
An Empirical Study of w-Cutset Sampling for Bayesian Networks

Bozhena Bidyuk
Information and Computer Science

University Of California Irvine
Irvine, CA 92697-3425

bbidyuk@ics.uci.edu

Rina Dechter
Information and Computer Science

University Of California Irvine
Irvine, CA 92697-3425

dechter@ics.uci.edu

Abstract

The paper studies empirically the time-space
trade-off between sampling and inference in the
cutset sampling algorithm. The algorithm sam-
ples over a subset of nodes in a Bayesian network
and applies exact inference over the rest. As the
size of the sampling space decreases, requiring
less samples for convergence, the time for gener-
ating each single sample increases. Algorithm w-
cutset sampling selects a sampling set such that
the induced-width of the network when the sam-
pling set is observed is bounded by w, thus re-
quiring inference whose complexity is exponen-
tially bounded by w. In this paper, we investigate
the performance of w-cutset sampling as a func-
tion of w. Our experiments over a range of ran-
domly generated and real benchmarks, demon-
strate the power of the cutset sampling idea and
in particular show that an optimal balance be-
tween inference and sampling benefits substan-
tially from restricting the cutset size, even at the
cost of more complex inference.

1 Introduction

Sampling is a common method for approximate inference
in Bayesian networks. It is often the only feasible ap-
proach (that has some guarantees) when exact inference is
impractical due to prohibitive time and memory demands.
A significant limitation of all existing sampling schemes,
however, is the increase in the statistical variance for high-
dimensional spaces. In addition, standard sampling meth-
ods fail to converge to the target distribution when the net-
work is not ergodic.

Two well-known variance reduction schemes for sampling
methods are blocking([11]) and Rao-Blackwellisation ([6,
3]). Given two strongly correlated variables, we can either
sample them simultaneously (blocking) or integrate one of

them out (Rao-Blackwellisation). It can be shown that inte-
gration is preferred [16]. While Rao-Blackwellisation can
be applied in the context of any sampling algorithm, we
focus on Gibbs sampling, a member of MCMC sampling
methods group, and its Rao-Blackwellised derivative, cut-
set sampling introduced recently [2].

Given a Bayesian network over the variables
� �� ������� � � �	��

�

, and evidence � , Gibbs sampling [7, 8, 17]
generates a set of samples

����� �
from ��� ��� ��� where each

sample
�
� � ���
� � ��� � � � �
�
 �

is an instantiation of all the vari-
ables in the network. Then we can compute the quantities
of interest, such as posterior probabilities, from the sam-
ples. Given enough samples, the estimated values are guar-
anteed to converge to the exact quantities.

The cutset-sampling scheme [2] allows sampling over any
subset � of the variables

�
, from the distribution ����� � ���

at the cost of inference overhead (to compute ����� � ��� ) for
each sample generation and for each posterior distribution
estimate. By reducing the dimensionality of the sampled
space from

�
to � we are guaranteed to converge over a

smaller sample set, yet the cost of generating each sam-
ple may increase. The hope is that the increased conver-
gence rate will compensate against the incurred inference
overhead. Indeed, the inference overhead created (to com-
pute ����� � � ��� ) can sometimes be bounded if the structure
of the Bayesian network is consulted when selecting the
sampled set. This is because exact inference, that can
be accomplished by variable elimination of join-tree al-
gorithms (spigelhalter88,dechter99,jensen90), is controlled
by the induced-width of the network whose evidence and
sampling nodes are instantiated (the so-called adjusted
induced-width).

Therefore, when a relatively small cutset induces an infer-
ence problem having a bounded adjusted induced-width,
the resulting sampling+inference scheme may be more ef-
fective than either pure sampling or pure inference. This
makes cutset-sampling a framework within which we can
control the trade-off between sampling and inference and
tune its balance to the given Bayesian network.



One point along this tradeoff line was already investigated
in [2], where we demonstrated empirically that sampling
over a cycle-cutset is cost-effective, yielding an order of
magnitude improvement over Gibbs sampling.

The contribution of the current paper is in investigating the
much broader trade-off range between sampling and infer-
ence as a function of w, thus fully evaluating the potential
of this scheme. Specifically, we present an empirical study
of the cutset sampling scheme over a variety of randomly
generated networks, over grid structure networks as well as
over known real-life benchmarks such as CPCS networks.
We plot the effect of a gradual change in the cutset-size,
as controlled by its adjusted induced width w, on the over-
all efficiency of w-cutset sampling and show that w-cutset
sampling can be highly cost-effective over a range of w’s
(beyond the case of cycle-cutset). From these experiments
we can conclude that cutset-sampling provides a frame-
work within which the user can seek the optimal balance
between inference and sampling and tune it to the given
network instance.

In Section 2 we provide preliminaries and overview of
Gibbs sampling and section 3 review the cutset-sampling
scheme. Section 4 discusses statistical bounds of the errors
derived from the sampling variance and section 5 introduce
the empirical evaluation which is the primary contribution
of this paper. Section 6 provides summary and conclusions.

2 Background

DEFINITION 2.1 (belief networks) Let
� �� ������� � � �	��

�

be a set of random variables over multi-
valued domains � � � � � ��� � � � � � ��
 � . A belief network
(BN) is a pair ��� � � � where � is a directed acyclic
graph on

�
and � � � ��� ��� � ����� � � 	 ��
 ��� � � �
� �

is the
set of conditional probability matrices associated with
each

���
. A belief network is ergodic if any assignment� � ��� ����� � � � � 
 �

has non-zero probability, defined by
��� � ����� � � � � � 
 � ��� 
� � � ��� � � � ������� ����� � . An evidence � is an
instantiated subset of variables E.

DEFINITION 2.2 (induced-width, cycle-cutset) The
width of a node in an ordered undirected graph is the
number of the node’s neighbors that precede it in the
ordering. The width of an ordering d, denoted w(d), is the
width over all nodes. The induced width of an ordered
graph, w*(d), is the width of the ordered graph obtained
by processing the nodes from last to first. When node X is
processed, all its preceding neighbors are connected. A
cycle-cutset of an undirected graph is a subset of nodes in
the graph that, when removed, results in a graph without
cycles. A cycle-cutset of a directed graph (also called
loop-cutset) is a subset of nodes that when removed the
resulting graph is a polytree.

2.1 Gibbs sampling

Given a Bayesian network � , Gibbs sampling generates a
set of samples

��� � ���
� � � �
� � ��� � � � �
�
 �
where t denotes a sam-

ple and
� � �

is the value of
���

in sample t. Given a sample
� �

,
(evidence variables remain � 	 � � � ), a new sample is gener-
ated by assigning a new value

� �"! �� to each variable
���

from its probability distribution conditioned on the values
of the remaining variables:

� �"! ��$# ��� � � � � �&% � � � ��� (1)

Here and elsewhere we will use notation
� % �'�

to describe
a set of variables in X excluding

���
.

Once all the samples are generated, we can answer any
query using the samples. In particular, posterior marginal
belief ��� � � � ��� for each variable

���
can be estimated by

averaging the conditional marginals:

(��� � � � ��� � 
) *+
� � � ��� � � � � � % � � � (2)

As the number of samples increases, the probabilities(��� � � � ��� converge to the exact ones [19, 17] under a few
assumptions of the underlying Markov chain. The main
requirement for convergence is that the network is ergodic.

In Bayesian networks, the value ��� � � � �
� % � �	� ��� depends
only on the values of the nodes in the Markov blanket of
variable

���
consisting of the node’s parents, children, and

parents of its children. Therefore [19],

��� � � � � � % � �	� ��� �-, ��� � � � � ������ ����� � ./10�2 �436587:9���; ��� � �0 � � ����<3 �
(3)

3 Cutset-sampling

This section gives a brief overview of the cutset sam-
pling method introduced in [2]. Given a subset of vari-

Cutset Sampling
Input: A belief network =?>�@ , cutset ACBCD6AFEHG<I I I G&A�JLK , evidenceM .
Output: A set of samples N<O , PQBSR�I I I TVU .
1. Initialize: Assign random value NHWX to each A XZY A .
2. Generate samples:
For t = 1 to T, generate a new sample NHO as follows:
For i = 1 to m, compute new value NHOX for variable A X as follows:
2.1 Using a join-tree clustering or variable elimination algorithm[ T\A]=�A X GH=?N O ^ X _ G M @:@ , compute:` =?N X @aB ` =?N Xcb N O ^ X _cG M @ (4)

and Sample a new value NHOX for A X , from

` =?N X @ End For i, End For
t

Figure 1: Cutset-sampling Algorithm

ables �ed �
, called cutset or sampled variables � �



� � ��� � � ��� � � � ��� � , cutset-sampling generates samples � � ,
t=

 � � � )

, over subspace � . Similar to Gibbs sampling, a
new sample � �"! � is obtained by assigning a new value
�
� �"! � �� to each variable � ��� � , sampled from the con-

ditional probability distribution:

����� � � � � % � � � ��� (5)

Given T samples, the posterior marginals for the sampled
variables can be estimated as usual by:

����� � � ��� � 
) +
� ����� � � � �
% � �	� ��� (6)

For variables that are not in the cutset we compute by exact
inference the quantities ��� � � � � � � ��� and then average:

��� � � � ��� � 
) +
� ��� � � � � � � ��� (7)

The key idea of cutset sampling is that the relevant con-
ditional distributions (eq. (4)) can be computed by exact
inference algorithms whose complexity is tied to the net-
work’s structure and is improved by conditioning on the
observed variables. We use � ) � � � � ��� as a generic name
for a class of variable-elimination or join tree-clustering al-
gorithms that compute the exact posterior beliefs for a vari-
able

�
given evidence � [15, 4, 12]. The cutset-sampling

algorithm is given in Figure 1. It is known that the com-
plexity of � ) � � � � ��� is time and space exponential in the
induced-width of the network’s moral graph whose evi-
dence variables � are removed, namely, in the adjusted
induced width. Therefore, given a parameter � , it is easy
to describe and control the complexity of cutset-sampling
using a notion of � -cutset.

DEFINITION 3.1 (w-cutset) Given an undirected graph� � ��� � � � , if C is a subset of V such that when removed
from � , the induced width of the resulting graph is less or
equal � , then C is called a w-cutset of � and the adjusted
induced width of G relative to C is w.

It is easy to show that:

THEOREM 3.1 (Complexity of sample generation) If �
is a w-cutset, the complexity of generating a single sam-
ple by cutset sampling is 	 � � � ��
 � 
c��
 ��
 � where � bounds
the variables domain size, and

�
is the number of nodes.

Computing ��� ��� � ��� using equation (7) requires computing
��� � � � � � � ��� for each variable which is also exponential in
� , if � is a � -cutset.

THEOREM 3.2 (Complexity of posterior compuation)
Given a w-cutset C, the complexity of computing the
posterior of all the variables using cutset sampling over T
samples is 	 � )�
 � � ��
 � 
6��
 ��
 � .
Consequently, for the special case of cycle-cutset, both
sampling and estimating the marginal posterior are linear

in the size of the network multiplied by the cutset size and
the number of samples.

Clearly, we should seek minimal w-cutset, those that do
not include strict subsets that are also w-cutsets. However,
determining if a w-cutset is minimal is costly, requiring to
decide if a subgraph has an induced-width below w, which
is time exponential in w. In our experiments we attempt to
generate small w-cutset but will not insist on minimality. A
cycle-cutset is a w-cutset when w is the family size. Yet, it
is often not a minimal w-cutset.

Values ��� � � � ��� obtained by cutset sampling are (1) guaran-
teed to converge to the exact quantities ([2]) and (2) require
fewer samples to converge than full sampling ([9, 3, 16]).

4 Computing an error bound

Gibbs sampling provides a simple sampling scheme for
Bayesian networks that is guaranteed to converge to the
correct posterior distribution in ergodic networks. The
drawback of Gibbs sampling compared to many other sam-
pling methods is that it is hard to estimate how many sam-
ples are needed to achieve a certain degree of convergence.
It is possible to derive bounds on the absolute error based
on sample variance for any sampling method if it gener-
ates independent samples, for example forward sampling
and importance sampling. In Gibbs and other Monte Carlo
methods, samples are dependent, and we cannot apply the
confidence interval estimate directly.

We can create independent samles restarting the chain after
every T samples. Let

(��� � � � ��� be an estimate derived from
a single chain � ��� 
 ��� � � ����� of length T (meaning con-
taining T samples) as defined in equations (2)-(7). The es-
timates

(��� � � � ��� are independent random variables. Every
time we restart the chain, we randomly assign new values
to each sampling variable and this assignment is indepen-
dent from the results generated in previous chains. If we
generate a total of M such chains, the posterior marginals(��� � � ��� will be an average of the M results obtained from
each chain:

(��� � � ��� � 

�
�+
� � �

(��� � � � ��� (8)

Then, we can use the well-known sample variance estimate
for random variables:

� � � 

���S


�+
� � � �

(��� � � � ��� � (��� � � ���	� �

An equivalent representation for sampling variance is:

� � � � �� � � (� �
� � � � ��� �!� (� �

� � � ������S
 (9)

where
� �

is easy to compute incrementally storing only the
running sums of

(��� � � � ��� and
(� �
� � � � ��� . By the Central



Limit Theorem, ergodic mean converges to Normal distri-
bution � ��� ��� � . Therefore, we can compute confidence in-
terval in the


���� � 
 � , � percentile used for random vari-
ables with normal distribution for small sampling set sizes
([10]). Namely:

�
�
��� � � ��� �!� (� � � � ���
	���
 ��� � ��� � � �� � � �	��� ��
 � ,

(10)
where ��
 ��� � ��� � � is a table value from t distribution with
� � � 
 � degrees of freedom. In general, this method may
yield confidence interval that is too large to be useful since
the sample variance generally increases fast with size of the
network in the standard Gibbs sampling. Cutset sampling
allows us to sample a smaller variable set that results in a
smaller sampling variance S and smaller error estimate. In
the experimental section, we provide results showing � ���
confidence interval computed for Gibbbs sampler and cut-
set sampling restarting Markov chain 20 times.

5 Selecting w-cutset

We compared full Gibbs sampling with cycle-cutset sam-
pling and with w-cutset sampling for a range of w-values,
� ��� ��� ��� � �

. In all empirical studies, cycle-cutset of the
network was found using the mga algorithm ([1]). We also
devised a simple scheme for finding the smallest w-cutset
for a given w. Our scheme starts with a set C that contains
all nodes in X except evidence E: � � � % � . Then, we
first obtain 1-cutset by removing from C (in some order) all
such nodes that the adjsuted induced width w of the min-
fill ordering of nodes

� % � � � is bounded by � � 

. The

1-cutset becomes a starting sampling set for selection of 2-
cutset. We repeat this process selecting a (w+1)-cutset from
w-cutset until maximum adjusted induced width � � ��� is
reached. Following this scheme, nodes with smaller de-
grees will be removed from the sampling set first unless
they are a part of a large family.

Proposed scheme is not optimal and other heuristics can be
used instead. However, it guarantees, for the purpose of our
empirical study, that (w+1)-cutset � 
 ! � is always a proper
subset of the w-cutset � 
 : � 
 ! ��� � 
 .

6 Experiments

6.1 Methodology

The primary goal of our empirical study was to investigate
performance of w-cutset as a function of w. We compared
the performance of Gibbs sampling, w-cutset sampling for
different values of w and a special case of w-cutset sam-
pling, cycle-cutset sampling. Our benchmarks are several
CPCS networks, grid networks, 2-layer networks, and ran-
dom networks. All the sampling algorithms were given
a fixed time bound. In all networks, except cpcs54 and

cpcs179 where exact inference is easy due to small network
size and low induced width (w*=15 for cpcs54 and w*=8
for cpcs179), the sampling algorithm were allowed  "! ���
of the time necessary to generate the exact values.

In order to be able to generate confidence intervals of the
absolute error, for all sampling algorithms, we ran M=20
independent sampling chains of size T where T is the max-
imum number of samples that an algorithm could gener-
ate within fixed period of time.The resulting chain length
for each sampling algorithm is given in Figure 5(a). At
the end of each chain m, we obtained an approximation(��� � � � � ��� for the posterior marginals over T samples as
shown in eq.(8). We obtained a final estimate by averaging
over

(��� � � � � ��� values. For comparison, we also computed(��� � � � ��� using a single chain with
��
6)

samples in each.

We computed two error measures for each benchmark and
each algorithm. We computed Mean Square Error (MSE)
between the exact posterior marginals ��� � � � ��� and the ap-
proximate posterior marginals

(��� � � � ��� :� � � � 

� � � � � � � � � + � +# � ���"� ����� � � � ��� � (��� � � � ���	� �

and the absolute error:$ � 
� � � � � � ��� � � + � +���15 # � ���"� � (��� � � � ��� � ��� � � � ���	�
The exact posterior marginals were obtained via bucket-
tree elimiation algorithm ([4]). All error measure were av-
eraged over the number of instances tried.

Additionally, we evaluated the confidence interval estimate
as described eariler since it provides a measure of the sam-
pling algorithm performance where the comparison to the
exact posterior marginals is not possible. We computed
sampling variance

� �
from eq.(9) and � ��� confidence in-

terval (estimated absolute error) from eq:(10):$&%(' ) � � � � � � %(' %+* � � ) �, �-� (11)

For each benchmark network, we computed average esti-
mated absolute error

$.%(' )
:$&%(' ) � 
� � � � � � ��� � � + � +���15 # � ����� $&%(' ) � � � �

As noted earlier, estimated confidence interval can be too
large to be practical. Thus, we compared

$/%(' )
with ex-

act average absolute error
$

and MSE to address two ba-
sic practical issues: first, whether

$.%(' )
provides a feasi-

ble estimate of the absolute error, and second, whether the
estimated absolute error

$.%(' )
properly reflects the perfor-

mance of the algorithm as compared to the average absolute
error and average Mean Square Error.

For comparison, we also show the performance of Iterative
Belief Propagation (IBP) algorithm on each benchmark af-
ter 25 iterations. IBP is an iterative message-passing algo-
rithm that performs exact inference in Bayesian networks



without loops ([19]). Applied to Bayesian networks with
loops. it computes approximate posterior marginals. The
advantage of IBP as an approximate algorithm is that it re-
quires linear space and usually converges very fast.

6.2 Benchmarks

CPCS networks. CPCS networks are derived from the
Computer-based Patient Case Simulation system ([18, 20]).
The nodes of CPCS networks correspond to diseases and
findings and conditional probabilities describe their corre-
lations.

cpcs54 network consists of � �����
nodes and has a rela-

tively large cycle-cutset of size
� � � ��� 
��

( � ��� �
of the

nodes). Its induced width is 15. The performance of Gibbs
sampling and cutset sampling is shown in Figure 2(a). The
chart title contains the following notation: � - number of
nodes in the network;

� � � - average number of evidence
nodes;

� � � � - size of cycle-cutset; �	� - adjusted induced
width of the network. The results are averaged over 10 in-
stances with different evidence,


 �
�
observed nodes. The

first graph, Figure 2(a), shows the means square error in the
posterior marginals. The first point corresponds to Gibbs
sampling (  ��	� � 


), the last point represents the cycle-
cutset (or LC=loop-cutset), w*=15. In between, we plot
the results for w-cutset sampling for a range of w* from
2 to 6. As we can see, w-cutset sampling improves over
cycle-cutset sampling and IBP for w=2 and w=3 and then
deteriorates for �	��� � . The same behavior is reflected in
the absolute error measure shown in Figure 2(a).

cpcs179 network consists of N=179 nodes. It has a small
cycle-cutset of size

� � � � ��

but with a relatively large

corresponding adjusted induced width w*=8. w-cutsets
with w=2 and w=3 are also small compared to the size of
the network, but generate more samples per time period and
achieve better accuracy than cycle-cutset sampling (Fig-
ure 2(b) and approach the accuracy of IBP (that does very
well on those instances) with respect to both MSE and Ab-
solute Error measure. All cutset sampling implementations
are far superior to Gibbs sampling.

cpcs360b is a larger CPCS network with 360 nodes and
adjusted induced width of 21 and cycle-cutset

� � � � � � ! .
Exact inference on this network requires about 20 min with
2GHz Intel processor. We have allocated 12 min for each
sampling algorithm. As we can see from Figure 2(c)), in
terms of both MSE and Absolute Error, the cycle-cutset
sampling yields comparable performance to w-cutset sam-
pling for � � � ���

. The 2-cutset sampling appears to
be slightly better than the rest, but not significantly given
that sampling algorithm accuracy tends to fluctuate (even
while converging). All cutset sampling implementations
substantially outperform Gibbs sampling taking advantage
of both sampling space reduction and greater efficiency in
generating samples. cpcs360b is one of the networks where

cpcs54, N=54, |E|=3, |LC|=15, w*=15
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(a) cpcs54, time bound=16 seconds.

cpcs179, N=179, |E|=28, |LC|=8, w*=8
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(b) cpcs179, time bound=12 seconds.

cpcs360b, N=360, |E|=32, |LC|=26, w*=21
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(c) cpcs360b, time bound=12 minutes.

Figure 2: CPCS networks, 10 instances each.



cpcs422b, N=422, |LC|=47, w*=23
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Figure 3: cpcs422b, 3 instances, time bound=40 minutes.

several instances of cutset sampling generate samples faster
than Gibbs sampling. All cutset samling implementations
outperform IBP as well although require more time.

cpcs422b is the largest of the CPCS networks. It consisted
of 422 nodes with cycle-cutset size

� � � � � � � and induced
width �	� � ���

. The results are shown in Figure 6.2. The
cpcs422b presents an example of a network where we in-
creasing w can be done efficiently. The performance of w-
cutset is good in a wide range of � �"��� 


and only begins
to decline (slowly) at � � � . It outperforms cycle-cutset
sampling on � ��� � 


. Gibbs sampling was especially slow
on cpcs422b and could not compete with any of the cutset
sampling instances.

Grid networks. Grid networks with 450 nodes (15x30)
were the only class of the networks where full Gibbs sam-
pling was able to generate samples considerably faster than
cutset sampling (nearly 10 times faster) and outperform
cutset sampling. At the same time, we observed that loop-
cutset with w*=3 did not perform best and we were able
to slightly improve performance reducing the cutset size 3-
cutset (w*=3) and 5-cutset (w*=5). The results are shown
in Figure 4(c).

Random networks. We generated a set of random net-

2layer, R=50, N=200, P=3, |LC|=17, w*=16
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(a) 2layer networks, time bound=25 sec.
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(b) Random networks, time bound=60 seconds.

grid, 15x30, |E|=40, |LC|=169, w*=20
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(c) Grid networks, 450 nodes (15x30), time bound=100 sec-
onds.

Figure 4: Randomized networks , 10 instances each.



works with binary nodes. Each network contained total of
200 nodes. First 50 nodes,

� � ����� � � �	� * % �
, were designated

as root nodes. Each non-root node
�'�

was assigned 3 par-
ents (selected randomly from

� � ����� � � �	��� � ��� ). The con-
ditional probability table values ��� ��� � ��� ��� � ��� �	� were
chosen randomly from uniform distribution. We collected
data for 10 instances (Figure 4(b), bottom). For random
networks, R is the number of root nodes, and P indicates
number of parents for each non-root node. We can see
that cycle-cutset (of average size of

� � � � ���
nodes and

w*=3) performs worse than any other cutset. Cutset sam-
pling significantly improves by reducing the size of cutset
while maintaining the same induced width �	� � �

. The
accuracy improves as well when increasing the size of the
cutset to reduce induced width to 2. The second chart on
Figure 4(b) show the � � percent confidence estimate for
each sampling set with 20 restarts and the exact average
absolute error. As we can see, reducing sampling set size
results in much lower absolute error and much better error
bound estimate. Those results also indicate that it maybe
reasonable to use the confidence interval estimate as the
criteria for the quality of the answer.

2-Layer networks. We generated a set of random 2-layer
networks with binary-valued nodes. Each network con-
tained total of 200 nodes. First 40 nodes,

� � ����� � � �	� * % �
,

were designated as root nodes forming the top layer of
the network. The remaining nodes were assigned 3 par-
ents out of the root nodes. Those nodes formed the sec-
ond layer of the network. The conditional probability ta-
ble values ��� ��� � ��� ��� � ��� �	� were chosen randomly from
uniform distribution. We collected data for 10 instances
(Figure 4(b)). On those types of networks, Iterative Be-
lief Propagation often does not perform well. And, as our
experiments show, cutset sampling outperfoms both Gibbs
sampling and IBP (although it takes longer time to con-
verge than IBP).

6.3 Summary

Comparing performance of cutset sampling on the cut-
sets of different size with different corresponding induced
width w* (induced width of the network with cutset instan-
tiated), we observed two main results. First, there exists
a range of w values where w-cutset sampling achieves an
optimal performance. Increasing w, up to some threshold
value, compensates for the incurred overhead in exact in-
ference due to variance reduction (Rao-Blackwellisation)
and, in some instances, also due to increased speed of gen-
erating samples. From the Figure 5(b), showing how cycle
cutset size changes with w, we can see that the performance
of w-cutset begins to deteriorate when increase in w results
only in a small reduction of sampling set size. A good ex-
ample is cpcs360b network. Starting with w=4, increasing
w by 1 results in the reduction of samling set only by 1
node.

Gibbs LC w*=2 w*=3 w*=4 w*=5 w*=6 w*=7 w*=8 w*=9
cpcs54 1000 700 700 450 300 200 100 - - -
cpcs179 130 100 175 120 40 10 - - - -
cpcs360b 650 1000 1200 1000 800 450 300 190 - -
cpcs422b 100 200 110 140 150 130 130 140 140 110
grid 2000 500 300 260 150 105 60 35 20 -
random 2000 1000 1400 700 450 300 140 75 - -
2layer 200 700 900 320 150 75 40 - - -

#samples

(a) � samples in one markov chain.

Gibbs LC w*=2 w*=3 w*=4 w*=5 w*=6 w*=7 w*=8 w*=9
cpcs54 51 16 25 17 15 12 11 - - -
cpcs179 151 8 18 13 10 7 - - - -
cpcs360b 328 26 28 21 17 15 14 13 - -
cpcs422b 392 42 79 64 56 52 48 42 37 36
grid 410 169 163 119 95 75 60 50 13 -
random 190 30 61 26 25 24 18 17 - -
2layer 185 17 22 15 13 12 11 - - -

Sampling Set Size

(b) Average Sampling Set Size.

Figure 5: � samples and sampling set size for Gibbs sam-
pling and cutset sampling as a function of w.

The table in Figure 5(a), shows how many samples each
sampling algorithm generated within a fixed time period
allocated for 1 chain. As expected, Gibbs sampling of-
ten generates the most samples. Yet, in some instances,
where sampling set size is small enough to compensate
for increase in w, cutset sampling generates more samples.
Overall, the w-cutset sampling always outperformed Gibbs
sampling and offered considerable improvement over IBP
on several networks. The cycle-cutset sampling performed
well, but in most cases yielded in performance to the w-
cutset.

Our second set of observations are about the comparison of
the three different error measures collected. We observed
that average absolute error and MSE usually correlate well
with each other and with the average estimated absolute er-
ror ( � ��� confidence interval). Clearly, there are a few ex-
ceptions. In random networks on Figure 4(b) and grid net-
works on Figure 4(c), we observe spikes in estimated abso-
lute error, in agreement with MSE, where the actual abso-
lute error is the smallest. However, overall, confidence in-
terval reflects accurately and with a reasonable error bound
and could be used as an error estiamte where exact errors
can not be computed.

Finally, we observed that the final approximation values(��� � � � ��� were strongly dependent on the total number of
samples

� 
 )
, but not on the number of chains used (we

do not present actual values here for lack of space).



7 Related Work and Conclusions

In this paper, we defined a notion of w-cutset and inves-
tigated the performance of w-cutset sampling, combining
sampling and exact inference, as a function of the adjusted
induce width parameter w that controls the complexity of
the exact inference. The results suggest that there exists a
range of w values for each network where w-cutset sam-
pling performs best. Thus, user can find an optimal trade-
off between sampling and inference by examining the w-
cutset sampling for different w values.

To reduce sampling variance, it is desirable to maximize
w, up to some threshold value, and minimize sampling set
size. Samling set size as a function of w can be used as an
indicator of where the threshold is: increment w untilt he
increase in w results only in minor reduction in sampling
set size and requires substantially more time to compute
new sample. Alternatively, the user can obtain results for
several w-cutset and choose as a threshold the w where es-
timated confidence interval begins to increase.

We have investigated in this paper only the results for
two extreme values of the number of independent markov
chains M. We examined M=1 and M=20. We plan to con-
tinue this investigation and study the performance of the
cutset sampling and confidence interval estimate as a func-
tion of M. We do not expect large variations in the perfor-
mance of cutset sampling as our preliminary observations
strongly indicate that accuracy of the sampling results is
dependent on the total number of samples, not the number
of chains. However, having fewer but longer chains may
lead to a tighter absolute error bound.

Previously, sampling from a subset of variables was suc-
cessfully applied to a particle factoring using importance
sampling for Dynamic Bayesian networks (DBNs) [5]. In
that study, the authors demonstrated that sampling from a
subspace combined with exact inference yields a better ap-
proximation. However, in [5], the authors narrowly target
the class of DBN networks and Particle Filtering scheme
in particular where each time slice contains nodes indepen-
dent from previous time slice and, therefore, are easy to
sum over. The cutset sampling, first defined in [2], is a
generalization of Rao-Blackwellisation scheme applicable
to any Bayesian network, its performance defined in terms
of adjusted induced width parameter that user can control
to tune the algorithm to a particular network.

A different combination of sampling and exact inference
for join trees was described in [14] and [13]. Each of
those approaches proposes a scheme for sampling locally
within a cluster and then combining those distributed re-
sults efficiently (introducing additional errors in the result).
The cutset sampling is fundamentally different from the
schemes above in that it does sampling on the full network
and only takes advantage of the network structure to reduce

the complexity of exact inference.

In [11], exact inference was used in combination with
blocking Gibbs sampling. Again, the cutset sampling is
different from the proposed approach in that it sums out
variables instead of blocking.
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