Naming and Addressing of Objects without Unique Identifiers

Nobuhisa Fujinami

Yasuhiko Yokote

Sony Computer Science Laboratory Inc.
Takanawa Muse Building
3-14-13 Higashi-gotanda, Shinagawa-ku, Tokyo, 141 JAPAN

Abstract

This paper proposes the hierarchical naming scheme,
which is a way of naming and addressing suitable for
large-scale distributed systems. Flrst, assumptions of
the systems are provided, and features required for nam-
ing in the systems are discussed. Then, the methods
for giving location-independent IDs and addresses rep-
resenting objects’ location are proposed. QOur scheme
constructs global IDs and addresses from locally unique
ones. They have relative representations, which are
translated if they are transmitted among naming con-
texts. This ensures uniqueness of IDs while efficiency
and availability are preserved. Next the paper intro-
duces methods which make our scheme suitable for mo-
bile naming contexts and dynamic reconfiguration of
networks and systems. Implementation issues of our
method and their solutions are also presented.

1 Introduction

For sharing objects in computer systems, naming
them is one of the most convenient ways. In object-
oriented systems, object IDs which are unique within
systems are commonly used for sharing. Distributed
systems generally have IDs that include the addresses
of the hosts where the objects are instantiated and that
ensure the uniqueness within systems. However, recent
distributed systems have become much larger in scale,
and quite a large size is required for unique IDs. For in-
stance, the Amoeba distributed system [5] uses 72 bits
within 128-bit capabilities to specify objects. Further,
the possibility of running short of IDs still remains,
considering the evolution of computer systems.

Large-scale distributed systems also have problems
of mobile hosts, object migration for load balancing
and communication efficiency, and reconfiguration of
networks. An IP-address, for example, varies if the
host moves to another network, and the user must be
conscious of the host’s location for communication. It
is preferable that the locations of objects or hosts have
nothing to do with specifying them, i.e, location trans-
parency.

This paper proposes the hierarchical naming
scheme, which can give short representations to
logically-nearby objects’ IDs and which has no possibil-
ity of running short of IDs even if the system evolves.
Its addressing scheme is an extension of the propagat-
ing cache method in the virtual network [8] and realizes
object/host/gateway migration transparency.

The virtual network considers migration-transpar-
ent communication between mobile hosts. This pa-
per applies the propagating cache method to objects,
and hierarchical application enables host migration and
network configuration transparency. The virtual net-
work assumes that host IDs are unique within the net-
work system. The hierarchical naming scheme does not
assume unique host IDs and constructs them from lo-
cally unique ones. It translates the representations of
IDs and addresses each time they are transmitted. This
ensures the uniqueness of IDs in every naming context
while short representations of IDs and addresses are
given to logically-nearby objects.

Section 2 gives our assumptions for large-scale dis-
tributed systems and the goals of this paper. Section 3
briefly describes our naming scheme. Section 4 explains
the method of constructing object IDs and the virtual
concept of interpretation. Section 5 discusses object
migration transparency, and Section 6 discusses host
migration and network reconfiguration transparency.
Section 7 provides the method of connecting systems
for expansion. Implementation problems and their so-
lutions are in Section 8. Section 9 overviews related
research, and Section 10 concludes the paper.

2 Assumptions and goals

We assume that the distributed systems discussed
in this paper have the following properties:
Ultra-large-scale: The scale of the system is so large

that broadcast is impossible, it is hard to assign
unique fixed size IDs to each host, and objects and
hosts migrate independently of each other.
Locality: Communication with or migration to dis-
tant objects or hosts, e.g. those in different local

networks, are rare compared to those to nearby
ones.

Hierarchy: The system has local naming contexts
with hierarchical structure.

The last assumption is not a restriction since most

practical systems are hierarchically managed. For ex-

ample, wide area networks, local area networks, hosts,
operating systems and processes can be used as the lo-
cal naming contexts. This is not necessarily related to
the physical structure! or social structure?. Represent-
ing the hierarchy as a tree structure, we assume that ev-
ery pair of objects connected by parent-child branches
can directly communicate with each other. The system
may have other connections, as most networks do.

We design the global names with the following fea-
tures for the distributed systems:

Uniqueness: Each object has just one name, and each
name represents just one object. The name never
changes until the object is deleted.

Location transparency: The name is independent
of object/host migration and network/system re-
configuration. Objects’ locations are separately
represented.

Scalability: The naming scheme allows easy addition
of hosts and easy reconfiguration of the system.

Efficiency: The overhead of using global names is
small.

Availability and fault tolerance: Distant faults
have little influence on the availability of opera-
tions on names.

3 Overview

Each naming context gives local IDs (LIDs) to the
objects instantiated in it and local addresses (LADs)
to the objects in it. LIDs and LADs are unique within
the naming context. At instantiation time, the LID and
the LAD of one object are equal. Since the manager
of the naming context is also an object, it has an LAD
that is unique within its parent naming context. There
is only one root naming context, which is the root
of the naming context hierarchy, in one system. The
root can change as the system expands.

Each object in the system has the notion of the orig-
inal naming context, which the object was instan-
tiated in, and the current naming context, which
the object is currently in. The object ID (OID) of the
object represents its original naming context and the
LID in it, and the object address (OAD) of the object
represents its current naming context and the LAD in

IFor instance, all hosts in one local network may share the
same naming context. In this case, uniqueness is ensured by a
conventional technique of object IDs including host IDs.

2E.g. companies and countries.

it. OIDs and OADs have relative representation seen
from the object that memorizes the OIDs or OADs.
The interpretation of OIDs and OADs is the meaning
of them which is unique within the system in the con-
ventional sense. The interpretation of the OID of one
object never changes until it is deleted. If a message or
an object is transmitted, the OIDs and OADs in them
are translated to keep the interpretation of the OIDs
and OADs invariant.

The unit of communication is a message. The re-
ceiver of a message is specified by its OID. The man-
agers of the naming contexts take care of the relation-
ship between the OID and the OAD. Users do not have
to know about OADs.

Each object remembers its OID. It is “0:”, which
means “myself”, at instantiation time, and varies as the
object migrates. The naming context manager, which
is also an object, has more information: the reverse
OID of the manager seen from the original place, all
pairs of LIDs and OADs of objects instantiated in it,
and all pairs of OIDs and LADs of objects currently in
the naming context. Further, the manager may cache
the pairs of OIDs and OADs of the senders of the mes-
sages going through the naming context. If the nam-
ing context has a connection other than parent-child
ones, the destination OID seen from the source and
the source OID seen from the destination are needed.

4 Object IDs and their interpretation

An OID is for identifying an object. The format of
an OID is
m : 11.12. T ln

where m, n are non-negative integers® and each [; is an
LID. The interpretation of an OID is defined as follows:
Definition 1 Interpretation of OID

The interpretation of OID m : ly.ls.--- .1, in naming
context S is

Li.Ly.-+-.Ly_p.lydy. - 1y,

where Ly.Ly.-++ . Ly is the sequence of LIDs from the
current root naming context to S. O

Examples: An OID seen from a naming context
manager which represents the object instantiated in it
1s 0 : I, where [is the LID of the object. Without object
migration, the OID seen from an object which repre-
sents the object in the same naming context is 1 : [,
and the OID of itself is 0:. Notice that the OID seen
from a naming context manager and the OID seen from
the object in it are different.

3m can be seen as the number of “../”s of a relative pathname.

3:2.21.52

Figure 1: Hierarchical Naming Contexts

Circles represent objects or naming contexts. The
numbers represent LIDs.

Figure 1 shows an example of local naming contexts
with hierarchical structure. LIDs are all different from
each other for simplicity. The connections other than
tree branches are omitted. The OID of object B from
Ais 1: 32, and that of D is 3: 2.21.52. The OIDs of B
and D from C are 2 : 11.32 and 3 : 2.21.52 respectively.
The interpretation of B’s OID is 1.11.32 in both A and
C, and D’s is 2.21.52.

When OIDs are transmitted to another naming con-
text, e.g. the OIDs of the sender, the receiver and the
arguments of a message, they are translated to keep
their interpretation invariant. If, in Figure 1, a mes-
sage is sent from object C to D, the receiver’s OID
3 :2.21.52 is translated into 2 : 2.21.52 when the nam-
ing context manager with LID=12 receives the mes-
sage. The translation follows as 1 : 2.21.52, 0: 2.21.52,
0 :21.52, 0 : 52, and 0:. When it arrives at D, the
receiver’s OID is 0:, the OID for itself. The following
is the rule for translation of OIDs. Let the transmitted
OID be m : ly.ls.+ -+ .1,,.

Rule 1 OID translation

If transmitted to parent naming context: If m is
positive, decrement m by one. If m is zero, insert
the LID of the naming context manager or the
object after «:”%,

If transmitted to child naming context or child

4This translation is performed in the parent naming context.
Memorizing the LID of the naming context manager or the object
is not necessary.

object with LID=I: If m is positive, increment
m by one. If m is zero, compare [with I;. If equal,
delete it. Otherwise, increment m by one.

If transmitted to a naming context that is not
listed: Perform above translations one by one as
going through the branches of the naming con-
text tree until reaching the destination naming
context. The collected expression as follows. Let
the OID of the destination naming context man-
ager be M : Lyj.Ly.---.Ly and the OID of the
source naming context seen from the destination
be N : Li.L5.---.Lh,.

If m > M: Replace m with m — M + N.

If m < M: Replace m with N and
Ly.Ly. - LYy, _,,. after “7.

If m = M: Let k be the maximum number that
satisfies I = Lq,---,ly = Ly. If Iy # Ly, let
k = 0. Delete k LIDs after “:” and replace m
with N — k. .

This rule does not use the interpretation of OIDs. Es-
pecially, if the communication is done only through
parent-child connection, naming context managers
have only to know the children’s LIDs, not global in-
formation such as the LIDs of other naming context
managers.

insert

5 Object addresses and object migra-
tion

An OAD is a hint of the current location of the
object’. An OAD consists of three parts, a body, a
timestamp and an uncertainty value. The timestamp
is for indicating the time when the location is correct.
The uncertainty value denotes the number of LIDs that
are inferred from the OID. The value is a non-negative
integer or co. The body of an OAD has the same for-
mat of OIDs, except that the LIDs are replaced by the
LADs. The interpretation of an OAD is defined in the
same way as that of an OID. The translation rule for
transmission is also the same. Without migration, the
OID and the body of the OAD have the same value.

A message includes the sender’s OID and OAD. The
timestamp of the OAD is the time of message construc-
tion, and the uncertainty value of it is 0. A message
also includes the receiver’s OID and OAD. The body of
the OAD is the same as the OID, and the uncertainty
value of it is oo, if the current location is unknown.

Object migration is performed by the following pro-
cedure.
Procedure 1 Object migration
Begin migration: The migrating object sends a dis-

connection message to its original naming context

5The optimum path to the indicated location is the routing
problem and not discussed in this paper.

manager. The managers through which the mes-
sage goes invalidate the pair LID-LAD, LID-OAD,
OID-LAD, or OID-OAD of the object.

Do migration: The object moves. The OIDs belong-
ing to the object are translated including its own
OID.

End migration: The manager of the new current
naming context assigns an LAD to the object. The
manager keeps the pair of the object’s OID and
the LAD. Then the object sends the OID and the
new OAD to the manager of the original naming
context®. The manager updates the OAD and re-
turns acknowledgment. n

The assigned LAD is the same as the LID of the ob-

ject, if the new current naming context is the original

naming context. Otherwise, the LAD must be differ-
ent from the LIDs of all objects instantiated in the new
naming context. If the object does not receive the ac-
knowledgment, it repeats sending the OID and the new
OAD with a certain interval.

OID=0:

OID=3:1.11.32

Figure 2: Object Migration
Circles represent objects or naming contexts. The
numbers represent LADs.

Examples: In Figure 2, object B has migrated and
got 53 as an LAD from the naming context manager
with LID=LAD=21. B’s OID seen from B has been
translated from 0: into 3 : 1.11.32. B sends its OID

6This can be implemented as the manager of the current con-
text does.
7This is for network partitioning.

3:1.11.32 and OAD 0: to the manager of its original
naming context (3 : 1.11). This information is cached
by the naming contexts with % marks. The managers
of the current and original naming context, indicated
by O marks, always keep this information. As the OID
and the OAD are translated by rule 1, the pair in, for

example, the instantiated context is the pair of 0 : 32

and 2: 2.21.53.

In each naming context, the receiver’s OAD of a
message is rewritten according to its OID. This is done
when the OID and the OAD is in the form of the nam-
ing context, i.e., before or after the translation of rule
1 depending on the direction of the transmission.
Rule 2 Rewriting OAD of object A in naming context
S.

If A is in S or instantiated in S: Replace the OAD
with the correct OAD that S knows.

If A is not in S while OAD indicates that A
is in S: Return an error message®. If the pair of
the OID and the OAD is cached by the naming
context that the error message goes through, the
pair is invalidated.

If S caches the pair of A’s OID and OAD and the
timestamp of cache’s OAD is newer: Replace
the OAD with the cache’s OAD.

Otherwise: Do nothing. =

After rewriting, the message is transmitted according

to the address information. If a message is sent from

object A to B in Figure 2, both B’s OID and OAD are

1: 32 at message construction time. The current con-

text manager rewrites the OAD 0 : 32 as 2 : 2.21.53

which is the correct location. If a message is sent

from object E to B, the naming context manager with

LID=LAD=2 rewrites the OAD 1:1.11.32 as 0: 21.53

according to the cached information, and the message

arrives at object B without going through the original
naming context.

6 Mobile naming contexts and dynamic
reconfiguration of networks

This section discusses the cases of logical migration
of naming contexts and physical migration of hosts or
local networks. Here we assume each host or local net-
work corresponds to one naming context®. The objects
in the naming context migrate together in these cases.

It is not efficient to translate all the OIDs and OADs
in all the objects in the migrating naming context. We

8There is an alternative way to rewrite the body of the OAD
as the same value as the OID. We adopt the way of returning
an error because this also disposes the messages to non-existent
objects.

91f not, e.g. a host has only a part of a naming context, host
migration is treated as migration of all objects in the host.

do not touch the OIDs other than that of the naming

context manager. The manager translates the OIDs

and OADs of the messages to and from inside and out-
side of the naming context. The manager’s OID is
translated according to rule 1 in the same way as in

Section 5. Procedure 1 in Section 5 are updated as

follows:

Procedure 2 Migration of naming context S

Begin migration: The manager of S sends a dis-
connection message to its original naming context
manager. The managers through which the mes-
sage goes invalidate all the pairs LID-LAD, LID-
OAD, OID-LAD, or OID-OAD of S and its de-
scendants.

Do migration: § moves. The OIDs belonging to the
manager of S are translated including its own OID.

End migration: The manager of the new current
naming context assigns an LAD to S. The man-
ager keeps the pair of the object’s OID and the
LAD. Then S sends the OID, the new OAD, and
a virtual OID 0: to the manager of the original
naming context. The manager updates the OAD
and returns acknowledgment. It includes the cur-
rent value of the virtual OID 0: called the reverse
OID. It must be quoted not to be translated.

End migration 2: The manager of S sends a prompt
message to its descendants which came from out-
side of S to send their OIDs and the OADs to the
manager of their original naming context. 0

The last operation can be implemented as remember-

ing all the OIDs of the objects migrating from outside

of S, or as sending prompt messages to the child nam-
ing contexts and the objects which came from outside,
recursively. Since migration of a large naming context
is rare, the cost of prompt messages is low.

Rule 2 in Section 5 are updated as follows:

Rule 3 Rewriting OAD of object A in naming context

S.

If A is an object currently in S or its descen-
dant: That is, if A’s OID is m : l1.l5. -+ .1,, and
there exists 1 < k < m such that object B with
OID=m : l1.ls.- - .l isin S, then replace A’s OAD
with O : L.lj49.---.l,, where B’s LAD is L. Let the
timestamp be the current time and the uncertainty
value be 0.

If A is an object instantiated in S or its descen-
dant: That is, if A’s OID is 0 : I1.l5.---.l,, and
the object B with LID=/; is instantiated in S, then
replace A’s OAD with M : Ly.Ly.---.Ly.dy.--- .1,
where B’s OAD is M : Ly.Ls.---.Ly. Let the
timestamp be that of B’s OAD and the uncertainty
value be 0.

If neither A nor its ancestor is in S while OAD

indicates that A or its ancestor is in S: That
is, if A’s OAD is 0 : Ly.Ly.---.Lp, and there is
no object with LAD=L; in S, then return an error
message.

If A is an object or its descendant whose OID
and OAD are cached by S and if the times-
tamp of the cache’s OAD is newer: That is,
if A’s OID is m : l3.l5. - - .l,,, and there exists 1 <
k < n such that the pair of the OID m : I;.l.- - - I},
and the OAD M : Ly.Ly.---.Ly of object B is
cached and the timestamp is newer than that of
A’s OAD (if there are multiple ks, the one with the
smallest uncertainty value is used), then replace
A’s OAD with M : Ly.Ls. -+ .Ly.dgqq. - .1,. Let
the timestamp be that of B’s OAD and the uncer-
tainty value be n — k.

Otherwise: Do nothing.

Further, the following translation of OIDs and OADS

is performed in the migrating naming context to main-

tain the consistency between inside and outside of the
naming context.

Rule 4 Translation of OIDs and OADs in naming con-

text S.

Let S’s OID be M : Li.Ly.---
OID be N —1: Ly.Ly.--- . L),.
If transmitted to the parent naming context:

After rewriting the OAD according to rule 3,
Translation of OID: Let the OID be m
lydg - 0y
If m > N: Replace m with m — N 4+ M.
If m < N: Replace m with M and insert
Lyi.Ly.---.Lpyr—n. after 7.
If m = N: Let k£ be the maximum number
that satisfies &y = L{,---,ly = L}. If
Iy # L, let k = 0. Delete k LIDs after
“” and replace m with M — k.
Translation of OAD: Translate the OAD in the
same way as the OID only if the OAD is not
a descendant of S.
Transmitting the OID and the OAD to the parent
naming context, they are translated according to
rule 1 in Section 4.

.Ly and the reverse

If transmitted from the parent naming context:
Translation of OID: Let the OID be m
lidge el
If m > M: Replace m with m — M + N.
If m < M: Replace m with N and insert
Li.LY.--- . L)y, after 7.
If m = M: Let k be the maximum number
that satisfies Iy = Lq,---,ly = L. If
Iy # Ly, let k = 0. Delete k LIDs after
“” and replace m with N — k.

Translation of OAD: Translate the OAD in the
same way as the OID only if the OAD is not
a descendant of S.

After this translation, rewrite OADs according to

rule 3. O

Examples: In Figure 3, the naming context S with
LID=LAD=12 has migrated and got 23 as its LAD.
The OID and the OAD of the naming context are
cached in the same way as in Section 5. Marks * and
(O indicate caching. If a message is sent from object A
to F, the receiver’s OID and OAD are both 2: 12.42 in
the first place. Then the naming context manager with
LID=LAD=1 rewrites the OAD 0 : 12.42 as 1 : 2.23.42.
When arriving at S, the OID is 2 : 1.12.42 and the
OAD is 0 : 42. The OID is translated into 0 : 42 ac-

cording to rule 4, and the message is transmitted to F.
If a message is sent from object C to B, the receiver’s
OID is 2 : 11.32 as B’s OID from C is independent of
the migration of S. S translates the OID 1 : 11.32 into
2:1.11.32.

Figure 3: Migration of Naming Context

Circles represent objects or naming contexts. The
numbers represent LADs.

In the case of physical migration, there is a prob-
lem of constructing the OID of the migrated naming
context. It is not trivial because of the relative repre-
sentation of OIDs. In the case of logical object migra-
tion, the OID of the object is translated as the object
moves. Physical migration does not allow this method.
The destination cannot be determined at disconnection
time in most cases.

Considering the format of OIDs, it is enough for
OID construction if the number of steps to the com-

mon ancestor and the sequence of LIDs to the origi-
nal location are known. Thus the host that begins to
migrate gets some candidates of OIDs from the ances-
tors at disconnection time. They are used for the no-
tification of the OID and the OAD. For ensuring that
the acknowledgment is from the manager of the instan-
tiated naming context, an appropriate authentication
method, e.g. public key authentication, is used. If it is
successful, the OID is determined. Authenticating by
keys is similar to having global unique IDs, however,
the situation that needs authentication is limited and
one can use keys long enough for ignoring the chance of
incorrect construction of the OID. The chance is essen-
tially small as authentication is used with candidates

of OIDs.

7 Connecting system for expansion

This section describes the method for connecting two
systems that adopt the hierarchical naming scheme. If
the tree structure is preserved, connecting causes no
problems. Two types of connection methods are al-
lowed. The first is letting the root of one system be a
child of the naming context of the other system. The
second is making a new root naming context, which
becomes the parent of the two old roots. At connec-
tion time, the interpretations of OIDs and OADs are
changed at once. These correctly represent the original
locations and the hints of current locations. Translat-
ing existing OIDs and OADs is not necessary. Thus the
connection operation is local.

Figure 4: The Case of Causing a Problem when Con-
necting Systems

Circles represent objects or naming contexts.

It is possible to attempt connection of the same pair
of systems at different places if the systems are large
enough. Figure 4 shows an example. While one is con-
necting the left system and the right system by link
i, some other one tries to connect the systems by link

ii. Both of the connections destroy the uniqueness of

OIDs. This may happen if the connection is made by

the first method of letting the root of one system, say

A, be a child of the naming context of the other sys-

tem, say B. Assuming an appropriate authentication

method, the following procedure is used.

Procedure 3 Connection protocol

Confirming the root: Get the authentication of B’s
root, and compare it with that of A’s root. If differ-
ent, go to the next step. If equal, they must already
be connected with each other. Send a message to
B’s root and confirm that A’s root receives.

Lock: Lock A’s root and confirm that B’s root is not
locked. If locked, unlock it to avoid deadlocks, wait
for releasing the lock of B’s root and try the pro-
tocol again.

Connect: Assign A’s LID in the naming context of B
and connect A’s root to B.

Unlock: Release the lock of A’s root. 0

8 Implementation issues

The implementation of the hierarchical naming
scheme has issues of variable length OIDs and OADs
and the translation of OIDs and OADs when trans-
mitted between naming contexts. This may lead to
inefficient implementation because the naming context
manager has to seek messages for all the OIDs and the
OADs and to translate into, maybe different length,
new ones.

Variable Length OIDs and OADs OIDs and
OADs are used only when referring objects between
different address spaces. For referring objects in a pro-
gram, short and fixed length IDs (SIDs) are used. SID
is unique within the address space of the program.
When an object is instantiated in the address space,
only an SID is assigned. If it is known by the objects
outside the address space, e.g. by sending as a mes-
sage argument, an LID is also assigned and the OID is
constructed. If the program refers to an object outside
the address space, an SID is assigned for referring to it
in the program. The SID of an object is reused if there
are no references to it in the address space and the LID
is not assigned to it. The size of SIDs is enough if dif-
ferent SIDs can be assigned to the objects used in one
address space.

An SID is implemented as an index of an object ta-
ble. The table has the addresses of the objects if they
are in the same address space. For external objects
or objects with external references, the table has their
OIDs. Each table entry of an SID has at least one
of these. For communication, the program executes a
“send” kernel call with SIDs as their destinations and

arguments. In the kernel call, the SIDs are translated
into OIDs and sent to the receiver’s kernel. The ker-
nel translates the OIDs into SIDs for the receiver’s ad-
dresses space. If the sender and the receiver are in the
same address space, the translation is omitted. If they
are in the same host, a more efficient way of translation
can be used.

Translation of OIDs and OADs The OIDs in a
message are not used on the way to the receiver ex-
cept those of the sender and the receiver. It improves
the performance to translate the OIDs in message ar-
guments at the receiver side and not in each naming
context the message goes through. For the receiver
side translation, the path of the message is recorded.
The OIDs are translated as the third case of rule 1
in Section 4. This technique also solves the problem
of encryption because the encrypted arguments can be
decrypted and translated on the receiver side.

9 Related work

There is another method of giving global names
without global management, the Domain Port Model
[2] (DPM). It does not assume hierarchical structure. It
gives global names by specifying the sequences of ports
to the next domain. Thus the structure of naming con-
texts (domains) is flexible. For ensuring uniqueness,
however, the path between each pair of domains must
be uniquely decided independently of the actual path
of message passing. This is realized by the translation
rules kept in each domain. The rules can be incomplete
and uniqueness is not always ensured. Though our
method has the assumption of hierarchical structure
of naming contexts, it does not restrict the physical
structure. The merit of the unique IDs of our method
is greater than the restriction from this assumption.

Other ways of hierarchical naming are GALAXY [7]
[6], the DEC global name service [3], and the Stan-
ford design [1]. GALAXY adopts hierarchical symbolic
names using distributed directory management and IDs
for identifying objects. The ID consists of the host ID
and the local ID, each 64-bit long. The host IDs are
assumed to be unique in the world. This is not suitable
for our goal.

The DEC global name service adopts absolute paths.
Each naming context is called a directory and has
unique directory identifier (DI). Directory translation
entries (translation rules) are added for changing the
root directory. This is not suitable for our goal for two
reasons: assuming DIs, and the fact that changing the
root causes global addition of translation rules.

In the Stanford design, the structure of naming has
nothing to do with the location of objects. The name

is directly bound to the object. The existence of name
“A/B/C” does not imply the existence of a directory
“A/B”. Objects are managed by managers, and the
addressing of the object managers is by caching. Using
multicast or broadcast for cache misses and assuming
one root for one system do not suit our goal.

10 Conclusion

This paper has proposed the hierarchical naming
scheme, which is a way of naming and addressing suit-
able for large-scale distributed systems. The scheme
has the following characteristics:

e It gives unique IDs to objects.

e Short IDs are used for nearby objects.

e It allows to implement scalable systems.

e Communication is performed using only local in-

formation.

e It allows object migration.

e It allows mobile hosts and dynamic reconfiguration

of networks.

Our scheme separates the representation and the inter-
pretation of object IDs (OIDs) and object addresses
(OADs). Relative expression is used for the repre-
sentation. Using different representations of OIDs
and OADs in different naming contexts improves effi-
ciency. Local communication can be performed with-
out translation rules, just like the communication in
a conventional naming scheme. The interpretation re-
lates the OIDs and OADs to the conventional ones and
ensures the uniqueness of OIDs. The interpretation
is a virtual concept. The global information used for
interpretation is never used for implementation. When
connecting the systems, the interpretations of OIDs
and OADs are changed at once while the representa-
tions of OIDs and OADs remain unchanged. The con-
necting operation is local. This leads to scalability.
The locality of the operations on OIDs and OADs leads
to high availability and fault tolerance. The hier-
archical application of the propagating cache method
realizes the location tramnsparency with respect to
object/host migration and network reconfiguration.

Our scheme requires an appropriate method of au-
thentication for reliable communication to mobile hosts
and connected subsystems. Since security and authen-
tication are indispensable to practical distributed sys-
tems, the requirement is not a restriction. Our scheme
allows the application of large scale authentication [4].
We are investigating the problem of security and au-
thentication using this approach. This research is based
on the hierarchical naming of objects in the Muse Op-
erating System [9]. The correctness of our scheme has
been confirmed by simulation. Our scheme is being
implemented on the Muse Operating System.

Acknowledgments

We would like to express our gratitude to Dr Mario
Tokoro (Keio University and Sony CSL) for supervising
our research. We would also like to thank Mr Atsushi
Mitsuzawa (Keio University) and the other members of
Sony CSL for their valuable advice.

References

[1] David R. Cheriton and P. Mann. Decentralizing
a Global Naming Service for Efficient Fault-tolerant
Access. ACM Transactions on Computer Systems,

7(2):147-183, May 1989.

[2] Yasunori Harada and Eiichi Miyamoto. An Open Dis-
tributed Language Kamui-C — Introduced Open Sys-
tems Naming Model. In Proceedings of 8th Conference
of Japan Society for Software Science and Technology,
September 1991. (in Japanese).

[3] Butler Lampson. Designing a Global Name Service. In
Proceedings of 5th ACM Symposium on Principles of
Distributed Computing, pages 1-10, August 1986.

[4] Butler Lampson, Martin Abadi, Michael Burrows, and
Edward Wobber. Authentication in Distributed Sys-
tems: Theory and Practice. In Proceedings of the 13th
ACM Symposium on Operating System Principles, Oc-
tober 1991.

[5] Sape J. Mullender, Guido van Rossum, Andrew S.
Tanenbaum, Robbert van Renesse, and Hans van
Staveren. Amoeba, A Distributed Operating System
for the 1990s. Computer, 23(5):44-53, May 1990.

[6] Pradeep K. Sinha, Hirohiko Nakano Kantaro Shimizu,
Naoki Utsunomiya, and Mamoru Maekawa. Network-
Transparent Qbject Naming and Locating in Distributed
Operating Systems. Technical Report 89-033, Depart-
ment of Information Science Faculty of Science, Univer-

sity of Tokyo, November 1989.

[7] Pradeep K. Sinha, Mamoru Maekawa, Kentaro Shimizu,
Xiaohua Jia, Hyo Ashihara, Naoki Utsunomiya, Kyu S.
Park, and Hirohiko Nakano. The Galaxy Distributed
Operating System. Computer, 24(8):34—41, August

1991.

[8] Fumio Teraoka, Yasuhiko Yokote, and Mario Tokoro.
A Network Architecture Providing Host Migration
Transparency. In Proceedings of ACM SIGCOMM’91,
September 1991. also appeared in SCSL-TR-91-004 of

Sony Computer Science Laboratory Inc.

[9] Yasuhiko Yokote, Atsushi Mitsuzawa, Fumio Teraoka,
Nobuhisa Fujinami, and Mario Tokoro. Continuous-
Grained Objects in the Muse Operating System. Tech-
nical Report SCSL-TM-91-008, Sony Computer Science
Laboratory Inc., February 1991.

