
The Impact of AND/OR Search Spaces on Constraint
Satisfaction and Counting

Rina Dechter and Robert Mateescu

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter, mateescu}@ics.uci.edu

Abstract. The contribution of this paper is in vieweing search for constraint
processing in the context of AND/OR search spaces and in demonstrating the
impact of this view on solutions counting. In a companion paper we introduce
the AND/OR search space idea for probabilistic reasoning. In contrast to the tra-
ditional (OR) search space view, the AND/OR search tree displays some of the
independencies present in the graphical model explicitly and may sometimes re-
duce the search space exponentially. Familiar parameters such as the depth of a
spanning tree, tree-width and path-width are shown to play akey role in charac-
terizing the effect of AND/OR search graphs vs the traditional OR search graphs.
Empirical evaluation focusing on counting demonstrates the spectrum of search
and inference within the AND/OR search spaces.

1 Introduction

Graphical models such as constraint networks [1], cost networks, Bayes networks [2],
Markov random fields and influence diagrams [3] are knowledgerepresentation lan-
guages that capture independencies in the knowledge and allow both concise repre-
sentation and efficient graph-based algorithms for query processing. Algorithms for
processing graphical models are of two types:inference-basedandsearch-based. The
latter class typically traverses the problem’s search space, where each path represents a
partial or a full solution and can be accomplished in linear space and exponential time.
Inference algorithms provide the best worst-case guarantees, they are time exponential
in the tree-width of the graph model. However, they also require space exponential in
the tree-width. The virtue of search algorithms is that theycan accommodate a spectrum
of bounded memory algorithms, from linear space to tree-width bounded space.

In contrast to inference algorithms which exploit the independencies in the underly-
ing graphical model effectively (e.g. variable elimination, tree-clustering), pure search
is at risk of loosing this information because it is hidden inthe linear structure of the
search space graph. Advanced search algorithms developed for constraint satisfaction,
and more recently for probabilistic reasoning can be viewedas attempting to overcome
this difficulty.

The primary contribution of this paper is in viewing search for constraint processing
in the context ofAND/OR search spacesrather thanOR spaces. We demonstrate how
the AND/OR principle can exploit independencies in the graph model to yield exponen-
tially smaller search spaces. In the companion paper we introduced the AND/OR idea

for reasoning with probabilistic networks [4]. Here we focus on constraint process-
ing with its traditional tasks of deciding consistency, finding a solution and counting
the solutions. In particular, we present and analyze counting algorithms when formu-
lated as searching an AND/OR search tree or graph rather thansearching their OR
counterparts and provide initial empirical evaluation along the full spectrum of space
and time. Specifically, we compare counting algorithms on the AND/OR search space
when pruning is accomplished by two forward-checking strategies and show how their
performance is affected by different levels of caching and how it is compared to bucket-
elimination, as a function of problem tightness.

Following some preliminaries (section 2) we present an overview of the notion of
AND/OR search tree and graphs specialized for constraint processing (sections 3 and
4). Subsequently we discuss unique aspects to constraint problems (section 5), describe
counting algorithms formulated over the AND/OR space (section 6) and demonstrate a
spectrum of these algorithms empirically (section 7). Section 8 provides discussion and
related work.

2 Preliminaries and Background

A Reasoning graphical-modelis a tripletR = (X, D, F) whereX a set of variables
X = {X1, ..., Xn}, D is their respective domains of valuesD = {D1, ..., Dn} and
F is a set of real-valued functionsF = {F1, ..., Ft}. Each functionFi is defined over
a subset of variablesSi, called its scope,Si ⊆ X . The primal graphof a reasoning
problem,GR, has a node for each variable, and any two variables appearing in the
same function’s scope are connected.

In constraint networks, denotedR = (X, D, C), the functionsF are constraints
C. Each constraint is a pairCi = (Si, Ri), whereSi ⊆ X is the scope of the relation
Ri defined overSi, denoting the allowed combination of values. A solution is an as-
signment of values to each variable that does not violate anyconstraint. The primary
queries over constraint network is to determine if the network is consistent, and if it is,
to find one or all solutions. A related task is to compute the number of solutions.

Induced-graphs, induced width and path-width. An ordered graphis a pair,
(G, d), whereG is an undirected graph, andd = X1, ..., Xn is an ordering of the
nodes. Thewidth of a nodeis the number of the neighbors that precede it in the or-
dering. Thewidth of an orderingd, is the maximum width over all nodes. Theinduced
width of an ordered graph, w∗(d), is the width of the induced ordered graph obtained as
follows: nodes are processed from last to first; when nodeX is processed, all its preced-
ing neighbors are connected. Theinduced width of a graph, w∗, is the minimal induced
width over all its orderings. The set of maximal cliques (also called clusters) in the in-
duced graph provide a tree-decomposition of the graph. The tree-width is the maximal
number of variables in a cluster of an optimal cluster-tree decomposition of the graph
[5]. It is well known that the induced-width of a graph is identical to itstree-width. The
path-width of a graph is the smallest induced-width along a chain-like decomposition.
The optimal path-width is denotedpw∗. For various relationships see [5, 6].

AND/OR search spaces.An AND/OR state space representation of a general state
space problem formulation is defined by a 4-tuple(S, O, Sg , s0): S is a set of states,

which can be OR states or AND states (the OR states represent alternative ways for
solving the problem while the AND states often represent problem decomposition into
subproblems, all of which need to be solved);O is a set of operators (an OR operator
transforms an OR state into another state, and an AND operator transforms an AND
state into a set of states); there is a set of goal statesSg ⊆ S and a start nodes0.
Example problem domains modeled by AND/OR graphs are two-player games, parsing
sentences, Tower of Hanoi.

The AND/OR states space model induces an explicit AND/OR search graph. Each
node is a state and its child nodes are those obtained by applicable AND or OR op-
erators. The search graph includes astart node. The terminal nodes (having no child
nodes) are marked as Solved (S), or Unsolved (U).

A solution subgraphof an AND/OR search graphG is a subtree which: (1) con-
tains the start nodes0; (2) if n in the subtree is an OR node then it contains one of its
child nodes inG and if n is an AND nodes it contains all its children inG; (3) all its
terminal nodes are ”Solved” (S). The primary tasks defined over an AND/OR graph
is to determine the value of the root node, and if it is solved,to find a solution subtree
with optimal cost if a cost is defined.

3 AND/OR Search Tree for Constraint Networks

Consider a constraint networkR = (X, D, C) and its primal graphG. Let T be a DFS
spanning tree of its primal graph rooted atX0. For each nodeY , ch(Y) is the set of its
children inT . We will now define the AND/OR search tree ofR relative toT .

Definition 1 (AND/OR search tree based on DFS tree).Given a constraint network
R and its DFS spanning treeT rooted atX0, the AND/OR search tree ofR based onT ,
denotedST (R) (or just ST whenR is unambiguous) is defined as follows. The nodes
in the search tree are either OR nodes (e.g.,X, Y), denoting variables, or AND nodes
denoting variable-value assignment pairs (e.g.,〈X, v〉). The path of〈X, v〉 is the path
from the initial state (the rootX0) to 〈X, v〉, which corresponds to aconsistentpartial
value assignments to all the variables along the path. The successors of a node in the
AND/OR search tree are defined as follows:

– The successor-nodes of an OR nodeX are all its possible value assignments{〈X, v〉
|v ∈ DX} that are consistent with the path to〈X, v〉. (The path alternates OR and
AND nodes like (X0, 〈X0, v0〉, X1, 〈X1, v1〉, ..., Xi, 〈Xi, vi〉...)

– The successor-nodes of an AND node〈X, v〉 are all child nodes,ch(X), in T .

The consistency of a partial path is determined by considering all the relevant con-
straints whose scopes are contained in the path.

Definition 2 (labeling of AND/OR nodes).Given an AND/OR treeST (R), a terminal
AND node (no child nodes inT) is always labeled “Solved” or “1”. A terminal OR
node is always “Unsolved” or “0” (no consistent value assignments). The labeling
of internal nodes is defined recursively and is dependent on the specific task and the
specific graphical-model. For the task of finding a solution an OR internal node is

X

Y Z

T R L M

(a) A constraint tree

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

(b) OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

(c) AND/OR search tree with one of its
solution subtrees

Fig. 1. OR vs. AND/OR search trees; note the connector for AND arcs

labeled “1” iff one of its successor nodes is “1” and an AND internal node is labeled
“1” iff all its successor nodes are labeled “1”. For countingthe number of solutions,
an OR node is the sum of the values of its successors and an AND node is labeled by
their product.

The virtue of an AND/OR search tree representation is that its size may be far
smaller than the traditional OR tree representation.

Example 1.Consider the graph coloring problem in Figure 1(a), over domains{1, 2, 3}.
Its OR search tree along the DFS ordering (X, Y, T, R, Z, L, M) is given in Figure
1(b) and its AND/OR search tree based on the DFS treeT rooted atX , is given in
Figure 1(c). A solution subtree is highlighted in Figure 1(c). We see that the size of
the traditional OR search tree isO(27), while the size of the AND/OR search tree is
O(4 · 23) (we ignore the OR levels when counting nodes because they incur at most
a constant factor and we believe a non-naive implementationdoes not need to express
OR nodes explicitly). Notice that if we add one constraint betweenX andR to this
problem, we can still use the same DFS treeT yielding a similar structure AND/OR
search tree, except that some values of variableR are no longer consistent with all their
predecessors on the partial path. For example, in that case,〈R, 1〉 in Figure 1c will not
be present under the subtree of〈X, 1〉.

Legal trees. The construction of AND/OR search trees can use as its basisnot just a
DFS spanning tree but a larger collection of spanning trees that we calllegal trees. This
generalization accommodates many more trees and can therefore yield better AND/OR
search spaces.

Definition 3 (legal tree of a graph).Given an undirected graphG = (V, E), a di-
rected rooted treeT = (V, E′) defined on all its nodes islegal if any arc ofG which
is not included inE′ is a back-arc, namely it connects a node to an ancestor inT . The
arcs inE′ may not all be included inE. Given a legal treeT of G, theextended graph
of G relative toT is defined asGT = (V, E ∪ E′).

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Fig. 2. Condensed OR graph for
the tree problem in Figure1a

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Fig. 3. The AND/OR search graph of the tree
graphical-model in Figure 1a

Clearly, any DFS tree and any chain are legal trees. Searching the OR space cor-
responds to searching a chain that is a special legal tree. Itis easy to see that search-
ing an AND/OR tree is exponential in the depth of the legal tree. Finding a legal or
a DFS tree of minimal depth is known to be NP-complete. However the problem was
studied, and various greedy heuristics are available. The following relationship be-
tween the induced-width and the depth of legal trees is well known [7, 1]. Given a
tree-decomposition of a primal graphG havingn nodes, whose tree-width isw∗, there
exists a legal treeT of G whose depth,m, satisfies:m ≤ w∗ · log n. In summary (for
more details on the impact of legal trees see [4]),

Theorem 1. Given a graphical modelR and a legal treeT , its AND/OR search tree
ST (R) is sound and complete (contains all and only solutions) and its size isO(n ·
exp(m)) wherem is the legal tree’s depth. A graphical model that has a tree-width w∗

has an AND/OR search tree whose size isO(exp(w∗ · log n)).

4 AND/OR Search Graphs

It is often the case that certain states in the search tree canbe merged because the subtree
they root are identical. Any two such nodes are calledunifiable, and when merged,
transform the search tree into a search graph. For example, in Figure 1(c), the search
trees below any appearance of〈Y, 1〉 are identical, so all nodes〈Y, 1〉 are unifiable.

4.1 Minimal AND/OR Search Graphs

A partial path in the AND/OR search-treeST (〈X1, a1〉, 〈X2, a2〉, ..., 〈Xi, ai〉) is ab-
breviated to(X̄, āi), whereX̄ is the sequence of variables andā is their corresponding
sequence of value assignments.

Definition 4 (legal transformation).Given two partial paths over the same set of vari-
ables,s1 = (X̄i, āi), s2 = (X̄i, b̄i) whereai = bi = v, we say thats1 and s2 are

unifiableat 〈Xi, v〉 (can be merged) iff the search subgraphs rooted ats1 ands2 are
identical. TheMergeoperator over search graphs,Merge(s1,s2) transformsST into a
graphS′T by mergings1 with s2.

It can be shown that given an AND/OR search graph, its closureunder the merge
operator yields a unique fixed point, called the minimal AND/OR search graph.

Definition 5 (minimal AND/OR search graph). The minimal AND/OR search graph
relative toT is the closure undermergeof the AND/OR search treeST .

The above definition is applicable, via the legal-chain definition, to the traditional
OR search tree as well. However, in many cases we will not be able to reach the com-
pression we see in the AND/OR search graph, because of the linear structure imposed
by the OR search tree.

Example 2.The smallest OR search graph of the problem in Figure 1(a) is given in Fig-
ure 2 along the DFS orderd = (X, Y, T, R, Z, L, M). The smallest AND/OR graph of
the same problem along some DFS tree is given in Figure 3. We see that some variable-
value pairs must be repeated in Figure 2 while in an AND/OR case they appear just
once. For example, the subgraph below the paths〈X, 1〉, 〈Y, 2〉 and 〈X, 3〉, 〈Y, 2〉 in
Figure 2 cannot be merged.

4.2 Rules for Merging Nodes

Given a graphical modelR = (X ,D, C) and a legal treeT , there could be many
AND/OR graphs relative toT that are equivalent to the AND/OR search treeST , each
obtained by some sequence of merging. The following rules provide an efficient way
for generating such graphs without creating the whole search tree first.

It uses a variant definition ofinduced-width of a legal tree of Gwhich is instrumen-
tal for characterizing OR graphs vs. AND/ORgraphs. We denote byddfs(T) a DFS
ordering of a treeT .

Definition 6 (induced-width of a legal tree).GivenGT , an extended graph ofG rel-
ative toT , theinduced width ofG relative to legal treeT , wT (G) is the induced-width
of GT alongddfs(T).

We can show that, 1. The minimal induced-width ofG relative to all legal trees is
identical to the induced-width (tree-width) ofG. 2. The induced-width of a legal chain
d is identical to its path-widthpw(d) alongd.

Next we provide a general generative rule for unifying nodesin the AND/OR search
graph and will use the generalized width parameter to characterize its effect. Given an
induced graph ofGT , denotedG∗T , each variable and its parent set is a clique. We
associate each variable with itsparentsandparent-separators:

Definition 7 (parents, parent-separators).Given the induced-graph,G∗T , the par-
ents ofX denotedpsX , are its earlier neighbors in the induced-graph. Its parent-
separators,psaX are its parents that are also neighbors of future variables in T .

Note that for every node except those latest in the clique, the parent-separators are
identical to the parents. For nodes latest in cliques, the parent-separators are the sepa-
rators between cliques.

In G∗T , for every nodeXi, the parent-separators ofXi separate inT its ancestors
on the path from the root, and all its descendents inGT .

Theorem 2. GivenG∗T , let s1 = (āi, 〈Xi+1, v〉) ands2 = (b̄i, 〈Xi+1, v〉) be two par-
tial paths of assignments in its AND/OR search treeST , ending with the same assign-
ment variable〈Xi+1, v〉. If s1[psai+1] = s2[psai+1] then the AND/OR search subtrees
rooted ats1 ands2 are identical ands1 ands2 can be merged at〈Xi+1, v〉.

Definition 8 (context).For every statesi, s[psai] is called the context ofsi whenpsai

is the parent-separators set ofXi relative to the legal treeT .

Theorem 3. GivenG, a legal treeT and its induced widthw = wT (G), the size of the
AND/OR search graph based onT obtained when every two nodes inST having the
same context are merged isO(n · kw), whenk bounds the domain size.

Thus, the minimal AND/OR search graph ofG relative toT is O(n · kw) where
w = wT (G). SinceminT {wT (G)} equalsw∗ and sinceminT∈chain{wT (G)} equals
pw∗ we get,

Corollary 1. The minimal AND/OR search graph is bounded exponentially bythe pri-
mal graph’s tree-width while the OR minimal search graph is bounded exponentially by
its path-width.

It is well known [6] that for any graphw∗ ≤ pw∗ ≤ w∗ · log n. It is also easy to
placem∗ (the minimal depth legal tree) yieldingw∗ ≤ pw∗ ≤ m∗ ≤ w∗ · log n.

In our companion paper [4] we showed that for some graphical models the differ-
ence between the tree-width and path-width can be substantial. In fact for balanced
trees the tree-width is 1 while the path-width islog n whenn is the number of variables
yielding a substantial difference between OR and AND/OR search graphs.

5 Unique Aspects to Constraints

5.1 Pruning Inconsistent Subtrees

Most advanced constraint processing algorithms incorporate no-good learning during
search, or use variable-elimination algorithms such asadaptive-consistency[8], gener-
ating all relevant no-goods, prior to search. Such schemes can be viewed as traversing a
prunedAND/OR search tree. We next define thebacktrack-freeAND/OR search tree.

Definition 9 (backtrack-free AND/OR search tree).Given an AND/OR search tree
ST (R) whose internal nodes are labeled by0/1, the backtrack-free AND/OR search
tree ofR based onT , denotedBFT (R), is obtained by pruning all subtrees labeled
“0” from ST (R).

CB

X

A

(a)

AB

C

X

(b) (c)

X

1

A C

0

A

1

B

1

1

A

0 1

B

0 1

0 1

0

B

0 1

C

0 1

Fig. 4. (a) A constraint graph; (b) a spanning tree; (c) a dynamic AND/OR tree

Clearly, if we traverse the AND/OR backtrack-free search space we can find a so-
lution after traversing a single solution subgraph of the backtrack-free search graph.
It is well known that if we apply variable-elimination algorithms such asadaptive-
consistencyin a reversed order ofd then we can find a solution with no dead-end.

Definition 10 (directional extension).Let R be a constraint problem and letd be a
DFS traversal ordering of a legal tree of its primal graph, then we denote byEd(R) the
constraint problem compiled by Adaptive-consistency in the reverse order ofd.

Proposition 1. The AND/OR search treeST (Ed(R)) whend is a DFS ordering of
T , is identical to the backtrack-free AND/OR search tree ofR based onT . Namely
ST (Ed(R)) = BFT (R).

Proposition 1 emphasizes the significance of no-good learning [9] for deciding in-
consistency or for finding a single solution. If the search-space is backtrack-free its
size is irrelevant for the consistency query. For counting however, pruning inconsistent
subtrees yields partial help only.

5.2 Using Dynamic Variable Ordering

The AND/OR search tree we defined used a fixed variable ordering. It is known that
exploring the search space in a dynamic variable ordering ishighly beneficial. AND/OR
search trees for graphical models can be modified to allow dynamic variable ordering.
A dynamic AND/OR tree that allows varied variable ordering has to satisfy that for
every subtree in the search tree rooted in〈X, v〉, there are noactive constraints (or
arcs) in the subproblem conditioned on the current path to〈X, v〉 that connect different
branches of the tree.

Example 3.Consider the propositional formulaX → A ∨ C andX → B ∨ C. The
constraint graph is given in Figure 4(a) and a dfs tree in Figure 4(b). However, the
constraint subproblem conditioned on〈X, 0〉, has no real constraint betweenA, B, C,
so the effective spanning tree below〈X, 0〉 is{〈X, 0〉 → A, 〈X, 0〉 → B, 〈X, 0〉 → C},
yielding the AND/OR search tree in Figure 4(c). Note that while there is an arc between
A andC in the constraint graph, the arc isnot activewhenX is assigned the value0.

Clearly, the constraint graph conditioned on any partial assignment can only be
sparser than the original graph and therefore may yield a smaller AND/OR search tree
than with fixed ordering.

5.3 Merging and Pruning: Two Orthogonal Concepts

Notice that the notion of minimality vs that of pruning of inconsistent subtrees (yielding
the backtrack-free search space) are orthogonal. When we merge two subtrees whose
root value is “0” (unsolved) via their context, we can still keep around all the subtree
of the merged node roots. On the other hand, recording a no-good, implies that we
prune the subtree below that node and summarize the value of this subtree by “0”.
Recording no-goods, namely the parent-context of an unsolved node, can be used as a
new constraint which can affect and prune the search tree itself.

Therefore, we can have a minimal search graph that is NOT backtrack-free as well
as a search tree that is backtrack-free. When the search space is backtrack-free (no
dead-end nodes) and if we seek a single solution, the size of the minimal AND/OR
search graph and its being OR vs AND/OR are both irrelevant. It will, however, affect a
traversal algorithm that counts all solutions or compute anoptimal solution. This means
that for deciding consistency or for finding the first solution, once we record no-goods,
backjumping becomes irrelevant, as was often observed [10].

Another independent option is to prune full subtrees. In other words, if an AND
node roots a full consistent AND/OR search subtree that expresses the cartesian product
of all value below the node, it can be pruned and its internal label be summarized as
“1”. This is exactly what happens in OBDD representation of aCNF formula [11]. An
OBDD is a minimal OR search graph that is collapsed as far as possible. A tree-obdd is
a minimal AND/OR search graph that fully collapsable [12].

6 AND/OR Algorithms for Counting

6.1 Counting Over the AND/OR Search Tree

Any algorithm that traverses the AND/OR search tree in a depth-first manner is guaran-
teed to have time bound exponential in the depth of the legal tree of the graphical model
and may operate using linear space.

igure 5 presents the basic DFS traversal of the AND/OR searchtree for counting
the number of solutions of a constraint network. The reader should ignore the bracketed
lines. Given a legal treeT , AND-OR-COUNTING places the root ofT in OPEN and
starts the current solution subgraph assembled by the algorithm. The algorithm picks
the top node in OPEN and expands it generating its succesors.If it is an OR node,
X , it generates its value assignments that are consistent with the value assignments
along its path. The generated nodes, labeled “AND”, are recorded in the current solution
subgraph and placed on top of OPEN. When an AND node〈X, v〉 is expanded, its
successors arech(X) in T .

The nodes in the tree are labeled byg-values. These stand for the number of solu-
tions below that variable (or variable-value) in the constraint subproblem restricted to
the variables rooted at that node inT . The terminal nodes are evaluated as either solved,
(g=1) if they are AND nodes, or unsolved (g=0) if they are OR nodes. Theg-values of
internal nodes are evaluated in step 4. Theg-value of an AND node is the product of the
g-values of its successors, while theg-value of an OR node is the sum of theg-values
of its successors. The algorithm terminates when the root islabeled.

procedure AND-OR-COUNTING

Input: A constraint networkR = (X, D, C); a legal tree,T , of its constraint graph rooted atX0; separator parents
psai and parentspai for every variableXi.
Output: The number of solutionsg(X0). π denotes the current partial assignment path.¯
1. Initialize OPEN (OP): OPEN← X0, type(X0) = OR; Create a search graphG, G← X0;

Create a list called CLOSED (CL), initially empty.
2. n← first node in OPEN, move to CLOSED
3. Expandn generating all its successors as follows:

if type(n) = OR, n = X

succ(X)← {〈X, v〉|consistent(〈X, v〉)}
if succ(X) = Φ , g(X) = 0; (deadend)

[[cache− nogood ← πpaX
, update constraints and go toPropagate]]

else, add allsucc(X) to G, set pointers back toX.
for each〈X, v〉 ∈ succ(X) do,π ← π ∪ (〈X, v〉)

[[if πpsaX
is a new context not inOP ∪ CL, thenc = c(〈X, v〉) = πpsaX

]]
add〈X, v〉 to OP.
[[else, there exists,m ∈ OP ∪ CL s.tc(m) = c , unify 〈X, v〉 with m; merge]]

EndFor
If type(n) = AND; n = 〈X, v〉

if X is a leaf inT then,g(〈x, v〉) = 1,
remove〈X, v〉 from OP

succ(〈X, v〉)← {Y |Y ∈ ch(X) in T}
putsucc(〈X, v〉) on top of OPEN and inG
set back-pointers.

4. Propagate: whileyou can propagateg values:
a. For a non-terminal AND node〈X, v〉:

[[if Y ∈ succ(〈X, v〉) andg(Y) = 0,
remove siblings ofY from OPEN and fromG.

setg(〈X, v〉) = 0.]]
else,

if all succ(〈X, v〉) are evaluated,g(〈X, v〉) = ΠY ∈succ(〈X,v〉)g(Y)
b. For a non-terminal OR nodeX:

if all succ(X) haveg values,g(X) =
∑

〈X,v〉∈succ(X)
g(〈X, v〉)

end while
c. if X0 was evaluated, exit withg(X0)

5. Go to step 2.
end procedure

Fig. 5. The counting algorithm.

We can easily modify the algorithm to find a single solution yielding algorithm
AND-OR-FIND-SOLUTION, (not presented for lack of space). The main difference is
that the0/1 g-values of internal nodes are propagated using Boolean summation and
product instead of regular operators, yielding the 0/1 labeling. From Theorem 1 we can
conclude that,

Theorem 4. The complexities ofAND-OR-COUNTING and AND-OR-FIND-SOLU-
TION are space linear and timeO(nkm), wherem is the depth of the legal tree of its
constraint graph. If the constraint graph has a tree-decomposition with tree-widthw∗,
both algorithms have time complexityO(n · exp(w∗ · log n)).

Obviously, the ability to terminate early with first solution makes AND-OR-FIND-
SOLUTION much faster than AND-OR-COUNTING in practice.

6.2 Counting Over the AND/OR Search Graphs

Any algorithm traversing the AND/OR search graph needs to record nodes during
search so merging would be possible. To do that the algorithmassociates a context

N=20, K=3, C=20, S=4, 20 instances, w*=9, h=14

t 10% 20% 30% 40% 50% 60% 70%

solutions 0 0 0 49 3,842 126,957 2,856,064

Time (seconds)

BE 0.10110 0.10155 0.10115 0.10025 0.10000 0.08970 0.08805

i=0 A/O FC 0.00650 0.01250 0.02450 0.06555 0.22940 1.09355 5.81740
A/O RFC 0.00350 0.01005 0.02555 0.07660 0.27490 1.33295 6.94850
OR FC 0.00505 0.01200 0.02755 0.08670 0.52620 5.49720 65.68775
OR RFC 0.00400 0.01255 0.02800 0.09870 0.56040 5.72635 67.94275

i=3 A/O FC 0.00550 0.01210 0.02555 0.06410 0.22925 1.09505 5.79485
A/O RFC 0.00300 0.01305 0.02550 0.07810 0.27850 1.33705 6.90190
OR FC 0.00555 0.01250 0.02750 0.08765 0.52405 5.48500 65.83190
OR RFC 0.00400 0.01000 0.02810 0.09820 0.56400 5.72880 67.98520

i=6 A/O FC 0.00500 0.01250 0.02405 0.06455 0.21370 0.91375 4.33875
A/O RFC 0.00500 0.01100 0.02750 0.07555 0.25930 1.09625 5.08375
OR FC 0.00450 0.01250 0.02960 0.08860 0.49920 4.66985 49.77530
OR RFC 0.00300 0.01050 0.03200 0.09805 0.53625 4.87520 51.24910

i=9 A/O FC 0.00455 0.01155 0.02500 0.06405 0.17240 0.48865 1.22135
A/O RFC 0.00450 0.00950 0.02600 0.07310 0.20530 0.58830 1.46265
OR FC 0.00550 0.01355 0.02950 0.08160 0.40010 2.98980 23.39555
OR RFC 0.00450 0.01150 0.03020 0.09415 0.43620 3.15515 24.25300

Number of expanded nodes (# n) / Number of dead-ends (# d)

n # d # n # d # n # d # n # d # n # d # n # d # n # d
i=0 A/O FC 225 453 518 1032 1192 2330 3552 6579 16003 24402 106651 119059 735153 553820

A/O RFC 154 311 387 771 1052 2056 3407 6307 15737 23987 106617 118989 735153 553820
OR FC 225 453 519 1040 1203 2408 3810 7476 28079 44634 414463 448055 6533674 4499159
OR RFC 154 311 387 777 1062 2126 3664 7183 27801 44078 414428 447986 6533674 4499159

i=3 A/O FC 225 453 518 1032 1192 2330 3552 6579 16003 24402 106651 119059 735153 553820
A/O RFC 154 311 387 771 1052 2056 3407 6307 15737 23987 106617 118989 735153 553820
OR FC 225 453 519 1040 1203 2408 3810 7476 28079 44634 414463 448055 6533674 4499159
OR RFC 154 311 387 777 1062 2126 3664 7183 27801 44078 414428 447986 6533674 4499159

i=6 A/O FC 224 451 512 1021 1162 2285 3306 6269 12765 21129 70273 88589 436554 368111
A/O RFC 154 311 384 765 1028 2019 3175 6012 12562 20776 70238 88519 436554 368111
OR FC 225 453 519 1040 1203 2408 3764 7418 24700 41194 294525 349350 3931078 3068920
OR RFC 154 311 387 777 1062 2126 3618 7124 24422 40638 294491 349281 3931078 3068920

i=9 A/O FC 224 449 499 978 1093 2112 2883 5288 8873 14193 28038 33210 79946 60144
A/O RFC 153 308 371 722 962 1857 2761 5063 8705 13899 28003 33141 79946 60144
OR FC 225 453 518 1032 1192 2333 3604 6874 18729 30992 166912 203854 1516976 1259120
OR RFC 154 311 387 771 1052 2058 3461 6597 18457 30477 166877 203784 1516976 1259120

Table 1.AND/OR search vs. OR search vs. Bucket Elimination

with each AND node and whenever a new AND node is generated, its context is com-
pared against the list of contexts for the same variable in the same level. If it was already
generated, only pointers will be established appropriately.

Algorithm AND-OR-GRAPH-COUNTING is presented in Figure 5. For this version
the reader should include all the bracketed lines. In step 3,the algorithm expands the
next node in OPEN (OP). If this is an OR node that has no consistent successors, it
is identified as dead-end and assignedg = 0. A no-good is recorded and the set of
constraints are modified to include this new constraint. This step will cause pruning of
the search tree. Otherwise, for each consistent, valuev of X the algorithm computes
the context of〈X, v〉 denotedc(〈X, v〉) and check it against recorded contexts.

Theorem 5. The complexity of algorithmAND-OR-GRAPH-COUNTING is time and
space exponential in the induced width of the legal tree, which is identical to the tree-
width. For OR space, the complexity is exponential in the path-width.

N=40, K=3, C=50, S=3, 20 instances, w*=13, h=20

t 10% 20% 30% 40% 50% 60%

solutions 0 0 0 0 46582 147898575

Time (seconds)

BE 8.674 8.714 8.889 8.709 8.531 8.637

i=0 A/O FC 0.011 0.030 0.110 0.454 3.129 32.931
OR FC 0.009 0.031 0.113 0.511 14.615 9737.823

i=3 A/O FC 0.011 0.031 0.111 0.453 3.103 31.277
OR FC 0.009 0.030 0.112 0.509 14.474 9027.365

i=6 A/O FC 0.011 0.029 0.110 0.454 3.006 25.140
OR FC 0.010 0.032 0.113 0.508 13.842 7293.472

i=9 A/O FC 0.010 0.030 0.114 0.453 2.895 21.558
OR FC 0.010 0.031 0.111 0.509 12.336 5809.917

i=13 A/O FC 0.011 0.030 0.111 0.457 2.605 11.974
OR FC 0.010 0.032 0.123 0.494 8.703 1170.203

Number of expanded nodes (# n) / Number of dead-ends (# d)

n # d # n # d # n # d # n # d # n # d # n # d
i=0 A/O FC 78 159 265 533 999 1994 4735 9229 60163 101135 1601674 1711947

OR FC 78 159 265 533 1000 2003 4947 9897 273547 407350 384120807324545908

i=3 A/O FC 78 159 265 533 986 1990 4525 9166 46763 98413 689154 1625075
OR FC 78 159 265 533 1000 2003 4947 9897 224739 399210 228667363287701079

i=6 A/O FC 78 159 265 533 981 1971 4467 8991 41876 85583 487320 917612
OR FC 78 159 265 533 1000 2003 4947 9897 185422 329754 141610990208159068

i=9 A/O FC 78 159 265 533 981 1958 4451 8866 37314 70337 362024 580325
OR FC 78 159 265 533 1000 2003 4947 9897 147329 270446 102316417135655353

i=13 A/O FC 78 159 265 533 981 1955 4415 8533 30610 50228 170827 181157
OR FC 78 159 265 533 999 1994 4761 9283 99923 176630 16210028 20018823

Table 2.AND/OR search vs. OR search vs. Bucket Elimination

7 Empirical Demonstration

We present here an empirical evaluation of the counting algorithm. We ran two different
versions of it, using forward checking (FC) and relational forward checking (RFC) as
the constraint propagation methods. This was done by defining theconsistentfunction
in step 3 of the algorithm accordingly. RFC is a bit more costly computationally, but its
search space is at most as big as that of FC. For the smaller problems, the algorithms
were ran on AND/OR and OR search spaces, resulting in a total of four algorithms:A/O
FC, A/O RFC, OR FC, OR RFC. We only mention that the basic version of the counting
algorithm for whichconsistentfunction only checks the existing constraints, but does
no propagation, was in general too slow so we do not include those results here. For
each of the above four algorithms, we tried different levelsof caching, controlled by an
i-bound, from 0 up to as much as our computer memory permitted (this equalsw∗ for
the smaller problems). The i-bound is the maximum context size that can be cached.
We also compared against bucket elimination (BE) in some cases, where space was
available. We report average measures over 20 instances:time (in seconds),number of
expanded nodes (#n), number of deadends (#d)andnumber of solutions (# sol). Also,
w∗ is the induced width andh is the height of the legal tree.

The constraint networks were generated randomly uniformlygiven a number of
input parameters:N - number of variables;K - number of values per variable;C -
number of constraints;S - the scope size of the constraints;t - the tightness (percentage
of allowed tuples per constraint).

N=40, K=2, C=40, S=3, 20 instances, w*=10, h=17

t 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
sol 0 0 0 0 0 13,533 2,414,724190,430,00021,549,650,0001,099,511,627,776

Time
A/O FC i=0 0.000 0.001 0.002 0.005 0.011 0.065 0.289 1.931 7.979 30.094

i=3 0.001 0.002 0.002 0.003 0.008 0.060 0.253 1.525 6.062 22.340
i=6 0.001 0.001 0.004 0.003 0.009 0.052 0.182 0.883 2.873 8.847

i=10 0.000 0.001 0.003 0.004 0.010 0.038 0.110 0.343 0.587 0.985
OR FC i=10 0.000 0.003 0.003 0.004 0.012 0.671 24.912 1009.025 - -

Number of nodes
A/O FC i=0 11 17 32 55 166 3078 22273 204562 988136 4145934

i=3 11 17 32 55 155 1503 8747 57778 236466 870866
i=6 11 17 32 55 148 975 4292 24542 95394 298236

i=10 11 17 32 55 135 746 2365 8646 15050 25717
OR FC i=10 11 17 32 55 166 14049 635331 25078186 - -

Number of deadends
A/O FC i=0 13 19 34 57 162 1978 10298 57678 134324 0

i=3 13 19 34 57 159 1662 8569 45336 92263 0
i=6 13 19 34 56 149 974 3721 13655 19257 0

i=10 13 19 34 55 125 533 1312 2313 1887 0
OR FC i=10 13 19 34 57 164 9693 299138 11541863 - -

Table 3.The impact of caching (algorithms A/O FC and OR FC)

Tables 1 and 2 show an ample comparison of the algorithms on moderate size
problems which allowed bucket elimination to run. The bolded time numbers show
the best values in each column. The most important thing to note is the vast superior-
ity of AND/OR space over the traditional OR space. Only for the very tight problems
(t = 10%−40%), which are also inconsistent, the two search spaces seem tobe compa-
rable. The picture is clearer if we look at the number of expanded nodes and number of
deadends. When the problems are loose and have a large numberof solutions AND/OR
algorithms are orders of magnitudes better (see#n, #dbolded figures fori=9 in Table
1, and fori=13 in Table 2, where A/O FC explores a space two orders of magnitude
smaller than that of OR FC, resulting in a time two orders of magnitude smaller). In
Table 1 we also see the impact of more constraint propagation. The RFC algorithms
always explore a smaller space than the FC, but this comes with an overhead cost, and
may not always be faster. For BE we only report time, which is not sensitive to the
tightness of the problem, so we see that for tight networks search can be faster than BE.

Caching doesn’t seem to play a big role in this first set of problems. Especially, for
inconsistent networks, caching doesn’t improve performance. This is probably because
the type of networks we generate turn out to be fairly easy forforward checking, so
even without caching the no-goods of the inconsistent networks, forward checking is
able to easily detect them.

Table 3 gives a better idea of why caching is useful. First, let’s look at the A/O
FC entries. This is again a smaller problem for which A/O FC could be run even for
t = 100%. When problems become loose, caching is essential to speed up the search. Of
course, caching no-goods which are hard to detect by propagation would also improve
the search. We show here again that AND/OR space can yield exponential improvement
over OR space. OR FC is shown fori=10 (see bolded figures). Fort=90% andt=100%
OR FC would take too long. Fort=80% even the linear space A/O FC is 3 orders of
magnitude faster than OR FC withi = 10 caching.

N=60,K=3, C=80, S=3, 20 instances,w*=19, h=28

t 10% 20% 30% 40% 50% 60%
sol 0 0 0 0 2161 21564382788

Time (seconds)
i=12 0.042 0.186 1.229 14.499 279.051 2296.488

Number of nodes
i=12 155 643 4181 50544 1091748 14874689

Number of deadends
i=12 314 1289 8365 100760 2118274 25996533

Table 4.A/O FC, N=60, K=3

N=100,K=2, C=130, S=3, 20 instances,w*=32, h=43

t 10% 20% 30% 40% 50% 60% 70%
sol 0 0 0 0 0 0 0

Time (seconds)
i=20 0.069 0.096 0.193 0.725 3.572 27.680 677.045

Number of nodes
i=20 70 96 406 832 4264 35353 1139860

Number of deadends
i=20 72 98 204 834 4266 34793 1043692

Table 5.A/O FC, N=100, K=2

Finally, Tables 4 and 5 show examples of large networks for which BE was infeasi-
ble. Traditional OR space search would also not be possible.We ran only A/O FC with
the maximum cache size possible for our machine. This show that AND/OR search is
more flexible, being able to solve problems of much larger size than inference algo-
rithms or OR search.

8 Conclusions, Discussion and Related Work

The primary contribution of this paper is in viewing search for constraint processing
in the context of AND/OR search spaces rather than OR spaces and in demonstrating
the impact of this view on counting solutions. The paper firstoverviews the notion of
AND/OR search space (which was introduced for graphical models in general [4]) for
constraint networks. It describes the AND/OR search tree showing that its size can be
bounded exponentially by the depth of its legal tree implying exponential saving for
any linear space algorithms traversing the AND/OR graph. Itdescribes the minimal
AND/OR search graph, showing that it is exponential in the tree-width while the size
of the minimal OR graph is exponential in the path-width. Since for some graphs the
difference between the path-width and tree-width is substantial (e.g., balanced trees) the
AND/OR representation implies exponential time and space savings for all algorithms
that cache goods and no-goods.

The paper then shows how counting algorithms can be affectedwhen formulated
as searching AND/OR search trees and graphs rather than searching their OR counter-
parts. We present and analyze counting algorithms and provide initial empirical eval-
uation along the full spectrum of space and time. We comparedcounting algorithms
on the AND/OR search space when pruning is accomplished by two forward-checking
strategies and showed how their performance is affected by different levels of caching
and how it is compared to bucket-elimination, as a function of problem tightness.
These results show that AND/OR search space is always betterthan the traditional
OR space, often yielding exponential improvements. Compared to inference based al-
gorithms (bucket elimination), AND/OR search is more flexible and able to adapt to the
amount of space available. All the existing constraint propagation techniques are read-
ily available for AND/OR search. Coupling this with the possibility of caching makes
AND/OR search a very powerful scheme.

Related work. Algorithm backjumping [13], graph-based or conflict-based for con-
straint satisfaction was designed to overcome the redundancy imposed by the OR struc-

ture of the search tree. It can be shown that graph-based backjumping mimics the explo-
ration of an AND/OR search tree. Indeed, it was shown that thedepth of a DFS-tree or
a legal-tree [14, 7] plays an important role in bounding backjumping complexity. Also,
recent algorithms in probabilistic reasoning such as recursive-conditioning [15] can op-
erate in linear space and can be viewed as searching AND/OR search trees and graphs.
Memory-intensive algorithms can be viewed as searching theAND/OR search graph,
such as recent work [16] which performs search guided by a tree-decomposition for
constraint satisfaction and optimization. A similar approach was introduced recently in
[17] both for belief updating and counting models of a CNF formula. The notion of min-
imal OR search graphs is similar to the known concept ofOrdered Binary Decision Di-
agrams (OBDD)in the literature of hardware and software design and verification[11].
It is well known that the size of OBDDs is bounded exponentially by thepath-widthof
the CNF’s interaction graph. Our notion of minimal AND/OR search graphs, if applied
to CNFs, resemblestree OBDDSdeveloped subsequently [12].

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
3. Howard, R.A., Matheson, J.E.: Influence diagrams. (1984)
4. Dechter, R.: AND/OR search spaces for graphical models. In: Submitted, UAI. (2004)
5. Arnborg, S.A.: Efficient algorithms for combinatorial problems on graphs with bounded

decomposability - a survey. BIT25 (1985) 2–23
6. Bodlaender, H., Gilbert, J.R.: Approximating treewidth, pathwidth and minimum elimination

tree-height. In: Technical report RUU-CS-91-1, Utrecht University. (1991)
7. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for

the constraint satisfaction problem. In: AAAI’96: Proceedings of the Thirteenth National
Conference on Artificial Intelligence. (1996) 298–304

8. Dechter, R., Pearl, J.: Network-based heuristics for constraint satisfaction problems. Artifi-
cial Intelligence34 (1987) 1–38

9. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence41 (1990) 273–312

10. Frost, D.H.: Algorithms and heuristics for constraint satisfaction problems. Technical report,
Ph.D. thesis, Information and Computer Science, University of California, Irvine, California
(1997)

11. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic (1993)
12. McMillan, K.L.: Hierarchical representation of discrete functions with application to model

checking. In: Computer Aided Verification, 6th International conference, David L. Dill ed.
(1994) 41–54

13. Gaschnig, J.: Performance measurement and analysis of search algorithms. Technical Report
CMU-CS-79-124, Carnegie Mellon University (1979)

14. Freuder, E.C., Quinn, M.J.: The use of lineal spanning trees to represent constraint satisfac-
tion problems. Technical Report 87-41, University of New Hampshire, Durham (1987)

15. Darwiche, A.: Recursive conditioning. In: Proceedingsof the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI99). (1999)

16. Terrioux, C., Jegou, P.: Hybrid backtracking bounded bytree-decomposition of constraint
networks. In: Artificial Intelligence. (2003)

17. F. Bacchus, S.D., Piassi, T.: Value elimination: Bayesian inference via backtracking search.
In: Uncertainty in AI (UAI03). (2003)

