The Spread Wide Area Group Communication System

Yair Amir and Jonathan Stanton

Department of Computer Science
The Johns Hopkins University
{yairamir, jonathan} @cs.jhu.edu

Abstract

Building a wide area group communication systera ¢hallenge. This paper presents the design aridquis of
the Spread wide area group communication systemea8pintegrates two low-level protocols: one focdbarea
networks called Ring, and one for the wide areavaet connecting them, called Hop. Spread decouphes
dissemination and local reliability mechanisms fréme global ordering and stability protocols. Thikows many
optimizations useful for wide area network settinggread is operational and publicly available fon\Web.

1. Introduction

There exist some fundamental difficulties with high-performanceigrcommunication over
wide-area networks. These difficulties include:

» The characteristics (loss rates, amount of buffering) andnpeaftce (latency, bandwidth) vary
widely in different parts of the network.

* The packet loss rates and latencies are significantly higher and maieledhnien on LANS.

* Itis not as easy to implement efficient reliability and ortgeon top of the available wide area
multicast mechanisms as it is on top of local area hardwarddasiaand multicast. Moreover,
the available best effort wide area multicast mechanisms come wgificgint limitations.

Because of these difficulties, traditional work from the group comecation community did
not provide adequate solutions for wide area networks, even yeargiadied solutions for local
area networks were developed. The bulk of the work today that adsliresde area network
settings comes from the networking community, starting from dfésitt IP Multicast and building
up reliability services and some ordering with much weaker semantics than groopnications.

This paper, which describes the Spread group communication system, is defontéhg from
the group communication community’s point of view. It implements, howedeehniques and
design features that are not that different from the techniquestagaovide reliability over IP-
Multicast, and scales dissemination and flow-control to wide-aréaories. Since a group
communication system has extensive, accurate knowledge of the stfstgmnotocols used can be
more precise and deliver better performance than many genetalorking protocols. The
improvement, however, comes with a cost. Spread does more work per natinaotiscale with
the number of users. However, it can be deployed to the wide area and can $ctile mitmber of
groups since no state needs to be maintained in the network routers for each group.

The Spread group communication system addresses the difficulieantered in wide area
networks through three main structural design issues:

» Spread allows for different low level protocols to be used to prowtigbie dissemination of
messages, depending on the configuration of the underlying network. Edcboprcan have
different tuning parameters applied to different portions of thevorét In particular, Spread
integrates two low-level protocols: one for local area networkscting and one for the wide
area network connecting them, called Hop.

1

* Spread uses a daemon-client architecture. This architecturenbag benefits, the most
important for wide-area settings is the resultant ability tptha minimum necessary price for
different causes of group membership changes. Simple join and dégrecesses translates
into a single message. A daemon disconnection or connection does not peeaviyecost
involved in changing wide area routes. Only network partitions betwétarent local area
components of the network requires the heavy cost of full-fledgedbermsiip change.
Luckily, there is a strong inverse relationship between the freyuef these events and their
cost in a practical system. The process and daemon memberstegpood to the more
common model of “Lightweight Groups” and “Heavyweight Groups”’[RG98].

» Spread decouples the dissemination and local reliability mechsifiiem the global ordering
and stability protocols. This decoupling allows messages to bearfded on the network
immediately despite losses or ordering requirements. Thispasaits pruning, where data
messages are only sent to the minimal necessary set of nebtworgonents, without
compromising the strong semantic guarantees provided by typioab gcommunication
systems. In particular, Spread supports the Extended Virtual Synchrony modelARAM

Spread is very configurable, allowing the user control over the tfpeommunication
mechanisms used and the layout of the virtual network. Spread providety mhannels to the
application. Priority channels give expedited service to messagesising them while preserving
the ordering guarantees requested. We believe this is thefiiosity service implemented in a
group communication system. Finally, Spread supports open-group semdargiesa sender does
not have to be a member of the group in order to multicast to it. Beesantics have been found
to be very useful in practice.

Although this paper is the first attempt at publishing the desigmpaotdcols, the Spread group
communication toolkit has been available for awhile, and has been useth@enresearch and in
practical projects. The toolkit supports cross-platform applicatmushas been ported to several
Unix platforms as well as Windows and Java environments.

Related Work

This work evolves out of the authors’ previous work on the Totem and Trgnsigp
communication systems, as well as other research in mulgoagb communication systems and
IP-Multicast related research.

Group communication systems in the LAN environment have a well dewklbfstory
beginning with the ISIS [BR94] system, and more recent sysgeitis as Transis [ADKM92],
Horus [RBM96], Totem [AMMAC95], RMP [WMK94], and Newtop [EMS95]. Heesystems
explored several different models of Group Communication such asaV8tunchrony [BJ87] and
Extended Virtual Synchrony [MAMA94]. Newer work in this area faesion scaling group
membership to wide area networks [ACDK98].

A few of these systems have added some type of support for eiiderarea group
communication or multi-LAN group communication. The Hybrid paper [RFV96¢udises the
difficulties of extending LAN oriented protocols to the more dyitaamd costly wide-area setting.
The Hybrid system has each group communication application switcledretvtoken based and
symmetric vector based ordering algorithm depending on the comrtianitaency between the
applications. While their system provides a total order usinghefrier protocol is more efficient
for each participant, Hybrid does not handle partitions in the networlyravide support for
orderings other then total. The Multi-Ring Totem protocol [AMMB®8]an extension of the
single-ring Totem protocol that allows several rings to berdotenected by gateway nodes that

2

forward packets to other rings. This system provides a substpatfarmance boost compared to
the single-ring Totem protocol on large LAN environments, but keeps tiedsssimptions of low
loss rates and latency and a fairly similar bandwidth betwk@odes that limit its applicability to
wide-area networks.

The totally ordered multicast protocol, SCALATOM [RGS98], ssale three ways: the
protocol is only executed on those processes that are receiving thgenéseanessage size scales
with the size of the destination group, and it supports open groups. This protocol dogdicitiye
consider the issues of a heterogeneous wide-area environment, andsreglarge number of
messages to be sent to order each message and thus is probably anfritabhigh latency,
limited bandwidth setting like wide-area networks.

The Transis wide-area protocols Pivots and Xports by Nabil HUIE#86] provide ordering
and delivery guarantees in a partitionable environment. Both protoeolsaaed on a hierarchical
model of the network, where each level of the hierarchy is jpatid into small sets of nearby
processes, and each set has a static representative whmasnadésnber of the next higher level of
the hierarchy. Messages can be contained in any subtree if the senderssiietiBabtree.

IP-Multicast is being actively developed to support Internet witteliable multicasting and to
scale up to millions of users. Many reliable multicast protoadiEh run over IP-multicast have
been developed, such as SRM [FILMZ97], RMTP [LP96], Local Group Concept (HB{N96],
and HRMP [GG97].

The development of reliable multicast protocols over IP-Multicast foaused on solving
scalability problems such as Ack or Nack implosion and bandwidthslirarid providing useful
reliability services for multimedia and other isochronous apptinati Several of these protocols
such as SRM, have developed localized loss recovery protocols. SRvMandesiized timeouts
with backoff to request missed data and send repairs, which minirdigglicates, and has
enhancements to localize the recovery by using the TTL fieltdPdflulticast to request a lost
packet from nearer nodes first, and then expand the request if nooseehels it. Several other
variations in localized recovery such as using administrative isg@uid separate multicast groups
for recovery, are also discussed in [FILMZ97]. Other reliableioaslt protocols like LGC use the
distribution tree to localize retransmits to the local group lead® is the root of some subtree of
the main tree. Spread has additional information about the exacindissen of messages and
where copies are buffered and so can use more precise localryettategets the packet from the
nearest source.

HRMP [GG97] is a reliable multicast protocol which provides local regorgough the use of
a ring, while wide area recovery is done through an ack tree.id kimilar to our design that also
uses a ring protocol for local reliability and dissemination gvbililding a multicast tree for wide
area reliability and dissemination. This work analyzes the pestijmerformance of such a protocol
and shows it to be better then protocols utilizing only a ring te@ Our work validates and
provides experimental support for their conclusions.

2. System Architecture

The Spread system is based on a daemon-client model where geloagdiynning daemons
establish the basic message dissemination network and providenemsicership and ordering
services, while user applications linked with a small clientafyprcan reside anywhere on the
network and will connect to the closest daemon to gain access tordhp gommunication
services. The use of this model, as opposed to having the membershipdaridgoservices

3

provided by every client application, is very important in a wida a@edting because the daemons
minimize the number of membership changes (which are expensatghe system must carry out
across wide-area links, and provide a basic stable infrastrumtuvehich to build effective wide-
area routing, reliability, and ordering.

The cost of using a two level daemon-client model is that erente between different client
applications using the same daemon configuration is possible, as disansgRG98]. This is
minimized by the ability to run multiple daemon configurations eachirsg separate applications,
and by our dissemination model(which only sends data messagesaa#ensons that need them
and minimizes the cost of extra active daemons the applicatiwot issing). We do pay the cost,
however, of additional context switches and inter-process communic@uamnall, we think that
the benefits outweigh the costs.

Spread is highly configurable, allowing the user to tailoroittheir needs. Spread can be
configured to use just one daemon in the world or to use one daemormymeaehine running
group communication applications. The best performance when there daeltsois achieved
when a daemon is on every machine, while using fewer daemonssisctiea cost of recovery. In
principle, the Spread daemons can even be placed on the network wluéees for a cost in
memory (buffers) on the router, the reliability of important’ messagesbe improved.

Hardware
Broadcast

Multicast

Routing Tree for

Site A
- == ==ROuting Tree for Earlgzv;rte
Site C ulti
Routing Tree for
Site D

* Site B’s routing tree is not shown for clarityasons.

Figure 2.1: A Wide Area Network Configuration with Spread.

A sample network is given in figure 2.1, where several distines site shown, geographically
dispersed, with different cost links between them. In this papéde assilefined as a collection of
machines which can potentially reach the other machines by osagee®.g. hardware broadcast,
hardware multicast, or IP-Multicast. Each site can have upveradens of machines on it, which
does not impact the scalability of the Spread system sinopeatlations not local to this site scale
with the number of sites, not the total number of machines involved. &thdas participating in a
Spread configuration know the compl@@ential membership when started, but all knowledge of
the actual membership of active daemons is gathered dynandcailhg operation. Each site has
one daemon that acts as the representative of the site, pérngimathe wide area dissemination.
This representative is determined based on the current mengbefstiie local site and is not
hardwired.

Spread Daemon

Groups <—> Session
=
A 4
Membership (=) Transport
JC
Routing K— Network

Datalink(UDP/IP with {Uni,Broad,Mult}cast)

Figure 2.2: The Spread Architecture.

The Spread architecture is presented in Figure 2.2. User appigdink with the SP_lib (or
use the Java class) which provides the entire client intedaseribed below. The connection
between the SP_lib and the daemon is a reliable point-to-point connestiwr, IPC or through
the network. The Session and Groups modules manage user connections, Macesg group
memberships, and translate daemon membership changes into process-group ngeaniizargas.

The shaded area in Figure 2.2 depicts the internal protocols oféhedaThe details of some
of these protocols are described in Section 3. The highlights are:

* Multiple queues exist between the Session and Transport modules, oreclfiosession.
This allows priority handling.

* The Routing module computes the routing trees based on data from theriNetodule.
The Transport module consults the Routing module to determine the lioks @thd Ring)
on which each message should be sent.

» Several instantiations of the Hop module may exist, each of whicbsents one edge that
is used by one or more routing trees.

* At most one Ring module provides dissemination and reliability on the $ie if more
then one daemon is active in that site.

* The Hop and Ring instances may be destroyed or instantiated as the membersgjep.cha

Spread supports the Extended Virtual Synchrony model [MAMA94] of groumbasship.
EVS can handle network partitions and re-merges, as well asgonth$eaves. It provides several
types of reliability (Unreliable, Reliable), ordering (Unorelér FIFO, Causal, Agreed), and
stability (Safe) services for application messages. The emmghtation of site and daemon
membership is not discussed in this paper.

All of the global orderings and stability (Causal, Agreed, Safe)provided across all groups.
If two messages are sent by different clients to diffeggotips, anyone who has joined both
groups will receive the two messages in the ordering gusgdneven though they are received in
different groups. FIFO ordering is provided with each connection temala acting as a separate
FIFO source for ordering purposes. As with the global orderirgs,FIFO order is preserved
across groups. In wide area networks, Reliable delivery becomefd bgcause, in principle, it
will have no latency penalty compared to unreliable delivery becaesn be delivered as soon as
it is received. FIFO delivery becomes useful because a neegshgnly be blocked from being
delivered if messages prior tofiiom the same application connection are missing.

SP_connect (char *spread_nane, char *private_name, int priority, int group_nenbership
mai | box *nbox, char *private_group)

SP_di sconnect (nmi | box nbox)
SP_j oi n(nmil box nbox, char *group)
SP_| eave(mail box nmbox, char *group)
SP_nmul ticast(mail box nbox, service service_type,
char *group,
int1l6 ness_type, int ness_len, char *ness)
SP_receive(mailbox mbox, service *service_type, char sender[MAX_GROUP_NAME],
int max_groups, int *numgroups, char groups[][MAX_GROUP_NAME] ,

int1l6 *ness_type, int *endi an_m snatch,
int max_ness_|l en, char *ness)

SP error(int error)

Figure 2.3: The Spread Application Programming Interface.

The complexity in spread is hidden behind a simple but complete progng API, which can
be used both for LAN oriented services or WAN services without egin changes, and which
provides a clear model of group communications. The spread API is shoRigure 2.3. An
application can be written using only 5 functions (SP_connect, SP_joirges®, ISP_multicast,
SP_receive) while the complete API allows more advancedrésatuch as scatter-gather sends
and receives, multi-group sends, polling on a connection, or comparing group islsSAHlis
based on the experience gained in the Transis project as well as latemegpetith Spread.

3. Protocols

3.1 Overview

The core of the spread system is the dissemination, relialoitdgring and stability protocols.
Two separate protocol layers provide these services in Spread.

* Network layer - this layer is comprised of two components:

[0 Link-level protocols that provide reliability and flow control for gats. Spread
implements two protocols, the Hop protocol for point-to-point connections, anRitige
protocol for multicast domains. Each protocol is optimized for its target domain.

0 Routing that constructs the network out of Hops and Rings based onuthentc
membership of connected daemons and its knowledge about the underlyiogkndtue
constructed network implements a different dissemination tree rooted afiteach s

» Transport layer - this layer provides message delivery, oglestability, and global flow
control. The Transport layer operates among all the active daemons in the system

Building a routing tree rooted at each site is important for séveasons. It is clear that having
an optimized tree per source site is more efficient than @dhiere. Since Spread is not meant to
scale beyond several tens of sites (each containing up to seaegabf daemons) the cost of
computing these trees and storing forwarding tables is manag@didebenefit is enormous,
especially since state and routing information is only maintained at end nodes.

It is important to remember that the overhead of building these t@n be amortized over the
long lifetime of the site membership. This is in contrast withny multicast routing protocols
which assume that the tree should only be built as needed sincengemuipership changes are
very common and so the cost of constructing a tree must be paierjoquickly, before the group
membership changes in a way to make it invalid.

To utilize the underlying network as efficiently as possiblés imecessary to send full packets
as much as possible. In order to utilize different packet sizéscabe able to pack multiple user
messages or control packets into one network packet, all link levelcptetactually act not on
packets but on abstract "objects” which can vary in size from E3 loyt to about 700 bytes. Each
packet that is sent on the network is packed with as many olgsecisill fit. To improve
readability, all the protocols described below are in terms dqtacin practice, however, the link
level reliability and flow control are done per object.

3.2 Packet Dissemination and Reliability

The most basic service of any comprehensive multicast commonicptotocol is the
dissemination of data messages to all receivers interastibgdin. An application level message
sent to a group can range in size from 0 bytes of data up to 128gt&ad will both fragment and
reassemble large messages to fit into the normal paclkebsihe underlying network, and pack
small messages into full packets as much as possible without introducing urialedeptacy.

Spread builds multicast dissemination trees with each site iadlie membership forming
one node on the tree, either leaf or interior. A key observation magieneral purpose multicast
routing is that stability of the routing trees is very importanachieve workable, reliable routing.
The spread systems separation of membership into three levelsseoaf# routing to be based on
a very stable configuration of sites, while individual application bemship in groups can be
highly dynamic. The actual creation of metrics to decide howotmect the sites into the most
efficient trees is being investigated. Currently the traesbailt by applying Dijkstra’s shortest-
path algorithm to the current dynamic membership, with the undgrlgpmplete graph with
weights being defined statically.

Once the routing trees have been constructed, forwarding of ddtatpadthin the trees is
based on three principles:

* Non-Blocking: packets are forwarded despite the loss of packets ordeied earl

* Fast-Retransmits: the immediate parent of the link where ¢s lccurred handles
retransmission of lost packets.

* Pruning: packets are not forwarded to child links of the tree whagle ho members interested
in the packet.

The non-blocking and fast retransmit properties are provided by épepkrbtocol described
below, while the pruning is provided by the routing lookup code whichdilbert any child links

where all the sites below those links have no member in the groupadket is destined for. The
resolution of which sites are interested in a packet is made thieepacket is created at the source
site. The decision is slightly conservative in that possibly sooreinterested sites may get a
packet, but every site that is interested is guaranteed td. Jétis comes into effect during the
period when an application has asked to join or leave a group but the join or leave d@senato
effect yet. To provide the ordering and stability guarantees, gagge control information is sent
to all sites.

Packet dissemination, reliability and flow control is provided byt# link-level protocols -
the Hop protocol for point-to-point connections and the Ring protocol foigasitand broadcast
domains, as described below.

v

[Message in transit Time

T

" Message that already arrived

.i Message that was lost. * All data messages are generated by site A.

Figure 3.1: A Scenario Demonstrating the Hop Protocol.

The Hop Protocol

The Hop protocol operates over an unreliable datagram servicaswtBP/IP. The core idea
of the hop protocol is to provide the lowest latency possible when drangf packets across
networks consisting of several hops by handling the loss of packethop-by-hop basis instead
of end-to-end and by forwarding packets immediately even if éineyot in order. In cases where
it is possible to run the Spread protocol in the routers that conitest isvolved in group
communications, the advantages of this would be even higher.

The hop protocol uses negative acknowledgements to request retramsroispackets and
positive acknowledgements to determine up to what sequence valuge camoved from the
sender’s buffers. Flow control is provided by a token/leaky bucketatyy that limits the number
of packets that can be sent at one time and limits the maximurallaege. In addition, a sliding
window, which limits the total outstanding packets on the link, is us@detcent arbitrarily long
delays in getting missing packets. Figure 3.1 demonstrates the Hop protocol.

8

A hop link is bi-directional, so each side can send to the other. Therssddeuses the
following local variables:
s_hi ghest _l i nkseq The highest |ink_seq attached to a packet so far.

s_other_end_aru The link sequence aru reported by the other end of the |ink.
S_cur_wi ndow The current size of the sliding wi ndow used for flow control.

The receiver has these variables:
r_hi ghest _seq The hi ghest sequence val ue seen on this link so far.
r_link_aru The sequence value up to which all packets have been received.

Retransmit list A linked list of sequence val ues which have been nissed and are
waiting for retransmt by the sender.

The last two variables are used by both the sender and receiver sides:
Pkt _cnt_l i nkack The nunber of packets sent or received since the last link ack was
sent.

max_pkt _btw ack A tuning value limting how many packets can be sent or received
bef ore sending a |ink ack.

Three types of packets are sent across a hop link:

» Data: This is a portion of a user data message or an internal spread ncesategeby a higher
layer.

* Ack: This is a copy of the receivers current link_aru value and the senders hiighkestj.
* Nack: This is a list of all sequence values which the receiver has missed and shreahbe
Both acks and nacks are limited to the link on which they originate.

During normal operation the sender side of a hop link will send @etieefs and an occasional
link ack, and will receive link acks from the receiver side. Thoistioues as long as the receiver
side keeps up with the sender to within the size of the sliding window and no packets are lost

When the receiver gets a packet with a higher sequencertheghest_seq + 1), then it has
missed some packets and so it adds all the sequence valuesnhetwgleest seq and the received
object sequence to the retransmit list. It then sets a tinerait for a short time to see if the
missing packets were just delayed or reordered in the netwaditke ifimer expires and there are
still packets in the retransmit list then a link nack is sequesting those packets. The link nack
will be resent with the current list of missing packets evieng the timer expires until all missing
packets have been received. The receiver does keep a count of hgwimmes each sequence
value has been requested to be resent. If that count gets aboveim \@due then the receiver
declares the sender to dead and initiates a membership changenemhiership change occurs
even if the receiver has received other data from the sendesagry important to eliminate this
"failure to receive" problem, otherwise, the system will becdd to block eventually due to
buffering.

When the sender receives a link nack it adds the requested packstsqueue of data to be
sent to the receiver and deletes the nack. The retransmitteetpavill be included as sent data in
the flow control calculations. Figure 3.2 presents the pseudo code for the Hop protocol.

The Ring protocol

The Ring protocol is used when there is more then one active darraaite. Note that a site
is a collection of machines which can potentially reach the otlaehimes by one message, e.g.
hardware broadcast, hardware multicast, or IP-Multicast. Eechber has a unique identifier that
is static over crashes and restarts. The Ring protocol is a modification afghgatocol used in

Hop_Send_Dat a(| i nki d)
Updat e token bucket for hop
whil e(token is available in bucket for hop)
Each packet is assigned a unique |ink_seq value and stored in Link[linkid].open_pkts.
Send(linkid, pkt)
if(still_data_available for this hop)
Event _Queue(Hop_Send_Dat a, |inkid, SendTi meout)

Hop_Send_Ack(i nki d)
ack.link_aru := Link[linkid].r_link_aru
ack.link_max_sent := Link[linkid].s_highest_linkseq
Send(linkid, ack)
Event _Queue(Hop_Send_Ack, |inkid, LongHopAckTi neout)

Hop_Send_Nack(| i nki d)
add all link_seq values found in retransmt list to nack.req_list[]
Send(|inkid, nack)
Event _Queue(Hop_Send_Nack, |inkid, HopNackTi neout)

Hop_Recv()
recv(pkt)
case(pkt.type)
ACK:

if (Link[linkid].s_other_end_aru < ack.link_aru)
renove packets with linkseq < ack.link_aru from Link[Ilinkid].open_pkts[]
Link[linkid].s_other_end_aru := ack.link_aru

if (Link[linkid].r_highest_seq < ack.!link_max_sent)
add sequence nunbers fromr_highest_seqg to |link_max_sent to retransmt |ist
Event _Queue(Hop_Send_Nack, 1inkid, HopNackTi neout)

NACK:
for (i fromO to nack.numreg-1)
req_linkseq := nack.reqg_list[i]
pkt := Link[linkid].open_pkts[reqg_|inksegq % MAXPKTS]
queue_packets_to_send(linkid, pkt)
DATA_PKT:

Li nk[I'i nki d] . pkt _count ++;
if (Link[linkid].pkt_count == 1)
Event _Queue(Hop_Send_Ack, |inkid, ShortHopAckTi neout)
i f (Link[linkid].pkt_count > Max_Count _Bet ween_Acks)
Send_Li nk_Ack(i nki d)
if (nmeg_frag.link_seq == Link[linkid].r_highest_seq + 1)
/* Right on tine packet without drops */
if (Link[linkid].r_link_aru == Link[linkid].r_highest_seq)
Link[l'inkid].r_link_aru++
Li nk[I'i nki d] . r_hi ghest _seq++
else if (msg_frag.link_seq <= Link[linkd].r_highest_seq)
/* Duplicate or del ayed packet */
renove nsg_frag.link_seq fromretransmt |ist and update |owest_m ssing_|inkseq
i f duplicate packet
return Null
if (lowest_m ssing_|linkseq == NONE)
Link[linkid].r_link_aru := Link[linkid].r_highest_seq
Event _Dequeue(Hop_Send_Nack, 1i nki d)
else if (msg_frag.link_seg < | owest_m ssing_linkseq)
Link[linkid].r_link_aru := lowest_missing_linkseq - 1
el se
/* we mssed sone packets before this one */
add seq nunbers fromr_highest_seq to msg_frag.link_seq to retransmt |ist
Link[l'i nkid].r_highest_seq := nsg_frag.!link_seq
Event _Queue(Hop_Send_Nack, |inkid, HopNackTi neout)
return packet
Qt herwi se:
return packet

* Upper layers will call Event_queue(Hop_Send_Data, Linkid, 0) when data has been queued to send.

Figure 3.2: The Hop Protocol.

Totem[AMMAC95] and Transis[A95]. In Totem and Transis, the Ring @altts used to provide
reliability, global flow control and global ordering.

Spread uses the ring protocol for one main purpose: packet-léxatlility and flow control
within the local site, and one secondary purpose: message-labgitystwithin members of the

10

ring. The crucial point is that the same token is used for botle flo@stions. In the same token
circulation, the ring aru calculation algorithm updates both thegbankd message aru fields. So,
we are almost not paying anything in complexity and latendhefprotocol to get message-level
knowledge. In contrast to Totem and Transis, global ordering and fiotkot are provided by our
transport layer protocol described below. This limits the usagéeofihg protocol to tasks for
which it is most effective: local area ordering, reliability, and diseation.

In the extreme, the entire collection of daemons can be configsredesite connected by
routed IP-multicast. This configuration will not take advantageoof wide-area reliability
protocols and can have poor performance.

The rotating token has the following fields:

Type Regul ar except during nmenbership changes
Li nk_seq The hi ghest sequence nunber of any reliable packet sent on the

ring.
Li nk_aru The sequence nunber of which all reliable packets have been
received up to by all menbers of the ring. It is used to control

when a link can discard any |local references to a packet.
Fl ow_control A count of the nunber of packets sent to the ring during the | ast
rotation of the token, including retransmts.

rtr list Alist of all the sequence values that the previous token holder is
asking to be retransmtted.

Site_seq The highest sequence nunber of any reliable message originating on
this ring. This sequence is local to the site and conbined with the
site_id provides a unique identifier of every message sent in the
system

Site_Ilts The highest LTS value seen by any nenber of the ring so far. This
is used to provide a causally consistent ordering for Agreed and
Saf e messages

Site_aru The LTS nunber up to which all nenbers of the site have received
all nessages with an LTS value |ower then this.

Site_aru_nodifier The identifier of the site nmenber that |last nodified the site_aru
val ue.

Upon receiving the token a daemon will handle any retransmits tegugthe previous token
holder, then process messages received from client applicationspaekets up to the limit
imposed by flow control, then update the token with new information and iseéadthe next
daemon in the ring. After sending the token the daemon will attengsliver any messages it can
to the client applications. For each message processed intosteensy new site_seq and site_lts
value is assigned and the counters are incremented. For evetyleghacket sent, a unique
link_seq is assigned and the counter is incremented.

To update the link and site aru values on the token, a daemon compadesatlau values
with those on the token, if the local value is less, then the token isaloeered to be the local
value and the site_aru_modifier field is set to the id of the daerhtie local value is equal to or
higher then the token value then the daemon raises the token valuetbalgite _aru_modifier is
this daemons id, or the site_aru_modifier is zero, indicating that emmala has lowered it during
the last round. All members of the ring can thus calculate thesiiginu value they can locally use
by taking the lesser of this just calculated token aru valod,the token aru value from the
previous round of the token.

The ring provides flow control by limiting the number of packetshaaember can send during
each rotation of the token. The number of packets which can be sdrg entire ring per round,
and a limit on how much each individual member can send per round are panamyeters. The
daemon simply sends the lesser of its individual limit and the liotégl minus the value in the
flow_control field plus what it sent last time. Figure 3.3 preséméspseudo code for the Ring
protocol.

11

Ri ng_handl e_t oken(t oken)
drop token if it is malformed, a duplicate, or the wong size.
i f(Link[linkid]->highest_seq < token.link_seq) Link[linkid].highest_seq := token.link_seq;
answer any retransmt requests which are on the token
update SitelLTS and SiteSeq val ues
Assign site SitelLTS and SiteSeq val ues to new application nmessages
Cal culate flow control for this ring
Send_Dat a(| i nki d)
update tokens flow control fields
add any link_seq values | ammssing to the token reqg_list[]
update Link[linkid].m_aru
update token.link_aru, token.set_aru, token.link_seq, token.site_seq, token.site_ lts,
token.site_aru, token.site_aru_nodifier
send token to next daenmon in the ring
calculate Link[linkid].ring_aru based on token.link_aru and | ast_token.link_aru
di scard all packets with link_seq < ring_aru from Link[linkid].open_pkts[] array
calculate site_aru (H ghest_ARU ny site]) based on token.site_aru and | ast_token.site_aru
copy token to | ast_token
Del i ver _Mess()

Figure 3.3: The Ring Protocol.

3.3 Message delivery, ordering and stability

The Transport layer, which is the upper layer of the protocol, provigesetjuired guarantees
for message delivery, ordering and stability service sensmaniibe Transport layer uses the
Network layer for dissemination, local flow control, and packetbdity. A message in Spread
will typically pass over several links while being sent to tHeepdaemons. In the presence of
faults the transport protocol at each daemon keeps a copy of allatempssages sent or received
until they become stable across the entire system, and thus can provitemesséons of messages
which were missed during the membership change triggered byul® féhe recovery protocols
in the case of faults are not discussed in this paper.

Ordering and stability are provided by a symmetric transgwellprotocol run by all active
daemons. It uses unique sequence values assigned to every megsa@ngrat a site, the unique
id assigned to every site, and a logical clock defined by Lamnfloappened before" relation[L78],
to provide a total order on all messages in the system, and tdatalevhen messages become
stable. Stability is defined as a message which this daemon khaiall relevant daemons have
received, and thus can be removed from the system.

Every message is assigned the following values before dissemination:

* Asiteid.

* A site sequence.

* A Lamport Time Stamp (LTS).
* A session sequence.

Hence, a message can be completely ordered based stricthfoandtion contained in the
message. The use of logical clocks and sequence values has ttatmlbisenefit of being
completely decentralized and of making recovery from partitiand merges in a manner
consistent with EVS possible. Without born-ordered messages, AgreeafandeSvery cannot be
achieved across network partitions.

Unreliable messages have a separate session sequence despaumed none of the support
provided to reliable messages. Since they could be dropped, we do not walostht interfere
with the reliability protocols. The reason they have a sequence \atlall is to make sure the
daemon does not deliver duplicate copies of a message to the applaadi to have a way of

12

identifying a specific unreliable message so the daemon easemble it from packets. If some
portion of an unreliable message does not arrive within a speicifec of the first piece of the
message which arrived, then all portions which did arrive are disdatnreliable messages are
still sent only when a daemon has the token on the local ring leecéutow control issues.
Unreliable messages are delivered as soon as the full messiage and do not take part in the
main delivery protocol described below.

Reliable messages use the network layer reliability. Ea¢hduarantees reliable transport
within a bounded time, absent processor or network faults. Thus end-toliabdityeis provided
in the case where there are no faults because eventually gaetet will make it across all the
hops and rings to all the daemons which need it. Reliable messagésligered as soon as the
complete message is received since they do not provide anyngrdgrarantees. Therefore, their
delivery is never delayed due to other messages.

FIFO messages provide the same reliability guarantee &bleelmessages. They also
guarantee they will be delivered after all messages fromsdimee session with lower session
sequence values. To provide per-session FIFO ordering, Spreadtimewsst of a small amount
of memory per session. In an active system with many sessignsost is small compared to the
required message buffers and may yield considerable benefit to medsagg.la

Agreed messages are delivered in order consistent with both &ieOtraditional Causal
ordering. This order is consistent across groups as well. To prdwd@Adreed order, the local
daemon delivers messages according to a lexicographic order {fTi8e site id} fields of the
message. The cost is that to totally order a message th@wmlaeust have received a message or
pseudo update message from every other site with values that endawahessage with a lesser
{LTS, site id} will ever be transmitted. Spread minimizes thast because it only requires a
message from every site, not every daemon. The only potentialigr fasethod requires a
sequencer that introduces a centralized resource. Further, a sequeemnuat provide EVS in the
presence of network partitions [MAMA94].

Safe messages are delivered in order consistent with Agreathgrdstability is determined in
a hierarchical manner. Each site uses the Site_aru field tddhlering to generate a site-wide All-
Received-Upto value. This value represents the local site stadiditus. This ARU value is then
propagated to all other sites using the network layer. The miniafuhre ARU values from all of
the sites determines the global message stability. Safegssssqual to or below this value can be
delivered and all delivered messages equal to or below this can be discarded.

Spread employs several techniques to optimize the calculatiansred by the above
orderings, such as hash tables, multi-dimensional linked lists aringa The details of these
optimizations are beyond the scope of this paper due to lack of space.

4. Implementation and practical experience

The Spread system is implemented as a daemon written in AN&hACPOSIX 1003.x
specified interfaces and has been ported to a number of UnixnsyéBmlaris, Irix, BSDI, Linux,
SunOS) and Windows (95 and NT), and a library written in both C and Jaeh 8 linked with
the client application (all in all, about 20,000 lines of code). Tharlbsupports multi-threaded
client applications and is quite small at 25-55 Kbytes depending on the ciaieit&Several sample
applications and documentation for the system are also provided.

We currently support two versions of the Spread daemon. The fiestrabust production
version that is publicly available on the Web. The second is arceseersion that is described in

13

this paper. Both versions share the same library interface andatme service semantics.
Applications may use them interchangeably.

The protocols in the publicly available version of Spread are mmigt in their support of
the wide area settings then described in this paper. In parfithéey employ an adapted ring
structure with direct point-to-point dissemination between the @a#fser than multiple trees). The
research version is not as robust as the production version althougiotbeols described in this
paper are all implemented in it. We use this version as ééesfor current experiments with
membership and flow control.

We have conducted some experiments over the Internet to test teetmess of the
implementation and get some preliminary measurements of penfime. Our testbed consisted of
three sites, Johns Hopkins University in Maryland, University dif@@aia at Santa Barbara, and
Rutgers University at New Jersey, connected over the publicnéitefhe sites consisted of
machines ranging from Sparc-5 to Ultra-2 workstations runnindgstilaris operating system, and
Pentium Pro and Il workstations running Linux and BSDI operating syt@uring the tests the
machines were also under normal user load, and no changes were made to the ggstatng

On average, conducting several experiments each one multicasting 109t messages to
receivers located at every site, the throughput of the systasn755,300 bits per second. The
values varied only slightly depending on which site was the soatevhich were the receivers.
This is logical because in our network all of the optimal dissatian trees happen to be the same.
When the routing was configured non-optimally with UCSB forwardingveenh Hopkins and
Rutgers the throughput showed a 20-50% decrease.

To evaluate the gains achieved by the Spread architecture, aveaalthe same tests with the
production version of Spread which is described above. With this versiavénage throughput
on the same network was 159,387 bits per second. This amounts to a gairiméd foit the new
architecture. Another way to evaluate the benefit of the neshitacture was to look at a
configuration of two sites, Hopkins and UCSB, connected across thedntdihis isolates the
limitations of a ring architecture across high latency linksthis case the difference was even
greater: 1,149,511 bits per second vs. 215,907 bits per second, which amounts tome$.3 ti
improvement. These experimental results reinforce the observations in [GG97].

Other experiments showed that the local area network and theangdelinks can support
different transfer rates since their dissemination and religlslidecoupled. Thus, local only traffic
can be supported at higher rates then wide area traffic. Alperiments showed different hop
links supported widely varying throughput. As a result, pruning can be veptie#eOn local area
networks both versions of Spread achieve excellent performance, coreparabé basic Transis
and Totem protocols. We note that these experiments are only paatyrbefore we have had
adequate chance to tune the new protocols.

The Spread toolkit has been used in several research projects, gg@aotditary system, and
several classes of undergraduate and graduate students. Spread waseased tonnectivity data
between several machines connected at different locations ontéineek. This data, gathered over
six months, was used to evaluate different quorum systems irciicpraetting [AW96]. Spread
serves as the group communication subsystem in the Walrus Web treplisgstem [Shaw98].
Under Walrus, a single Web server is replicated to sectraters of identical server, where each
cluster resides in a different part of the Internet. Spreadilized to disseminate load information
between the Web servers as well as to track the membershierof This allows Walrus to
balance the load between the different clusters. Researchéhe &JSC Information Studies
Institute are using Spread to implement group security protocols [STW98].

14

The JHU Applied Physics Lab, in collaboration with the Naval &erfWarfare Center
(NSWC), is using Spread in an advanced prototype of a combat coygteinrsnamed HiPer-D.
The main reasons for using group communication in HiPer-D are oldb éfficient reliable
multicast dissemination, and synchronized state transfer. Both efaalild¢olerance services that
can maintain real-time response to events even when the sygbeneaces server failures. This
project uses the cross-platform support in Spread to inter-operate witrs@oldiNT machines.

5. Conclusion

We have presented the Spread wide area group communication systebpréae architecture
allows for different link level protocols. A Ring protocol for LAN&d a Hop protocol for WAN
are integrated together with site based routing trees and grtmiprovide a high performance
reliable dissemination network. Efficient global ordering and Btalgrotocols were implemented
on top of this network. Preliminary experiments validate the usefulneéke téchniques utilized in
the system. Spread is operational and publicly available on the Wetlhaa been used in several
research and development projects inside and outside our group.

Bibliography

[A95] Amir, Y. 1995. Replication using Group Communication over a Partitioned Network. Ph.D
Thesis., Institute of Computer Science, The Hebrew Universityefsdlem, Jerusalem,
Israel.

[ACDK98] Anker, T., Chockler, G. V., Dolev, D., and Keidar, |. 1998. Sdaldkroup Membership
Services for Novel Applications. To appeattlie DIMACS book series, proceedings of the
workshop on Networks in Distributed Computing. Edited by: Marios Mavronicolas, Michael
Merritt, and Nir Shauvit.

[ADKM92] Amir, Y., Dolev, D., Kramer, S., and Malki, D. 1992. Transis:cAmmunication sub-
system for high-availabilityln Digest of Papers, The 22nd International Symposium on
Fault-Tolerant Computing Systems, IEEE Computer Society Press, Los Alamitos, CA, 76-
84.

[AMMB98] Agarwal, D. A,, Moser, L. E., Melliar-Smith, P. M., and Bud, R. K. 1998. The Totem
Multiple-Ring Ordering and Topology Maintenance ProtocBCM Transactions on
Computer Systems 16, 2 (May), 93-132.

[AMMAC95] Amir, Y., Moser, L. E., Melliar-Smith, P. M., Agarwal, .DA., and Ciarfella, P. 1995. The
Totem single-ring ordering and membership protod®IM Transactions on Computer
Systems. 13, 4 (Nov.), 311-342.

[AW96] Amir, Y., Wool, A. 1996. Evaluating Quorum Systems over therirge |n Proceedings of
the 26th Annual International Symposium on Fault-Tolerant Computing, June, 26-35.

[BJ87] Birman, K. P., and Joseph, T. 1987. Exploiting Virtual Synchrony stributed Systems.
In 11th Annual Symposium on Operating Systems Principles, Nov, 123-138.

[BR94] Birman, K. P., and Van Renesse, R. 19Rdiable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, March.

[EMS95] Ezhilchelvan, P. D., Macedo, R. A. and Shrivastava, S. K. 199&opNeA fault-tolerant

group communication protocol. roceedings of the 15th IEEE International Conference
on Didtributed Computing Systems (Vancouver, Canada, May/June). IEEE Computer
Society Press, Los Alamitos, CA, 296-306.

15

[FILMZ97]

[GG97]

[H96]

[Hofm96]

[L78]

[LP96]

[MAMA94]

[RBM96]

[RFV96]

[RGS98]

[Shaw98]

[STWOS]

[WMK94]

Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L. 1997.idblReMulticast
Framework for Light-weight Sessions and Application Level Rngm IEEE/ACM
Transactions on Networking, 5, 6 (Dec.), pp. 784-803.

Gu, L., Garcia-Luna-Aceves, J.J. 1997. New Error RecovemyctBtes for Reliable
Networking. In Proceedings of the Sxth International Conference on Computer
Communications and Networking (Los Vegas, Nevada, Sept.)

Huleihel, N. 1996Efficient Ordering of Messages in Wide Area Networks. Masters Thesis.
Institute of Computer Science, The Hebrew University of Jerusalemalmmydsrael.

Hofmann, M. 1996. A Generic Concept for Large-Scale Mudticén Proceedings of
International Zurich Seminar on Digital Communications (Zurich, Switzerland, Februrary).
Springer Verlag.

Lamport, L. 1978. Time, clocks and the ordering of events in &ildised system.
Communications of the ACM, 21, 7, 558-565.

Lin, J.C., Paul, S. 1996. RMTP: A Reliable Multicast Transparstocol. InProceedings of
|EEE INFOCOM. March. 1414-1424.

Moser, L. E., Amir, Y., Melliar-Smith, P. M., and Agarwal,.DA. Extended Virtual
Synchrony. InProceedings of the IEEE 14th International Conference on Distributed
Computing Systems (Poznan, Poland, June). IEEE Computer Society Press, Los #éamit
CA, 56-65.

Van Renesse, R., Birman, K. P., and Maffeis, S. 1996. Horus:e®dbli group
communication systenCommunications of the ACM 39, 4 (Apr.), 76-83.

Rodrigues, L. E. T., Fonseca, H., Verissimo, P. 1996. A dynamiédhgtotocol for total
order in large-scale systems. Selected portions publisheropeedings of the 16th
International Conference on Distributed Computing Systems (Hong Kong, May).

Rodrigues, L.E.T., Guerraoui, R., Schiper, A. 1998. Scalable Atorultichtt. To be
published in Proceedings of the Seventh International Conference on Computer
Communications and Networking. (Lafayette, Louisiana, Oct.)

Shaw, D. 1998Nalrus. A Low Latency, High Throughput Web Service Using Internet-
Wide Replication. Masters Thesis, Department of Computer Science, The Jobwisnd
University, Baltimore, Maryland.

Steiner, M., Tsudik, G., and Waidner, M. 1998. Cliques: A New Appraacbroup Key
Agreement. IrProceedings of the 18th International Conference on Distributed Computing
Systems, (Amsterdam, The Netherlands, May), 380-387.

Whetten, B., Montgomery, T., and Kaplan, S. 1994. A High Pedae Totally Ordered
Multicast Protocol. IfTheory and Practice in Distributed Systems, International Workshop,
LNCS 938, (Sep.)

16

