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Abstract— Group communication systems are high-availability
distributed systems providing reliable and ordered message
delivery as well as a membership service to group-oriented
applications. Many such systems are built using a distributed
client-server architecture where a relatively small set ofservers
– sharing information about the groups in the system – provide
service to numerous clients.

In this work, we show how group communication systems can
be enhanced with security services without sacrificing robustness
and performance. More specifically, we propose several inte-
grated security architectures for distributed client-server group
communication systems. In an integrated architecture, security
services are implemented in servers, in contrast to a layered
architecture where the same services are implemented in clients.
We discuss performance and accompanying trust issues of each
proposed architecture and present experimental results that
demonstrate the superior scalability of an integrated architecture.

Index Terms— Protocol architecture (C.2.2.b) and Distributed
applications (C.2.4.b)

I. I NTRODUCTION

UBIQUITOUS information access and communication
have become essential to everyday life, global business,

and national security. Activities, including personal, com-
mercial and international financial transactions, studying and
teaching, shopping for goods or managing modern battlefields
have fundamentally changed over the last decade as a result of
the expanding capabilities of computers and networks. Most
such activities are supported by distributed applicationswhich,
in turn, increasingly rely on messaging systems to provide
secure and uninterrupted service within acceptable throughput
and latency parameters. This is difficult to guarantee in a com-
plex network environment that is susceptible to a multitudeof
human and/or electronic threats, especially, as network attacks
have become more sophisticated and harder to contain.

A distributed messaging system is essentially an abstraction
layer built on top of an underlying network. It provides
distributed applications with: (1) services not availablefrom
the native network, e.g., security, ordered message delivery,
or (2) services that are enhanced, e.g., higher availability,
improved reliable delivery. Group communication systems,
overlay networks, and middleware are all examples of mes-
saging systems serving as infrastructure for applications, such
as: web clusters, replicated databases, scalable chat services
and streaming video.

This work was supported by grant F30602-00-2-0526 from the Defense
Advanced Research Projects Agency (DARPA).
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Since many applications are expected to run over the
Internet, security becomes a real necessity. We note that even
for applications running in local area networks, particularly
in commercial environments, security is required to ensure
restricted access to data and to protect communication ac-
cording to regulations and hierarchical structures specific to
an organization. Although not an independent service, security
is an enabling feature without which the actual end-services
cannot be trusted or relied upon. To this end, the research
community has invested a lot of effort in investigating and
developing effective and efficient security services. Numerous
algorithms, protocols, frameworks and policy languages have
been developed to provide security services in point-to-point
or group-based communication models. However, there has
not been enough research into the integration of security tech-
niques into distributed systems, while maintaining a reasonable
level of performance.

This work tries to fill this gap, by showing how high-
availability systems (such as group communication systems)
can be enhanced with security services without sacrificing
robustness and performance.

A. Group Communication Systems

Group communication systems (GCS) are distributed mes-
saging systems that enable efficient communication between
a set of processes logically organized in groups. Processes
communicate via multicast in an asynchronous environment
where failures can occur. More specifically, a GCS provides
two services: group membership as well as reliable and
ordered message delivery. The membership service provides
all members of a group with information about the list of
currently connected and alive group members1 and notifies
group members about every group change. A group can change
for several reasons. In an idealized fault-free setting, a change
can be caused by members voluntarily joining or leaving
the group. In a more realistic environment, faults can occur,
e.g., processes can become disconnected or simply crash and
network partitions can prevent members from communicating.
When faults are healed, group members can communicate
again. All the above events can trigger corresponding changes
in group membership.

The core of GCS is in achieving agreement between multi-
ple participants about group membership views and about the
order of messages to be delivered. Many agreement protocols
were proved to have no solution in asynchronous systems

1This list is often referred to as aview.
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with failures [2]. Practical GCS-s overcome the problem by
using time-out based failure detection to sense network (dis-
)connectivity and process faults. One risk of this approachis
that alive and connected members communicating over high-
delay links, can be excluded from the group membership. If
the network is stable, GCS membership reflects the current list
of connected and alive group members.

Membership and message delivery services were formalized
in two models: Virtual Synchrony [3] (VS) and Extended
Virtual Synchrony [4] (EVS). The main difference between
the two models has to do with the relation between the views
in which messages are sent and delivered.

GCS-s have been built around a number of different ar-
chitectural models, such as, peer-to-peer libraries, 2- or3-
level middleware hierarchies, modular protocol stacks, and
client-server. To improve performance, modern GCS-s use a
client- server architecture where expensive distributed pro-
tocols are run between a set of servers, where each server
provides services to multiple clients. In this architecture,
the client membership service is implemented as a “light-
weight” layer that communicates with a “heavy-weight” layer
asynchronously using a FIFO buffer. In such a model, an
application using the GCS as its infrastructure, will link with
the GCS client library in order to get access to the membership
service and ordered/reliable message delivery provided bythe
servers.

B. Security Services for Group Communication Systems

Security is crucial for distributed and collaborative applica-
tions that operate in a dynamic network environment and com-
municate over insecure networks, such as the Internet. Basic
security services needed in such a dynamic peer group setting
are largely the same as in point-to-point communication. The
minimal set of security services that should be provided by
any GCS include:

• Client authentication: authenticate a client when it re-
quests access to the GCS, e.g., when it connects to a
GCS server.

• Access control: check if a given client is authorized to
access system resources. Typical group resources that can
be controlled by access control methods are: joining a
group and sending or receiving messages to a group.

• Group key management: generate and maintain a shared
group key that can be used to bootstrap other group
services, i.e., data integrity and confidentiality.

• Integrity and data source authentication: protect the
contents of the communication from being modified by
an outsider. Data source authentication guarantees that
the message was generated by a trusted source and
protects against injections. Efficient integrity and data
authentication mechanisms (such as. HMAC [5]) require
a shared key between participants. For many protocols
data integrity and authentication is an essential service.

• Confidentiality: protect the contents of communication
both from eavesdropping as well as from modification.
Symmetric encryption algorithms (such as AES [6]) re-
quire participants to share a secret key.

There are two basic architectural approaches to providing
security services in a client-server GCS. The first approach
(referred to as as thelayered architecture) places security
services in a client library layered on top of the GCS client
library. The second approach (referred to as theintegrated
architecture) entails housing some (or all) security services at
the servers in order to obtain a more scalable design.

C. New Contributions

The main goal of this work is to investigate scalable
solutions for securing GCS-s that do not result in the severe
degradation of performance and preserve the fault-tolerance
properties. In particular, we focus on securing Spread [7],a
GCS resilient to process crashes and network partitions.

To put this work into context, we briefly outline our earlier
efforts. Some of our previous results [8] demonstrate how au-
thentication and access control for a client-server GCS canbe
efficiently addressed. The framework specified that clientsare
authenticated when connecting to a server, while access control
to group resources is enforced by the local server. Another
recent work focused on designing a robust contributory group
key agreement [9], [10]. In the present work, complimentary
to previous work, we propose scalable and efficient secure
architectures for Spread, focusing on providing authentication,
data confidentiality and data integrity. More specifically,our
contributions are:

• Improved scalability of group key generation: Con-
tributory key agreement protocols provide strong security
properties, which makes them appealing for secure group
communication. However, when used in a layered archi-
tecture, they scale poorly. We show how this limitation
can be overcome by using an integrated approach in a
light-weight/heavy-weight [11] group architecture, such
that the cost of key management is amortized over many
groups, while each group has its own unique key.

• Group confidentiality support for EVS semantics: We
discuss the relationship between group communication
semantics and group confidentiality. Providing confiden-
tiality in systems supporting the VS model is an easier
task (than in EVS) since the semantics provides a form
of synchronization between the group membership and
data message delivery. The task is more challenging
in systems supporting the EVS model, however, such
systems have better performance; thus, it is desirable to
provide solutions for them as well.

• Experimental evaluation and comparison of secure
group architectures: We proposed three variants of scal-
able integrated architectures for Spread, supporting both
VS and EVS semantics. We discuss the accompanying
trust issues and present experimental results that offer
insights into their scalability and practicality.

Roadmap: the rest of the paper is organized as follows. We
survey notable prior work in Section II. We then describe
Spread and the group communication semantics it supports.
Next, we specify our security assumptions. We then overview
a layered architecture design and propose three variants of
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the integrated security architecture for Spread. We demon-
strate and discuss the improved scalability of our integrated
architecture in Sections VI and VII, respectively. Finally, we
summarize our work and discuss potential future research
directions.

II. RELATED WORK

RESEARCH in group communication systems operating
in a local area network (LAN) environment has been

quite active in the last 15-20 years. Initially, high availability
and fault tolerance were the main goals. This resulted in sys-
tems like ISIS [12], Transis [13], Horus [14], Totem [15], and
RMP [16]. These systems explored several different models
of group communication such as Virtual Synchrony [3] and
Extended Virtual Synchrony [4]. More recent work in this area
focuses on scaling group membership to wide area networks
(WAN) [17], [18].

With the increased use of GCS-s over insecure open
networks, some research interests shifted to securing these
systems. Research on securing group communication is fairly
new. The only implemented GCS-s that focus on security (in
addition to ours) are: the SecureRing [19] system at UCSB,
the Horus/Ensemble systems at Cornell [20], [21], and the
Rampart system at AT&T [22].

At the core of any GCS is a membership protocol. Some
of the work in securing group communication focused on
protecting the membership protocol in the presence of Byzan-
tine faults. This includes systems such as Rampart [22] and
SecureRing [19]. Rampart builds its group multicast over a se-
cure group membership protocol achieved via two-party secure
channels. SecureRing protects its low-level ring protocolby
using digital signatures to authenticate each token transmission
and each data message received. Both systems exhibit limited
performance since they use relatively costly protocols and
make extensive use of public key cryptography.

In addition to the membership service, GCS-s provide reli-
able ordered message delivery within a group. To secure this
service, group members (senders) must be authenticated and
both confidentiality and integrity of client data must be guar-
anteed. One notable work in this area is the Horus/Ensemble
work at Cornell [23], [20], [21]. Ensemble achieves data confi-
dentiality by using a shared group key obtained via group key
distribution protocols. Although efficient, this method does not
provide certain security properties such as key independence
and perfect forward secrecy. For authentication, Ensembleuses
the popular PGP [24] method. In addition, the system allows
application-dependent trust models in the form of access
control lists which are treated as replicated data within a group.
Recent research on Bimodal-Multicast, Gossip-based protocols
[25] and the Spinglass system has largely focused on increas-
ing scalability and stability of reliable group communication
services in more hostile environments – such as wide-area and
lossy networks – by providing probabilistic guarantees about
delivery, reliability, and membership.

Some other approaches focus on building highly con-
figurable dynamic distributed protocols. Cactus [26] is a
framework that allows the implementation of configurable

protocols as composition of micro-protocols. Survivability of
the security services is enhanced by using redundancy for
specific security services. For example, in [27], redundancy
of data confidentiality is obtained by encrypting data multiple
times, each time using a different encryption algorithm. This
approach is not appropriate for data-stream applications where
throughput is a concern.

Another toolkit that can be used to build secure group ori-
ented applications is Enclaves [28]. It provides group control
and communication (both point-to-point and multicast) and
data confidentiality using a shared key. The group utilizes a
centralized key distribution scheme where a member of the
group (group leader) selects a new key every time the group
changes and securely distributes it to all members of the group.
The main drawback of this system is that it does not address
failure recovery when the leader of the group fails.

A collaborative application can have its own specific secu-
rity requirements and its own security policy. The Antigone
policy [29] framework allows flexible application-level group
security policies in a more relaxed model than the one usually
provided by GCS-s. Policy flavors addressed by Antigone
include: re-keying, membership awareness, process failure and
access control. The system implements group rekeying mech-
anisms in two flavors: session rekeying - all group members
receive a new key, and session key distribution - the session
leader transmits an existing session key. Both schemes present
some problems: distributing the same key when the group
changes violates perfect forward secrecy, while the session
rekeying mechanism – although able to detect the leader’s
failure – can not recover from it.

Unlike aforementioned systems, we focus on using con-
tributory group key agreement as a building block for other
security services in Spread [7]. Contributory key agreement
protocols provide strong security properties. In particular,
they can guarantee that: (1) compromise of any subset of
old group keys does not lead to compromise future group
keys; (2) compromise of any subset of group keys does not
lead to compromise of previous group keys; and, (3) more
generally, compromise of all-but-one group keys does not lead
to compromise of the one “missing” group key. Moreover,
even compromise of the members’ long-term secret keys does
not lead to compromise of any group keys. Our work inves-
tigates trade-offs between security and group communication
semantics support. Our secure GCS supports two strong group
communication semantics: Virtual Synchrony and Extended
Virtual Synchrony.

III. SPREAD

T HE work presented in this paper evolved from integrating
security services into the Spread GCS. In this section we

present an overview of group communication semantics and
describe the Spread architecture.

Spread [7] is a general-purpose GCS for wide- and local-
area networks. It provides reliable and ordered delivery ofmes-
sages (FIFO, causal, total ordering) as well as a membership
service.

The system consists of a server and a client library linked
with the application. The client and server memberships follow
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the model of light-weight and heavy-weight groups [30]. This
architecture amortizes the cost of expensive distributed pro-
tocols, since such protocols are executed only by a relatively
small number of servers (as opposed to all clients). This way,
a simple join or a leave of a client process translates into a
single message, instead of a full-fledged membership change.
Only network partitions2 incur the heavy cost of a full-fledged
membership change.

Spread offers a many-to-many communication paradigm
where any group member can be both a sender and a receiver.
Although designed to support small- to medium-size groups,
it can accommodate a large number of collaborative sessions,
each spanning the Internet. Spread scales well with the number
of groups used by the application without imposing any
overhead on network routers.

Spread supports two well-known group communication se-
mantics, Virtual Synchrony (VS) [11], [31] and Extended Vir-
tual Synchrony (EVS) [4], [32]. (See [33] for a comprehensive
survey of group communication models). The VS service is
provided by a client library implemented on top of the EVS
semantics.

Both group semantics guarantee that all group members see
the same set of messages between two sequential group mem-
bership events and that the order of messages requested by the
application (such as FIFO, Causal, or Total) is preserved. They
also guarantee that all messages are delivered in the same view.
However, there is a major difference in this last aspect: while
VS guarantees that messages are delivered to all recipients
in the same view as the sending application thought it was
a member of at the time it sent the message (also known as
Sending View Delivery), EVS guarantees that messages will
be delivered in the same group view to connected members
(also known as the Same View Delivery property). Note that,
in EVS, the delivery view can be different from the sending
view.

The VS service is easier to program and understand, while
the EVS service is more general and has better performance.
VS is slower, since it requires application-level acknowledg-
ments for every group change. Moreover, it requires closed
groups semantics, allowing only current members of the group
to send messages to the group. EVS, in contrast, allows open
groups where non-member clients can send to a group.

When securing a GCS providing VS, it is both natural
and efficient to use a shared group key per view (securely
refreshed upon each membership change) for data confiden-
tiality. A message is guaranteed to be encrypted, delivered
and decrypted in the same group view and, hence, with the
same current key. This property does not hold in EVS, since
a message can be sent in one view and delivered in another,
and also due to the support for open groups. Therefore, a
natural solution for EVS is to use two kinds of shared keys:
one shared between the client and the server it connects to,
and another – shared among the group of servers. The former
is used to protect client-server communication, while the latter
– to protect server-server communication.

2By a network partition we mean connectivity changes due to networking
hardware, routing, or a machine crash.

The Spread toolkit is publicly available and is being used by
several organizations in both research and production settings.
It supports cross-platform applications and has been ported
to several Unix platforms as well as to Windows and Java
environments.

IV. SECURITY ASSUMPTIONS

Our goals include protecting client data from eavesdropping
by passive adversaries and preventing impersonation and data
modification/fabrication attacks by active adversaries. An ad-
versary in this context is anyone who is not a current group
member.

We do not consider insider attacks in this work. We ac-
knowledge that such threats are significant, especially, for
the underlying group membership protocols; some of our on-
going work focuses on this direction. However, in this paper
we assume that each entity (client or server) can be directly
authenticated and each has an X.509v3 public key certificate
that allows it to sign messages.

The method of computing the group key is essential for
the security of the system. An ideal group key management
protocol should provide:Key Independence, Perfect Forward
Secrecyand Backward/Forward Secrecy. Informally, key in-
dependence means that a passive adversary who knows any
proper subset of group keys cannot discover any future or
previous group key. Forward Secrecy guarantees that a passive
adversary who knows a subset of old group keys cannot
discover subsequent group keys, while Backward Secrecy
guarantees that a passive adversary who knows a subset of
group keys cannot discover preceding group keys. Perfect
Forward Secrecy means that a compromise of a member’s
long-term key cannot lead to the compromise of any short-
term group keys. For a more precise definition of the above
terminology, the reader is referred to [34], [35].

The key agreement protocol used in our design is the
so-called Tree-Based Group Diffie-Hellman [36] (TGDH)
protocol. It provides key independence and perfect forward
secrecy; it was also proven secure with respect to passive
outside (eavesdropping) adversaries [37]. In addition, active
outsider attacks – consisting of injecting, deleting, delaying
and modifying protocol messages – that do not aim to cause
denial of service are prevented by the combined use of
timestamps, unique protocol message identifiers, and sequence
numbers which identify the particular protocol execution.
Impersonation of group members is prevented by the use of
public key signatures: every protocol message is signed by its
sender and verified by all receivers. (Attacks aiming to cause
denial-of-service are not considered.)

V. SECURE GROUPCOMMUNICATION ARCHITECTURE

I N this section we provide a brief overview of the Spread
layered architecture and then describe the new integrated

architecture and its variants.

A. Layered Architecture

Our previous work proposed a layered architecture for
Spread, focusing on robustness and correctness of group key
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Fig. 1. A Layered Architecture for Spread

agreement. The result is a client library [9], [38] that provides
data confidentiality and integrity. The library is built on top of
the VS Spread client library; it uses Spread as its communi-
cation infrastructure and Cliques [39] group key management
library primitives for group key management. To make the
present paper self-contained and facilitate the discussion of
different architectures in Section VII, we briefly summarize
the layered architecture. For further details, we refer to [9],
[38].

Figure 1 presents the layered architecture for Spread. The
library has as main functionalities providing confidentiality of
the data by encrypting/decrypting client data using a group
shared key and managing the shared key for each group in
the system. A client that desires to communicate securely is
required to connect to a server and then join a group before
proceeding with the communication. The library provides an
API interface very similar with the Spread interface allowing
a client to connect/disconnect to a server, to join and leavea
group, and to send and receive messages.

At the core of Secure Spread is the Client Agreement Engine
which operates as follows: upon every group membership
change, the Client Agreement Engine receives notifications
from the membership service about the change. Then, the
Client Agreement Engine initiates an instance of the group
key agreement protocol, ensuring its correct execution (making
sure that the messages are sent to the correct destinations in the
right order, and that all the members make consistent decisions
with respect to installing the new secure membership). When
this protocol terminates, a secure group membership change
is delivered to the application and a new group key is ready
for use. Applications are not allowed to send any messages
while the key agreement protocol is executed. In addition, the
library ensures that the VS semantics are preserved.

The computation of a group key is group-specific. A client
can be a member of multiple groups, each group managing
its shared key with its own key agreement protocol. A Key
Agreement Selector and an Encryption Selector modules are
used to identify a group-specific key management and encryp-
tion algorithms. The Client Agreement Module is the one that
manages the key agreement protocol for each group.

The layered architecture currently supports five key man-
agement protocols. One of them implements centralized key
distribution and is referred to as the Centralized Group Key

Distribution (CKD) protocol. It is adapted to provide the same
security properties as the other four key agreement proto-
cols. The other four are key agreement protocols: Burmester-
Desmedt (BD) [40], Steer et al. (STR) [41], Group Diffie-
Hellman (GDH) [35] and Tree-Based Group Diffie-Hellman
(TGDH) [38]. Each of the latter four protocols are based
on various group extensions of the well-known (2-party)
Diffie-Hellman key exchange [42] and provide similar security
properties: key independence and perfect forward secrecy.

B. Integrated Architecture

Early group communication systems were implemented as
libraries, which means that all distributed protocols wereper-
formed between all clients, per group. A substantial increase
in performance and scalability was obtained by applying a
client-server architecture to this model: a smaller numberof
servers run the expensive distributed protocols and, in turn,
serve numerous clients.

Group key agreement protocols are, by nature, distributed
and represent the most expensive security building block.
Therefore, to improve the performance of the system in
settings with multiple groups (or many clients) we propose to
amortize the cost of key management by placing the key agree-
ment protocols at the servers and having the servers generate
client group keys in a “light-weight” manner. This follows
the integrated architecture model where security servicesare
implemented at the server.

Since the server population is smaller and more stable
than that of clients, server-based key agreement is both faster
and less frequent. Specifically, the servers’ shared secretkey
is refreshed only when network connectivity changes, and
not when some client group changes. This results in fewer
costly key refreshes in contrast to client-based key agreement,
because network connectivity changes are far less frequent
than normal client group changes. Note that the shared server
key can be vulnerable if it changes very infrequently and a
security policy should impose additional refreshing operations,
triggered, for example, by maximum elapsed time between
successive key changes (time-out) or maximum volume of data
exchanged (data-out).

Generating client group keys is much less costly in the
integrated architecture, since, if no change occurs in the
servers configuration, the cost of generating a new key for
a group amounts to one keyed MAC (HMAC [5]) operation.
When network connectivity does change (and so does the
membership of the servers’ group), the group key shared by the
servers is refreshed using a full-blown group key agreement
protocol. For this, we use the TGDH [41] protocol because of
its due to its good performance and strong security properties.

The use of encryption for bulk data confidentiality results
in decreased system throughput due to the extra consumption
of CPU resources. Regardless of the location and particulars
of the key management, bulk data encryption can be done
by either clients or servers. In the following, we describe
three integrated architecture variants that trade off encryption
cost for complexity, overhead and group communication model
support. We first discuss their different performance and secu-
rity guarantees and then compare them to a layered approach.
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Fig. 2. A Three-Step Client-Server architecture for Spread

1) Three-Step Client-Server:The most intuitive architec-
ture is one derived from the the client-server model of the
group communication system. The architecture can support
both VS and EVS semantics at the expense of decreased (due
to encryption) throughput. We refer to it asThree-Step Client-
Server.

We note that the communication taking place in the system
can be classified in two logical communication channels:
client-server and intra-servers. The goal is to protect these two
channels. Spread’s architecture uses a TCP connection when
a client connect remotely to a server. In this case, the best
approach to protect the client-server communication is is using
a standard two-party secure communication protocol, such as
SSL/TLS [43]. If a client connects to a server running on the
same machine, Spread architecture uses IPC. In this case, no
data protection is needed and client-server communicationis
not encrypted.

The intra-server communication channel is provided by a
multicast protocol developed on top of UDP. In order to
provide confidentiality of this communication, a block cipher
encryption protocol based on a key shared by the servers is a
good solution.

Figure 2 presents such an architecture. The Servers Agree-
ment Engine detects changes in the server group connectivity
and for each connectivity change performs a key management
protocol between servers. In addition, time-based or data-based
key refresh can be enforced. As mentioned above, we use the
TGDH [41] protocol for key management.

Servers can distinguish between communication coming
from peer servers and communication from the clients, and
therefore, use the appropriate key in order to encrypt/decrypt
the information.

One of the challenges with integrating a key agreement
protocol into a group communication system is the interactions
between the former and the membership protocol. Until the
membership protocol completes, the key agreement protocol
cannot run, since there is no fixed group of servers among
which to perform key agreement. While the membership
protocol is running, the set of known servers may change again
(referred to ascascaded membership), and basic communica-
tion services between them may become unavailable.

To cope with this issue, the group key is provided only

when the servers’ group membership is stable and while the
group communication membership protocol is not executing.
This allows the key agreement protocol to run with its normal
assumptions once the membership protocol completes, yet
prior to notifying the client applications about the change.
Thus, applications do not experience any change in semantics
or the APIs (such as a new key message) but do experience an
additional delay during each server membership change. (This
is in order for the key agreement protocol to execute following
the completion of the membership protocol.)

The servers’ membership protocol is secured by using
public key cryptography to encrypt and sign all membership
messages, since the shared key is not available during its
execution. The small number of messages sent during the
membership algorithm and their small size, ensures that the
overhead of public-private encryption can be tolerated.

The Three-Step Client-Server architecture allows individual
policies for rekeying the server group key and the per-client
SSL keys, as each is handled separately.

Once the master server group key is generated, the servers
communication is protected by encryption using a key de-
rived from it. The default protocol to encrypt communication
between servers is Blowfish in CBC mode; however, the
system supports any encryption algorithm in the OpenSSL [44]
library, including AES [6], while integrity and authentication
are performed using HMAC-SHA1 [5]. Two different shared
keys are derived, one used for encryption and one for the the
HMAC computation. In addition, the system can be configured
to use only HMAC and no encryption.

The total end-to-end cost of sending an encrypted data
message from one client to another (both are connected
to the Spread server remotely) includes six encryption and
decryption operations: client encrypts the message and sends
it over SSL to the server; server decrypts it and then re-
encrypts using the server group key; servers that receive this
message decrypt it and then re-encrypt it again using SSL for
the receiving client; finally, each receiving client decrypts the
message.

Note that the receiving servers need to encrypt the message
separately for each remote client who needs to receive it.
This is potentially a large number since each server can
support about1, 000 client connections. Thus, if more than
one receiver is connected remotely on the same server, the
load on the server will increase linearly with each remote
receiver, since each remote receiver receives the same mes-
sage encrypted separately on its own SSL connection. Local
receivers do not require client-server encryption. We notethat
several solutions can be defined to decrease the number of
encryption operations, particularly for the server that needs to
decrypt and re-encrypt all the messages under the SSL client
pair-wise keys. We discuss them in more details in Section
VII.

If two clients (sender and receiver) are executing on the
same machine as the server that they connect to, then the
cost of encryption under the Three-Step Client Server model
reduces to one encryption by the sending server and one
decryption by the receiving server.
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Fig. 3. An Integrated VS architecture for Spread

2) Integrated VS:Although the Three-Step Client-Server
architecture presented above is relatively simple, it suffers
from decreased throughput due to encryption performed by
servers. Therefore, it is not recommended when clients connect
remotely. Recall that we aim to design an architecture with
reasonable performance, not only in key management, but also
in throughput. This can be achieved if encryption is pushed to
the clients, which, in turn, requires client group keys.

We now describe a second variant of our architecture,
referred to asIntegrated VS. It supports the VS group com-
munication model and combines the advantage of a less
expensive key management building block (by integrating itin
the servers) with the advantage of encryption done in the client
library. In this aspect, Integrated VS is similar to the layered
architecture. The client groups are closed, i.e., a client needs
to be a member in order to send messages to the group. As
mentioned above, this requires client groups keys. However,
unlike the layered architecture where key agreement was
performed by each group, in this case, client group keys are
generated by servers, without involving costly key agreement
protocols. Since the library operates in the VS model, in a
manner similar to the layered architecture (see Section V-A),
a per-view shared key associated with the group can be used
to provide confidentiality. The key is refreshed by the servers
when the group view changes.

Figure 3 depicts the Integrated VS architecture. The Servers
Agreement Engine (SAE) initiates a key agreement protocol
between the servers whenever it detects a change in server
group connectivity. The Group Keys Engine (GKE) generates,
for each group, a shared key whenever the group membership
changes. In case of a network connectivity change, the SAE is
invoked first, followed by the GKE. The latter refreshes the key
for each group that suffered changes in membership due to a
change in server connectivity. The new group key is attachedto
the membership notification and delivered to the group. Client
group keys are generated by the servers based on three values:
1) server group shared keyKs, 2) group name (unique within
the system), and 3) unique number that identifies the group

Fig. 4. An Optimized EVS Architecture for Spread

view at a certain time3.
The group key for groupg in view v, wherev is uniquely

identified byview idgv is

Kgv = HMAC(Ks, g‖view idgv)

The shared server group key is computed in a manner
identical to that in the Three-Step Client-Server architecture
and can be refreshed as needed. The client group key is
changed whenever a group event (join, leave, etc.) occurs. The
new key is delivered within the secure membership message
informing the clients about the group change. All client group
members receive the same key for the same membership as
a result of the VS semantics. If a key change is required
because of the security policy (not caused by any group
membership change), the key refresh notification is delivered
as an “artificial” group membership change. This is in order
to preserve the semantic guarantees of VS stipulating that
messages encrypted by a sender with a given key must be
received by everyone while they also perceive (have) the same
key as their current key.

Encryption costs for Integrated VS consist of one encryption
by the sender and multiple decryptions, one for each receiver.
The worst case is when all receivers are situated on the same
machine, whereas, the best case is when all receivers are
running on distinct machines. In the latter case, decryption
operations take place in parallel.

3) Optimized EVS:Out of the variants presented thus far,
only Three-Step Client-Server supports the EVS model and
open groups. As discussed in Section I-A, EVS is faster,
thus, it is desirable to have a secure group communication
system supporting this model. The Three-Step Client-Server
serves this purpose, but incurs heavy encryption overhead
when clients connect remotely to servers.

One way to alleviate the large number of encryption oper-
ations is to have clients perform encryption by using a shared
per-view group key, in a manner similar to the Integrated VS
architecture. However, unlike VS, EVS does not guarantee that
all messages are delivered to receivers in the same view in
which they were sent. Therefore, there might be messages that
group members will be unable to decrypt as they do not have

3This number is generated based on a timestamp, the identifierof the
servers’ representative, and a counter that is incrementedevery time the group
changes
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the key used to encrypt that message in the first place. Our
next variant addresses this issue.

In order to support EVS semantics and client message
encryption, we developed an architecture that relies on servers
not only to generate client group keys, but also to “adjust”
messages that are not encrypted with the current group key.
Clients operate without any disruption since servers guarantee
that all messages delivered to the clients are encrypted with
the current group key.

Figure 4 presents this variant, referred to asOptimized
EVS. The Servers Agreement Engine and Group Keys Engine
perform key management of the servers’ shared secret and
client group keys, respectively. The method of generating
client group keys is the same as in Integrated VS. The main
change is the addition of the EVS-Fix-Messages module, that
detects when a message for a certain group is encrypted with a
key that is no longer valid. Each such message is decrypted and
re-encrypted with the current group key before being delivered
to the clients. Clients, in turn, decrypt all group messages
normally. TGDH is used as the server group key agreement
protocol.

The EVS-Fix-Messages module solves two problems: it
detects whenever a message is encrypted with the wrong
key and determines the correct key to use for encrypting the
message.

The first problem is addressed by having the sender include
in each message a uniqueKey id of the group key that
was used to encrypt it. ThisKey id is independently and
randomly computed each time a new key is generated (it is also
distributed along with each new client group key). However,
since it does not provide integrity, but merely identifies the
client group key,Key id can be relatively short, e.g., 64 bits.
It is transported in the un-encrypted portion of the message
header.

To detect messages encrypted with an “old” key, a server
stores each client group along with itsKey id. Each server
also tags one key as the “current” key for each client group.
The current key is the key that matches the last membership
(or key refresh) delivered to the group members. Then, before
delivering a message to a client, it checks if theKey id on the
message matches that of the current key. If so, the message
is immediately delivered. Otherwise, the message is decrypted
with the appropriate stored “old” key and re-encrypted under
the current key. Since the message stream delivered to each
client is a reliable FIFO channel, the client eventually receives
the message in the same view that the server expects it to.

Accumulating old keys andKey ids ad infinitumis clearly
not viable. Thus, old keys have to be periodically flushed by
each server. Different expiration metrics can be used either by
each server individually or in concert: time-outs and key-outs.
A time-out occurs when no message encrypted under a given
key has been received for a certain length of time. A key-out
takes place when some pre-set maximum number of keys-per-
group is exceeded. Many combinations and variations on the
theme are clearly possible.

The choice of a key expiration methodology can affect the
risk of a message being “indecipherable” even when the server,
in theory, could have kept the required key.

VI. EXPERIMENTAL RESULTS

In this section we present experimental results for the
group key management and data encryption building blocks.
The experiments cover all architecture variants describedin
Section V measured in a local-area and wide-area network
environments and show the superior scalability of an integrated
architecture.

A. Group Key Management

We now compare the cost of establishing a shared group key
in a layered architecture and in an integrated architecture. To
ensure a fair comparison we use for the layered architecture
the same key agreement protocol we use in designing the
integrated architecture, TGDH [36]. The communication and
computation costs of the TGDH protocol are summarized in
Table I. More details about why TGDH is our protocol of
choice can be found in [38].

We used an experimental testbed consisting of a cluster of
thirteen 667 MHz Pentium III dual-processor PCs running
Linux. Each machine runs a Spread server. Clients are uni-
formly distributed on the thirteen machines. Therefore, more
than one process can be running on a single machine (which
is frequent in many collaborative applications). We present
results both in local and wide area network. For the WAN
experiments, machines were distributed at three sites: Johns
Hopkins University (JHU), Maryland, University of California
at Irvine (UCI) and Information and Communications Univer-
sity (ICU), Korea.

For the most common group changes, join and leave, the
cost of establishing a new group key is reduced to almost the
cost of the group communication membership protocol, since
the servers can compute a new group key without performing
any other key agreement protocol, just one HMAC operation
is needed per group change. The results for the experiments
performed in a LAN setting, for join and leave are presented
in Figure 5(a) and Figure 5(b). The results for the integrated
architecture are for a VS group membership protocol. This
is because the cost of the VS group membership protocol
represents the worst case: VS uses closed groups and it
requires acknowledgments from each group member before
changing the group membership. In the EVS case, the numbers
for the integrated architecture will be much smaller. The saw
aspect of the TGDH protocol is due to the heuristics used by
TGDH to balance the tree. New members are always added to
the right-most leave as long as they do not increase the height
of the tree. In this case, the new member will be added to the
root and the cost of refreshing the key will be minimal (this
corresponds to the drop in the saw). While the height increases,
the cost of refreshing the key also increases, corresponding on
an ascending slope on the graph.

Results for join and leave in a WAN environment are
presented in Figure 6. In this case the predominant cost is the
communication cost, and over high-delay networks like the
one we use for our experiments, extra communication rounds
can degrade the scalability significantly.

In Figure 5(c) and Figure 5(d) we present the cost of
establishing a secure membership for merge and partition, also
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TABLE I

COMMUNICATION AND COMPUTATION COST

Event Rounds Messages Unicast Multicast Exponentiations Signatures Verifications

Join, merge 2 3 0 3 3h/2 2 3
Leave 1 1 0 1 3h/2 1 1

Partition h 2h 0 2h 3h h h
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Fig. 5. The cost of key agreement in LAN - layered architecture vs. integrated architecture
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Fig. 7. The cost of key agreement in LAN - multiple groups

in a LAN environment. Such a group event is triggered by a
network connectivity change which requires a modification in
the set of reachable servers, or by a server crash. In this case,
a new key needs to be computed by the servers, and only then
the group keys are computed. In Figure 5(c) and Figure 5(d)
we present the cost of establishing a secure group membership
for a test scenario where the servers are partitioned in halfand
then brought back together.

As it can be seen in Figures 5(c) and 5(d) the cost of the key
management for the integrated architecture is slightly higher
than in the case of join and leave because of the cost of the
key agreement protocol performed between servers. However,
since the number of servers is much smaller than the number
of clients, the impact of the key agreement protocol is less
significant. The cost of the secure membership merge de-
creases from about 220 milliseconds, to about 90 milliseconds
where the size of the group after partition is 100 users, and
from about 680 milliseconds to about 60 milliseconds for a
partition, where the size of the group before partition is about
100 members.

The above results are for a scenario when only one group
exists in the system. In practice, this is not the case. When
more than one group exists in the system and a change in the
servers’ configuration that affects more than one group occurs,
the layered architecture performs a key agreement protocolfor
each of the existing groups affected by the change. For the
integrated architecture, there is only one (smaller scale)key
agreement performed between servers, and then a number of
HMAC operations equal with the number of groups affected
by the change. Figure 7 shows the average cost of recomputing
a shared key for all groups, when more than one group exists
in the system. All the groups have the same number of clients,
13. We chose this number, because this is also the number of
the servers in our configuration. Even in this favorable setup
for the layered architecture (small size groups), the integrated
architecture scales much better than the layered architecture
when the number of groups in the system increases. Based on
the results we present in Figure 7 we estimate that even with
a very small group size (13 in our case), it will take more
than 4 seconds to refresh the key for 200 groups in a layered
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architecture, while it will take about 50 times less to perform
the same operation for an integrated architecture.

B. Data Encryption

Another important building block in the architecture of se-
cure group communication is the encryption module. Figure 8
presents our results for data throughput. Figure 8 (a) shows
the throughput achieved by an integrated architecture (i.e.
Three-Step Client-Server) under different configurations: using
a 64-bit encryption algorithm, Blowfish with HMAC-SHA1,
using a 128-bit encryption algorithm, AES also with HMAC-
SHA1, and finally, no encryption is used, just HMAC-SHA1
for integrity and source authentication. As expected, adding
security services decreases the throughput of the system, with
the most expensive configuration being the one using AES.
It is interesting to note the performance dip for messages
around 700 bytes that happens when messages can no longer
be packed into one network packet.

In Figure 8 (b) we compare the throughput of an Integrated
Architecture (Three-Step Client-Server) with a Layered Archi-
tecture, in two encryption configurations, AES and Blowfish.
We consider a scenario where clients connect to servers
running locally, so in the Three-Step Client-Server setup,
encryption is performed only between servers.
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Fig. 8. Data throughput under varying encryption algorithms and security architectures

The throughput for the Three-Step Client-Server is less than
that of the throughput achieved in the Layered Architecture.
The major reason for this decrease is due to the fact that
both headers and data are encrypted and the message delivery
protocol employed by our system can not detect if it needs
to process a message further or not, without first decrypting
it. We note that since the encryption operation takes place
at the data link layer, the servers encrypt not only client
data, but also control information, so this model provides a
stronger service than the other two models. Both Integrated
VS and Layered architecture have the same throughput since
encryption is performed by clients.

This experiment only used one sender and the server that
the sender was connected to was the bottleneck. In a case
where several senders exist in the group and therefore several
servers will send messages, this cost will be amortized and the
throughput will increase considerably. The results presented in
Figure 9 demonstrate this behavior. Both in the Blowfish and
AES configuration a higher throughput is achieved when there
are 5 senders in the system instead of 1.

We did not include results for the Three-Step Client Server
architecture when clients connect remotely, but from the
results in Figure 8 we can extrapolate that the achieved
throughput in this case will be much smaller, and therefore
unacceptable. The Optimized EVS architecture throughput will
be similar to the Integrated VS throughput if no server mem-
bership occurs, and will degrade when membership changes
occur, since some messages will need to be decrypted and
re-encrypted under new keys. The Three-Step Client-Server
architecture performance should be the worst in all cases.

VII. D ISCUSSION

The layered architecture and each of the new proposed inte-
grated variants have benefits and limitations. In the following
we first compare the layered and integrated approaches and
then discuss the three variants of integrated architectures.

A. Layered Architecture vs. Integrated Architecture

In this section we compare a layered architecture approach
to an integrated architecture approach, when providing security

services to a GCS. We compare them by investigating the
following aspects: trust, key management scalability, impact of
the compromise of the shared secret, complexity, and ability
to efficiently support other group services.

The layered architecture has the advantage that no trust
is put into anything outside of the end user’s control with
respect to protecting the data generated by a client. The client
needs to trust the servers with respect to the membership
service and ordered and reliable delivery. The compromise of
a group key, does not affect the security of the rest of the
groups in the system, since each group is running its own
protocol and computes its shared key independently of the
other groups. In addition, this architecture is less complex
and easier to develop. However, this model, due to the high
security, but expensive key agreement protocols we used, has
limited scalability, to no more than 100 members for the best
performance key protocol.

The integrated architectures we proposed overcome the key
management scalability problem by using the key agreement
to compute a secret key shared by the servers, and thus putting
more trust in the servers. This is because the security of the
groups relies on the security of the servers shared key which
is used in generating the client group keys. If the servers’ key
is compromised, the confidentiality of the communication of
all the groups in the system is compromised, as opposed to
the layered model where in order to compromise the confi-
dentiality of all the groups in the system, an attacker needs
to compromise the shared key for each group. We note that
in the case of the layered architecture, an attacker can perturb
service availability by attacking the servers’ communication.

An integrated architecture is more appropriate for providing
other security services such as client authentication upon
connection and access control to perform group specific oper-
ations. A security policy can be easily configured and enforced
by an administrator controlling a server configuration file.

Another advantage of an integrated architecture vs. a layered
architecture involves the protection of the control information
messages exchanged by the servers. If designed appropriately,
an integrated architecture can provide this service based on
the secret key shared between servers, while the layered
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TABLE II

SECURE GROUP COMMUNICATION ARCHITECTURES

Group Keys Servers Key Encryption Group Comm. Model
Layered Architecture Client None Client-Clients VS

VS Integrated Architecture Server Yes Client-Clients VS
Three-Step Client-Server None Yes Client-Server, Server-Server VS and EVS

Optimized EVS Server Yes Client-Clients mostly EVS

architecture can not. Combinations of the two approaches are
also possible. For example, the clients who do not trust the
servers will encrypt their data end-to-end, while the servers
will also provide either secure channels, or only integrity
checks between themselves.

Choosing the most appropriate architecture depends on
the desired scalability and trust guarantees. An integrated
approach scales better, but the security of all groups relies on
one key; a layered architecture scales poorly, but the security
of a group is independent of the security of the rest of the
groups and gives more control to the client.

B. Integrated Architectures Variants Comparison

As we discussed in Section V-B there is no one-size-fits-all
architecture solution that will perform the best in all possible
environments, under both VS and EVS group communication
semantics. Therefore, we proposed three integrated architec-
ture variants that trade off encryption cost for complexity,
overhead and group communication model support. In this
section we compare them by focusing on the group commu-
nication model supported, design and implementation of the
key management building block (do they use client group keys
or not) and the place where the encryption and decryption
operations are performed (only between clients, only between
servers, or between a client and a server).

Table II summarizes their features. The Three-Step Client-
Server approach does not use client group keys, but requires
a client to share a key with the server it connects to. The
approach is very appealing because it uses a less complex
key management mechanism. However, it is expensive in
encryption and decryption operations when clients connect
to servers remotely. If clients connect to servers locally this
is the best architecture since theoretically it only requires
one encryption/decryption of each message and it can easily
protect not only client data, but also the control information
exchanged by the servers. Note, that depending on the im-
plementation, even when clients connect locally, more than
one encryption/decryption of each message can take place as
discussed in Section VI-B. This architecture supports boththe
VS and the EVS semantics.

Both the Integrated VS and the Optimized EVS archi-
tectures use client group keys generated by servers. Our
experimental results in Section VI show that the scalability
of the system is improved substantially with respect to the
layered architecture.

For all the integrated architectures the confidentiality ofthe
data ultimately relies on the secret shared by the servers.

The smallest encryption overhead is exhibited by the In-
tegrated VS approach. The Optimized EVS solution has the

same encryption cost as the Integrated VS if the group
membership is stable. When membership changes occur and
there are messages not delivered in the membership they were
sent in, four additional encryption/decryption operations per
message are performed, to decrypt the messages encrypted
with an old key and re-encrypt them under the current key.
The encryption overhead incurred by the Three-Step Client-
Server approach, even when clients connect locally, is larger
than that of Integrated VS. However, it provides a stronger
service since it also protects the information exchanged by
the servers.

As mentioned in Section V-B.1 the cost of Three-
Step Client-Server is quite high, when clients connect re-
motely. Possible solutions to decrease the number of encryp-
tion/decryption operations, use an asymmetric architecture as
follows: the sending client encrypts the message using a pair-
wise key and sends it (via SSL) to its server; the server
decrypts and re-encrypts the message, each receiving server
decrypts and re-encrypts but re-encryption is done under a
group key (a key common for all clients, on that server,
that belong to the appropriate client-group, clients receive and
decrypt. The overhead of encryption is still 6 operations but,
on delivery, a server only performs one encryption instead of
one for each client who is a group member.

VIII. C ONCLUSIONS

The main focus of this work was designing a high-
performance security architecture for a client-server group
communication system. In particular, we focused on designing
a security architecture for Spread, under two well-known
group communication semantics: VS and EVS. Both models
support network partitions and merges and present their par-
ticular challenges. Contributory key agreement protocolswhen
used in a layered architecture have limited scalability. We
overcame this by using an integrated approach that relies on
contributory group key management in a light-weight/heavy-
weight group architecture such that the cost of key man-
agement is amortized over many groups, while each group
has its own unique key. The experimental results we present
demonstrate the increased scalability of integrated approaches
over layered approaches, without a significant decrease in
throughput performance.

When designing an efficient architecture supporting the VS
model, we took advantage of the fact that VS provides a form
of synchronization between the group membership changes
and data messages delivery. Our approach was to use of a
shared group key per view, securely refreshed upon each mem-
bership change. Data confidentiality can be relatively easily
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provided in a system supporting VS because the synchroniza-
tion between membership notifications and message delivery
guarantees that any message will be encrypted, delivered and
decrypted in the same group view and, hence, with the same
current key.

Although it provides a more efficient and relaxed model,
EVS is more challenging when providing security services
because there is no synchronization between membership
notifications and data delivery to the clients. However, there
is shared knowledge about what was the application group
membership when the message was generated (and also en-
crypted) and the group membership when the message will
be delivered (and also decrypted). We provided also solutions
for handling security for systems supporting EVS, by using
information shared by the group communication servers that
provide the membership and message ordering and delivery
services.

We proposed three variants of an integrated architecture
that trade off encryption cost for complexity and group
communication model support. We showed how both group
communication semantics could be supported in the proposed
architecture, discussed the accompanying trust issues and
presented experimental results that offered insights intoits
scalability and practicality.
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