m to MQ;
sync M@ and Vec to disk;
apply m.action to SG’s table;
MULTICAST(m, SGT);

else if (p_id € Memb) then
SEND(m, p_id);

Update from a server

A secondary server which receives an update message
in the correct order, applies the update to the table
and changes its data structures accordingly. Proce-
dure HANDLE-UPDATE details these steps.

HANDLE-UPDATE (m)

if (my_id # p_id and
m.sn == Vec[my-id] + 1) then
Vec[my_id] = m.sn;
append m to MQ;
sync M@ and Vee to disk;
apply m.action to SG’s table;
else
discard m;

Membership change notification from Transis

Upon a membership change, the connected servers ex-
change information in order to converge to the most
updated state. Procedure HANDLE-MEMBERSHIP pre-
pares the data structures for this recovery process and
multicasts a State message. Note that the State mes-
sage contains Veec, representing the local knowledge
regarding other servers’ states.

HANDLE-MEMBERSHIP ()

Memb.set = m.set;
Memb.memb_id = m.memb_id,
min_sn = max_sn = Vec[my_id];
Memb_counter = | Memb |;
create a State message m’;
MULTICAST(m', SGT);

State message from a server

When a valid State message 1s received, the server
updates its knowledge regarding other servers’ knowl-
edge. After all the States messages have been re-
ceived, the needed update messages are retransmitted
by the most updated server. If the primary server is
a member of the current membership, 1t is selected as
the most updated server, otherwise the most updated
secondary server with the smallest identifier is selected
using the procedure MOST-UPDATED-SERVER.
Procedure HANDLE-STATE details these steps.

HANDLE-STATE(m)

if (m.memb_id # Memb.memb_id) then
return;

Vee = max(Vee,m.Vee);

if (m.Vec[m.sender] < min_sn) then
min_sn = m.Vec|m.sender];

if (m.Vee[m.sender] > max_sn) then
max_sn = m.Vec[m.sn];

Memb_counter = Memb_counter — 1;

if (Memb_counter == 0) then
if ( MOST-UPDATED-SERVER() ) then

for each m’ € MQ s.t. m'.sn > min_sn do
MULTICAST(m', SGT);

The MOST-UPDATED-SERVER procedure presented
below returns true if the invoking server is the most-
updated-server with the minimal identifier, and false
otherwise.

boolean MOST-UPDATED-SERVER()

for each i € Memb.set and i < my_id do
if (Vec[i] == max_sn) then
return false;
if (Vec[my_id] == maz_sn) then
return i{rue;

1

Garbage collection

In order to discard updates which are no longer
needed, procedure COLLECT-GARBAGE is called upon
the reception of either a State message, or a StateP
message. The StateP message is sent periodically
if the membership contains all the members of the
SG. The reason for having the StateP message, is to
avoid maintaining large amounts of updates that are
no longer needed because each member of the SG has
already applied them.

COLLECT-GARBAGE(m)

Vee = max(Vee,m.Vee);
new ARU = miny<i<|ve.|(Veeli]);
if (new_ARU > ARU) then
for each m' € MQ s.t. m' < new_ARU do

remove m’ from MQ;

ARU = new_ARU;



sync M@ and Vec to disk;

Events handling

The following is the main loop of the table manage-
ment part of the management server.

Initially:
CONNECT to Transis;
JOIN group SGT;,
initialize all the Vec entries to 0;
bring in M@ and Vee (if present) from disk;
ARU = miny<i<|vee (Veeli]);
while(true) {
m = RECEIVE();
switch(m.type)
case Req:
HANDLE-REQUEST(m);
case Upd:
HANDLE-UPDATE(m);
case Qry:
retrieve an answer from the local table;
send the answer to the client;
case M:
HANDLE-MEMBERSHIP(m);
case State:
HANDLE-STATE(m);
COLLECT-GARBAGE(m);
case StateP:
COLLECT-GARBAGE(m);

1

8 Conclusion

We have presented an architecture that utilizes
group communication to provide efficient and reliable
distributed system management. The common man-
agement tasks of simultaneous execution, software in-
stallation and table management were addressed. The
resulting services are convenient to use, consistent in
presence of failures, and complementary to the exist-
ing standard mechanisms.

References
[1] Y. Amir, 1995. The Spread toolkit, Private Com-
munication.

[2] Y. Amir. Replication Using Group Communica-
tion Quver a Partiotioned Network. PhD thesis,
Institute of Computer Science, The Hebrew Uni-
versity of Jerusalem, Israel, 1995.

[3] Y. Amir, D. Dolev, S. Kramer, and D. Malki.
Transis: A communication sub-system for high
availability. In Proceedings of the 22nd Annual In-
ternational Symposium on Fault-Tolerant Com-
puting, pages 76-84, July 1992. The full version
of this paper is available as TR CS91-13, Dept. of
Comp. Sci., the Hebrew University of Jerusalem.

[4] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A.
Agarwal, and P. Ciarfella. The Totem single-
ring ordering and membership protocol. 13(4),
November 1995.

[65] N. Amit, D. Ginat, S. Kipnis, and J. Mihaeli.
Distributed SMIT: System management tool for
large Unix environments. Research report, IBM
Israel Science and Technology, 1995. In prepara-
tion.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database

Systems, chapter 7. Addison Wesley, 1987.

[7] P. Ezhilchelvan, R. Macedo, and S. Shrivastava.
Newtop: A fault-tolerant group communication
protocol. In Proceedings of the 15th International

Conference on Distributed Computing Systems,
May 1995.

[8] N. Huleihel. Efficient ordering of messages in
wide area networks. Master’s thesis, Institute
of Computer Science, The Hebrew University of
Jerusalem, Israel, 1996.

[9] L. E. Moser, Y. Amir, P. Melliar-Smith, and D. A.
Agarwal. Extended virtual synchrony. In Proceed-
wngs of the 14th International Conference on Dis-

tributed Computing Systems, pages 5665, June
1994.

[10] H. Stern. Managing NFS and NIS, chapter 2, 3,
4. O’Reilly & Associates Inc, first edition, June
1991.

[11] Tivoli Systems Inc.  Multiplezed Distribution
(MDist), November 1994. Available via anony-
mous ftp from ftp.tivoli.com /pub/info.

[12] Tivoli Systems Inc. TME 2.0: Technology Con-
cepts and Facilities, 1994. Technology white pa-
per discussing Tivoli 2.0 components and ca-
pabilities. Available via anonymous ftp from
ftp.tivoli.com /pub/info.

[13] R. van Renesse, K. P. Birman, R. Friedman,
M. Hayden, and D. Karr. A framework for pro-
tocol composition in Horus. In Proceedings of
the ACM symposium on Principles of Distributed
Computing, August 1995.



