The Impact of AND/OR Search Spaces on Constraint
Satisfaction and Counting

Rina Dechter and Robert Mateescu

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter, mateescu}@cs. uci.edu

Abstract. The contribution of this paper is in vieweing search for ¢raiat
processing in the context of AND/OR search spaces and in dsimating the
impact of this view on solutions counting. In a companiongrape introduce
the AND/OR search space idea for probabilistic reasonimgohtrast to the tra-
ditional (OR) search space view, the AND/OR search tredalispsome of the
independencies present in the graphical model explicittyrmay sometimes re-
duce the search space exponentially. Familiar parameatehsas the depth of a
spanning tree, tree-width and path-width are shown to plkgyarole in charac-
terizing the effect of AND/OR search graphs vs the tradalddR search graphs.
Empirical evaluation focusing on counting demonstratessiectrum of search
and inference within the AND/OR search spaces.

1 Introduction

Graphical models such as constraint networks [1], cost odsy Bayes networks [2],
Markov random fields and influence diagrams [3] are knowleggeesentation lan-
guages that capture independencies in the knowledge aml biith concise repre-
sentation and efficient graph-based algorithms for queoggssing. Algorithms for
processing graphical models are of two typeserence-basedndsearch-basedThe
latter class typically traverses the problem’s searchespabere each path represents a
partial or a full solution and can be accomplished in lingerce and exponential time.
Inference algorithms provide the best worst-case guagantley are time exponential
in the tree-width of the graph model. However, they also itegspace exponential in
the tree-width. The virtue of search algorithms is that ttesy accommodate a spectrum
of bounded memory algorithms, from linear space to treewidunded space.

In contrast to inference algorithms which exploit the inelegeencies in the underly-
ing graphical model effectively (e.g. variable eliminatjdree-clustering), pure search
is at risk of loosing this information because it is hiddenhe linear structure of the
search space graph. Advanced search algorithms developedrfstraint satisfaction,
and more recently for probabilistic reasoning can be vieasdttempting to overcome
this difficulty.

The primary contribution of this paper is in viewing searchdonstraint processing
in the context ofAND/OR search spaceather tharOR spacesWe demonstrate how
the AND/OR principle can exploitindependencies in the gnaypdel to yield exponen-
tially smaller search spaces. In the companion paper wedated the AND/OR idea

for reasoning with probabilistic networks [4]. Here we fecon constraint process-
ing with its traditional tasks of deciding consistency, firgla solution and counting
the solutions. In particular, we present and analyze cogratigorithms when formu-

lated as searching an AND/OR search tree or graph ratherstharching their OR

counterparts and provide initial empirical evaluationngjdhe full spectrum of space
and time. Specifically, we compare counting algorithms @aAND/OR search space
when pruning is accomplished by two forward-checking etyets and show how their
performance is affected by different levels of caching amd h is compared to bucket-
elimination, as a function of problem tightness.

Following some preliminaries (section 2) we present anaeer of the notion of
AND/OR search tree and graphs specialized for constragdgssing (sections 3 and
4). Subsequently we discuss unigue aspects to constraipligpns (section 5), describe
counting algorithms formulated over the AND/OR space {sadd) and demonstrate a
spectrum of these algorithms empirically (section 7). ®ed provides discussion and
related work.

2 Preliminaries and Background

A Reasoning graphical-models a tripletR = (X, D, F') whereX a set of variables
X = {X;i,...,X,}, D is their respective domains of valués = {Dy, ..., D,,} and
F is a set of real-valued functiorfs = {F1, ..., F; }. Each functionF; is defined over
a subset of variables;, called its scopeS; C X. Theprimal graphof a reasoning
problem,Gx, has a node for each variable, and any two variables apgegrithe
same function’s scope are connected.

In constraint networks, denotedR = (X, D, C), the functionsF are constraints
C'. Each constraint is a paff; = (5;, R;), whereS; C X is the scope of the relation
R; defined overs;, denoting the allowed combination of values. A solutionnsas-
signment of values to each variable that does not violatecangtraint. The primary
queries over constraint network is to determine if the nekvi®consistent, and if it is,
to find one or all solutions. A related task is to compute theber of solutions.

Induced-graphs, induced width and path-width. An ordered graphis a pair,
(G,d), whereG is an undirected graph, anl = Xi,..., X,, is an ordering of the
nodes. Thewidth of a nodds the number of the neighbors that precede it in the or-
dering. Thewidth of an orderingd, is the maximum width over all nodes. Theluced
width of an ordered graphv*(d), is the width of the induced ordered graph obtained as
follows: nodes are processed from last to first; when ndde processed, all its preced-
ing neighbors are connected. Tinduced width of a graphwx, is the minimal induced
width over all its orderings. The set of maximal cliques ¢adslled clusters) in the in-
duced graph provide a tree-decomposition of the graph. fBeewidth is the maximal
number of variables in a cluster of an optimal cluster-treeatnposition of the graph
[5]. It is well known that the induced-width of a graph is idieal to itstree-width The
path-width of a graph is the smallest induced-width alongairclike decomposition.
The optimal path-width is denotedv*. For various relationships see [5, 6].

AND/OR search spacesAn AND/OR state space representation of a general state
space problem formulation is defined by a 4-tuf$e 0, Sy, so): S is a set of states,

which can be OR states or AND states (the OR states reprelsemtadive ways for
solving the problem while the AND states often represenbjemm decomposition into
subproblems, all of which need to be solve@)js a set of operators (an OR operator
transforms an OR state into another state, and an AND opdrattsforms an AND
state into a set of states); there is a set of goal stdjes. S and a start nods.
Example problem domains modeled by AND/OR graphs are tageslgames, parsing
sentences, Tower of Hanoi.

The AND/OR states space model induces an explicit AND/ORcsegraph Each
node is a state and its child nodes are those obtained bycapfgiAND or OR op-
erators. The search graph includestart node. The terminal nodes (having no child
nodes) are marked as Solved (S), or Unsolved (U).

A solution subgraph of an AND/OR search grap& is a subtree which: (1) con-
tains the start nodsy; (2) if n in the subtree is an OR node then it contains one of its
child nodes inG and if n is an AND nodes it contains all its children @; (3) all its
terminal nodes are "Solved” (S). The primary tasks definezt an AND/OR graph
is to determine the value of the root node, and if it is soltedind a solution subtree
with optimal cost if a cost is defined.

3 AND/OR Search Tree for Constraint Networks

Consider a constraint netwof = (X, D, C) and its primal grapld=. Let T be a DFS
spanning tree of its primal graph rooted’§. For each nod#&’, ch(Y") is the set of its
children inT. We will now define the AND/OR search tree Bfrelative toT'.

Definition 1 (AND/OR search tree based on DFS tree)Given a constraint network

‘R and its DFS spanning tre€ rooted atX, the AND/OR search tree & based or’,
denotedS(R) (or just ST whenR is unambiguous) is defined as follows. The nodes
in the search tree are either OR nodes (eXj,Y), denoting variables, or AND nodes
denoting variable-value assignment pairs (e{&, v)). The path of X, v) is the path
from the initial state (the rooK)) to (X, v), which corresponds to eonsistenpartial
value assignments to all the variables along the path. Tleeessors of a node in the
AND/OR search tree are defined as follows:

— The successor-nodes of an OR nddare all its possible value assignmeftsy, v)
|v € Dx} that are consistent with the path {&, v). (The path alternates OR and
AND nodes |ikeK0, <X0, ’U0>, X1, <X1, U1>, ey X4 <X17 Ui>...)

— The successor-nodes of an AND nd&e v) are all child nodes¢h(X), inT.

The consistency of a partial path is determined by considaall the relevant con-
straints whose scopes are contained in the path.

Definition 2 (labeling of AND/OR nodes).Given an AND/OR tre€1(R), a terminal
AND node (no child nodes i) is always labeled “Solved” or “1”. A terminal OR
node is always “Unsolved” or “0” (no consistent value assigants). The labeling
of internal nodes is defined recursively and is dependenherspecific task and the
specific graphical-model. For the task of finding a solution @R internal node is

\ L

:
4\
é é @ M ano [1] [[() [0 [[[2]

(a) A constraint tree (b) OR search tree (c) AND/OR search tree with one of its
solution subtrees

Fig. 1. OR vs. AND/OR search trees; note the connector for AND arcs

labeled “1” iff one of its successor nodes is “1” and an AND énbal node is labeled
“1” iff all its successor nodes are labeled “1". For countinthe number of solutions,
an OR node is the sum of the values of its successors and an Adis labeled by
their product.

The virtue of an AND/OR search tree representation is ttsaside may be far
smaller than the traditional OR tree representation.

Example 1.Consider the graph coloring problemin Figure 1(a), overdiois{ 1, 2, 3}.

Its OR search tree along the DFS ordering, ¥, 7, R, Z, L, M) is given in Figure
1(b) and its AND/OR search tree based on the DFS Trageoted atX, is given in
Figure 1(c). A solution subtree is highlighted in Figure)1{#/e see that the size of
the traditional OR search tree ((27), while the size of the AND/OR search tree is
O(4 - 23) (we ignore the OR levels when counting nodes because they atanost
a constant factor and we believe a non-naive implementdi@s not need to express
OR nodes explicitly). Notice that if we add one constraintl®=n X and R to this
problem, we can still use the same DFS tifegielding a similar structure AND/OR
search tree, except that some values of vari&dee no longer consistent with all their
predecessors on the partial path. For example, in that ¢Bse) in Figure 1c will not
be present under the subtree(df, 1).

Legal trees The construction of AND/OR search trees can use as its basjast a
DFS spanning tree but a larger collection of spanning tiessite callegal trees This
generalization accommodates many more trees and candreeyééld better AND/OR
search spaces.

Definition 3 (legal tree of a graph).Given an undirected grapty = (V, E), a di-
rected rooted tred” = (V, E’) defined on all its nodes iggalif any arc of G which
is not included inE’ is a back-arc, namely it connects a node to an ancestdrt.imhe
arcs in £’ may not all be included itf. Given a legal tredl” of GG, theextended graph
of G relative toT is defined a&:” = (V, EU E').

Fig. 2. Condensed OR graph for Fig.3. The AND/OR search graph of the tree
the tree problem in Figurela graphical-model in Figure 1la

Clearly, any DFS tree and any chain are legal trees. Segr¢thanOR space cor-
responds to searching a chain that is a special legal trezedtsy to see that search-
ing an AND/OR tree is exponential in the depth of the lega tfeinding a legal or
a DFS tree of minimal depth is known to be NP-complete. Howéwe problem was
studied, and various greedy heuristics are available. ©Hewvfing relationship be-
tween the induced-width and the depth of legal trees is wadhvkn [7,1]. Given a
tree-decomposition of a primal graghhavingn nodes, whose tree-width is*, there
exists a legal tre& of G whose depthin, satisfiesm < w* - logn. In summary (for
more details on the impact of legal trees see [4]),

Theorem 1. Given a graphical modeR and a legal tre€l’, its AND/OR search tree
St(R) is sound and complete (contains all and only solutions) asdize isO(n -
exp(m)) wherem is the legal tree’s depth. A graphical model that has a trégtww*
has an AND/OR search tree whose siz@{sxp(w* - logn)).

4 AND/OR Search Graphs

Itis often the case that certain states in the search treleecarerged because the subtree
they root are identical. Any two such nodes are callediable and when merged,
transform the search tree into a search graph. For exanmpfégure 1(c), the search
trees below any appearance(®f 1) are identical, so all nod€¥’, 1) are unifiable.

4.1 Minimal AND/OR Search Graphs

A partial path in the AND/OR search-tré&- ((X1,a1), (X2, a2), ..., (Xi, a;)) is ab-
breviated to(X , a;), whereX is the sequence of variables ami their corresponding
sequence of value assignments.

Definition 4 (legal transformation). Given two partial paths over the same set of vari-
ables,s; = (X;,a;), s2 = (X;,b;) wherea, = b; = v, we say thats; and s, are

unifiableat (X;,v) (can be merged) iff the search subgraphs rooted,aénd s, are
identical. TheMergeoperator over search graphd/erge,, s,y transformsSt into a
graph.S/,. by mergings; with so.

It can be shown that given an AND/OR search graph, its clognder the merge
operator yields a unique fixed point, called the minimal ARB/search graph.

Definition 5 (minimal AND/OR search graph). The minimal AND/OR search graph
relative toT is the closure undemergeof the AND/OR search treg;.

The above definition is applicable, via the legal-chain didin, to the traditional
OR search tree as well. However, in many cases we will not letalyeach the com-
pression we see in the AND/OR search graph, because of #wr lstructure imposed
by the OR search tree.

Example 2.The smallest OR search graph of the problem in Figure 1(ayéngn Fig-
ure 2 along the DFS order= (X,Y,T, R, Z, L, M). The smallest AND/OR graph of
the same problem along some DFS tree is given in Figure 3. @haesome variable-
value pairs must be repeated in Figure 2 while in an AND/ORe ¢hsy appear just
once. For example, the subgraph below the patisl), (Y, 2) and (X, 3), (Y, 2) in
Figure 2 cannot be merged.

4.2 Rules for Merging Nodes

Given a graphical modeR = (X, D,C) and a legal tred’, there could be many
AND/OR graphs relative td’ that are equivalent to the AND/OR search t&2e each
obtained by some sequence of merging. The following rulesige an efficient way
for generating such graphs without creating the whole $etaee first.

It uses a variant definition afiduced-width of a legal tree of @hich is instrumen-
tal for characterizing OR graphs vs. AND/QRRaphs We denote byl (1) a DFS
ordering of a tred".

Definition 6 (induced-width of a legal tree).GivenG”, an extended graph af rel-
ative toT', theinduced width ofG relative to legal tre€", wr(G) is the induced-width
of GT alongdss(T).

We can show that, 1. The minimal induced-width@felative to all legal trees is
identical to the induced-width (tree-width) 6f. 2. The induced-width of a legal chain
d is identical to its path-widthpw(d) alongd.

Next we provide a general generative rule for unifying nddéee AND/OR search
graph and will use the generalized width parameter to chexiae its effect. Given an
induced graph of3”, denotedG*”', each variable and its parent set is a clique. We
associate each variable with fiarentsandparent-separators

Definition 7 (parents, parent-separators).Given the induced-grapiG**, the par-
ents of X denotedpsx, are its earlier neighbors in the induced-graph. Its parent
separatorspsax are its parents that are also neighbors of future variable%'i

Note that for every node except those latest in the cliqueeptrent-separators are
identical to the parents. For nodes latest in cliques, thenteseparators are the sepa-
rators between cliques.

In G*7, for every nodeX;, the parent-separators &f; separate iff” its ancestors
on the path from the root, and all its descendentsn

Theorem 2. GivenG*7', lets; = (@i, (Xiy1,v)) andsy = (by, (X;11,v)) be two par-
tial paths of assignments in its AND/OR search tfae ending with the same assign-
ment variable{X; 1, v). If s1[psa;+1] = sa2[psa;+1] then the AND/OR search subtrees
rooted ats; andss are identical ands; and sz can be merged atX,; 1, v).

Definition 8 (context).For every states;, s[psa;] is called the context of; whenpsa;
is the parent-separators set &f; relative to the legal treq’.

Theorem 3. GivenG, a legal treeT” and its induced widthv = wr (G), the size of the
AND/OR search graph based @hobtained when every two nodesSf having the
same context are merged@¥n - k), whenk bounds the domain size.

Thus, the minimal AND/OR search graph @frelative toT is O(n - k) where
w = wr(G). Sinceminr{wr(G)} equalsw* and sincemingechqin{wr(G)} equals
pw* we get,

Corollary 1. The minimal AND/OR search graph is bounded exponentialthb&yri-
mal graph'’s tree-width while the OR minimal search graphasibded exponentially by
its path-width.

It is well known [6] that for any graplw* < pw* < w* - logn. It is also easy to
placem* (the minimal depth legal tree) yielding* < pw* < m* < w* - logn.

In our companion paper [4] we showed that for some graphicalats the differ-
ence between the tree-width and path-width can be substaimifact for balanced
trees the tree-width is 1 while the path-widtidg n whenn is the number of variables
yielding a substantial difference between OR and AND/ORdegraphs.

5 Unique Aspects to Constraints

5.1 Pruning Inconsistent Subtrees

Most advanced constraint processing algorithms incotpara-good learning during
search, or use variable-elimination algorithms suchdeptive-consistendg], gener-
ating all relevant no-goods, prior to search. Such schearebe viewed as traversing a
prunedAND/OR search tree. We next define thacktrack-freeAND/OR search tree.

Definition 9 (backtrack-free AND/OR search tree).Given an AND/OR search tree
St(R) whose internal nodes are labeled by1, the backtrack-free AND/OR search
tree of R based orl", denotedBFr(R), is obtained by pruning all subtrees labeled
“0” from Sr(R).

(@) (b) (©
Fig. 4. (a) A constraint graph; (b) a spanning tree; (c) a dynamic ADRtree

Clearly, if we traverse the AND/OR backtrack-free searcicspwe can find a so-
lution after traversing a single solution subgraph of thekirack-free search graph.
It is well known that if we apply variable-elimination algdims such asdaptive-
consistencyn a reversed order af then we can find a solution with no dead-end.

Definition 10 (directional extension).Let R be a constraint problem and letbe a
DFS traversal ordering of a legal tree of its primal graphethwe denote b, (R) the
constraint problem compiled by Adaptive-consistencyé@réverse order of.

Proposition 1. The AND/OR search tre8,(E4(R)) whend is a DFS ordering of
T, is identical to the backtrack-free AND/OR search treeRobased onl’. Namely
St(E4(R)) = BFr(R).

Proposition 1 emphasizes the significance of no-good leg8i] for deciding in-
consistency or for finding a single solution. If the searpheg is backtrack-free its
size is irrelevant for the consistency query. For countiogéver, pruning inconsistent
subtrees yields partial help only.

5.2 Using Dynamic Variable Ordering

The AND/OR search tree we defined used a fixed variable omleltins known that
exploring the search space in a dynamic variable orderinigjfdy beneficial. AND/OR
search trees for graphical models can be modified to allovahyoivariable ordering.
A dynamic AND/OR tree that allows varied variable orderirggto satisfy that for
every subtree in the search tree rooted M v), there are nactive constraints (or
arcs) in the subproblem conditioned on the current pattkta) that connect different
branches of the tree.

Example 3.Consider the propositional formuld — Av C andX — BV C. The
constraint graph is given in Figure 4(a) and a dfs tree in iggl(b). However, the
constraint subproblem conditioned ¢, 0), has no real constraint betweédn B, C,
so the effective spanning tree bel¢¥, 0) is { (X, 0) — A, (X,0) — B, (X,0) — C},
yielding the AND/OR search tree in Figure 4(c). Note thatle/ttiere is an arc between
A andC in the constraint graph, the arcrist activewhen X is assigned the valug

Clearly, the constraint graph conditioned on any partigiggsnent can only be
sparser than the original graph and therefore may yield desn#fND/OR search tree
than with fixed ordering.

5.3 Merging and Pruning: Two Orthogonal Concepts

Notice that the notion of minimality vs that of pruning of ontsistent subtrees (yielding
the backtrack-free search space) are orthogonal. When wgem&o subtrees whose
root value is “0” (unsolved) via their context, we can stidldp around all the subtree
of the merged node roots. On the other hand, recording a nd;gmplies that we
prune the subtree below that node and summarize the valuaso$ubtree by “0”.
Recording no-goods, namely the parent-context of an uedatode, can be used as a
new constraint which can affect and prune the search trelé its

Therefore, we can have a minimal search graph that is NOTttzatkfree as well
as a search tree that is backtrack-free. When the searck spaacktrack-free (no
dead-end nodes) and if we seek a single solution, the sizieeofninimal AND/OR
search graph and its being OR vs AND/OR are both irrelevawill] however, affect a
traversal algorithm that counts all solutions or computeimal solution. This means
that for deciding consistency or for finding the first solationce we record no-goods,
backjumping becomes irrelevant, as was often observed [10]

Another independent option is to prune full subtrees. Irepbthords, if an AND
node roots a full consistent AND/OR search subtree thatesgas the cartesian product
of all value below the node, it can be pruned and its interala¢l be summarized as
“1". This is exactly what happens in OBDD representation &fiF formula [11]. An
OBDD is a minimal OR search graph that is collapsed as far ssilple. A tree-obdd is
a minimal AND/OR search graph that fully collapsable [12].

6 AND/OR Algorithms for Counting

6.1 Counting Over the AND/OR Search Tree

Any algorithm that traverses the AND/OR search tree in aluipgt manner is guaran-
teed to have time bound exponential in the depth of the legaldf the graphical model
and may operate using linear space.

igure 5 presents the basic DFS traversal of the AND/OR seaeehfor counting
the number of solutions of a constraint network. The realdeulsl ignore the bracketed
lines. Given a legal tre@&', AND-OR-COUNTING places the root of” in OPEN and
starts the current solution subgraph assembled by theitgorThe algorithm picks
the top node in OPEN and expands it generating its succe$arss an OR node,
X, it generates its value assignments that are consistehtthdt value assignments
along its path. The generated nodes, labeled “AND”, arerdambin the current solution
subgraph and placed on top of OPEN. When an AND ng@liev) is expanded, its
successors akg(X) in T

The nodes in the tree are labeledyalues. These stand for the number of solu-
tions below that variable (or variable-value) in the coaistr subproblem restricted to
the variables rooted at that nod€elinThe terminal nodes are evaluated as either solved,
(g=1) if they are AND nodes, or unsolved (g=0) if they are ORlem They-values of
internal nodes are evaluated in step 4. Fhalue of an AND node is the product of the
g-values of its successors, while thevalue of an OR node is the sum of thesalues
of its successors. The algorithm terminates when the rdabided.

procedure AND-OR-COUNTING
Input: A constraint networkR = (X, D, C); alegal tree]", of its constraint graph rooted &f; separator parents
psa; and parentpa; for every variableX; .
Output: The number of solutiong(Xy). = denotes the current partial assignment path.
1. Initialize OPEN (OP): OPEN- X, type(X) = OR; Create a search gragh G «— Xo;
Create a list called CLOSED (CL), initially empty.
2. n <« first node in OPEN, move to CLOSED
3. Expandn generating all its successors as follows:
if type(n) = OR,n =X
succ(X)«— {(X,v)|consistent({X,v))}
if suce(X) =&, g(X) = 0; (deadend)
[cache — nogood «— mpa ,update constraints and goRoopagate]]
else, add allsucc(X) to G, set pointers back t& .
for each(X, v) € succ(X) do,m «— 7 U ({X,v))
[[if Tpsa isanew contextnoti®P U C'L, thenc = c({X,v)) = Tpsax |l
add(X, v) to OP.
[[else, there exists;n € OP U C'L s.tec(m) = ¢, unify (X, v) with m; merge]]
EndFor
If type(n) = AND;n = (X, v)
if X is aleafinT then,g({(z,v)) =1,
remove(X, v) from OP
succ((X,v)) — {Y|Y € ch(X)in T}
putsuce((X, v)) on top of OPEN and it
set back-pointers.
4. Propagate: whileyou can propagate values:
a. For a non-terminal AND nodgX, v):
[ifY € suce((X,v)) andg(Y) =0,
remove siblings ot” from OPEN and fronGG.
setg((X,v)) = 0.]]
else,
if all suce((X, v)) are evaluatedy({ X, v)) = My csuce((x,v))9(Y)
b. For a non-terminal OR nod&:
if all succ(X) havey values,g(X) = Z

end while

c.if X was evaluated, exit with(Xo)
5. Gotostep 2.
end procedure

(X,v)E€suce(X) 9((X, v))

Fig. 5. The counting algorithm.

We can easily modify the algorithm to find a single solutioelging algorithm
AND-OR-FIND-SOLUTION, (not presented for lack of space). The main difference is
that the0/1 g-values of internal nodes are propagated using Boolean stiomand
product instead of regular operators, yielding the 0/1llabeFrom Theorem 1 we can
conclude that,

Theorem 4. The complexities cAND-OR-COUNTING and AND-OR-FIND-SOLU-
TION are space linear and timé&(nk™), wherem is the depth of the legal tree of its
constraint graph. If the constraint graph has a tree-decosition with tree-widtho*,
both algorithms have time complexi®(n - exp(w* - logn)).

Obviously, the ability to terminate early with first solutionakes AND-ORFIND-
SOLUTION much faster than AND-OR-OUNTING in practice.
6.2 Counting Over the AND/OR Search Graphs

Any algorithm traversing the AND/OR search graph needs tmne nodes during
search so merging would be possible. To do that the algoréhsociates a context

N=20, K=3, C=20, S=4, 20 instances, w*=9, h=14 |

|
[t I 10%]] 20%]] 30%]] 40%]] 50%]] 60%]] 70%)]
[#solutions || o] o]f o] 49]] 3,847 126,957 2,856,064
[Time (seconds) |
[[BE [[0.1011(] 0.1015§] 0.1011§] 0.10029] 0.10000] 0.0897(] 0.08809
i=0[A/O FC] 0.00650] 0.0125(] 0.02450] 0.0655§ 0.2294(1.09355 5.8174(
AJO RFC]| 0.00350] 0.0100! 0.02555] 0.07660 0.2749(1.3329 6.9485(]
ORFC 0.00503(0.012040 0.02755 0.0867(0.5262(5.4972(65.68774
OR RFC [0.0040 0.0125 0.0280 0.09870 0.5604(5.72634 67.94274
i=3|A/IO FC 0.00550(0.01210 0.02555 0.06414 0.22924§ 1.09505 5.79484
AJO RFC]| 0.00300| 0.0130! 0.02550] 0.07810 0.2785| 1.3370 6.9019(
ORFC 0.00555| 0.0125(Q] 0.02750] 0.08765 0.5240 5.4850(65.8319
OR RFC [0.0040 0.0100d 0.0281 0.09820 0.5640(0 5.7288 67.9852
i=6|A/O FC 0.00504(0.01250 0.02405 0.06455 0.2137(0.9137§ 4.33874
A/O RFCJ| 0.0050 0.01109 0.0275 0.07555 0.2593(1.0962 5.08374
ORFC 0.00450] 0.0125(Q] 0.02960] 0.08860 0.4992(4.6698! 49.7753
ORRFC|| 0.0030qQ| 0.01050] 0.0320qQ| 0.09804 0.5362! 4.8752 51.2491
i=9|A/O FC 0.00453| 0.01155 0.02504 0.06405 0.1724(0.48864 1.22135
A/O RFCJ| 0.0045 0.0095(0 0.0260 0.0731 0.2053 0.5883 1.4626
ORFC 0.0055 0.0135 0.0295 0.0816 0.4001(2.9898 23.39555
OR RFC|[0.0045(| 0.01150] 0.0302(Q| 0.0941§ 0.4362(3.1551! 2425301
[Number of expanded nodes (# n) / Number of dead-ends (# d) |
#n| #d|| #n| #d|| #n| #d|| #n| #d #n| #d #n #d #n #d

i=0[A/O FC ||225|453||518]1032|] 1192 2330||3552| 6579|| 16003 24402|| 106651] 119059| 735153 55382
AJO RFC||154|311||387| 771||1052|2056(|3407|6307||15737/23987|| 106617 118989| 735153 55382
OR FC [[225]453][519]1040]| 1203[2408]| 3810] 7476]| 28079 44634]] 414463 448055 6533674 4499159
OR RFC [[154]311][387] 777][1062[2126||3664] 7183]|27801]44078|| 414428 447986]| 6533674 4499159

i=3{A/O FC ||225|453||518|1032||1192|2330||3552|6579|| 16003 24402|| 106651/ 119059| 735153 553820
AJO RFCI||154|311||387| 771||1052|2056(|3407|6307||15737/23987|| 106617 118989| 735153 55382
OR FC [225]453][519]1040[[1203]2408|[3810] 7476|| 28079 44634]| 414463 448053(6533674 449915
OR RFC [[154]311][387] 777][1062|2126||3664] 7183]|27801]44078|| 414428 447986]| 6533674 4499159

i=6[A/O FC [[224]451][512]1021]]1162]2285][3306] 6269[] 12765/ 21129] 70273 88589 436554 368111
A/O RFCI|154|311[[384| 765[]1028]2019[[3175|6012[|12562[20776|| 70238 88519 436554 368111
OR FC [225]453][519]1040[[1203]2408|| 3764] 7418|[24700 41194]| 294525 349350 3931074 3068920
OR RFC[|154]311[[387] 777[[1062]2126[|3618] 7124|| 24422 40638]| 294491] 349281][3931074 3068920

i=9|A/O FC [[224|449([499| 978||1093|2112[|2883]5288|| 8873|14193|| 28038 33210 79946 60144
AJO RFC||153|308][[371] 722|| 962|1857|[2761|5063|| 8705[13899]] 28003 33141 79946 60144
OR FC [|225]453([518|1032|[1192|2333|| 3604| 6874|[18729/ 30992]| 166912 203854/| 1516974 1259120
OR RFC [|154]311][387] 771[[1052]2058|[3461]6597||18457|30477||166877203784[151697¢ 125912

Table 1. AND/OR search vs. OR search vs. Bucket Elimination

with each AND node and whenever a new AND node is generatedpiitext is com-
pared against the list of contexts for the same variablears#tme level. If it was already
generated, only pointers will be established appropsiatel

Algorithm AND-OR-GRAPH-COUNTING is presented in Figure 5. For this version
the reader should include all the bracketed lines. In stehe3algorithm expands the
next node in OPEN (OP). If this is an OR node that has no camistuccessors, it
is identified as dead-end and assignee- 0. A no-good is recorded and the set of
constraints are modified to include this new constraints Bitep will cause pruning of
the search tree. Otherwise, for each consistent, valoeX the algorithm computes
the context of X, v) denoted:({ X, v)) and check it against recorded contexts.

Theorem 5. The complexity of algorithPAND-OR-GRAPH-COUNTING is time and
space exponential in the induced width of the legal treeckvis identical to the tree-
width. For OR space, the complexity is exponential in théeidth.

N=40, K=3, C=50, S=3, 20 instances, w*=13, h=20 |

|
[t [I0%[[20%]| 30%]] 40%]] 50%]] 60%)
[#solutions | o] o] o[0] 46587 14789857%
[Time (seconds) |
[[BE || 8674 8714 8889 8.709] 8.531]] 8.637]
i=0 [A/OFC][0.011]] 0.03(]] 0.110] 0.454]] 3.129] 32.93]
[ORFC]| 0.009] 0.031] 0.113] 0.517]] 14.615] 9737.823
=3 [AJOFC[[0.011] 0.03]] 0.111] 0.45J] 3.109 31.277
|OR FC[[0.009] 0.030] 0117 0509 14474 9027.364
=6 [AJOFC[[0.011] 0.029] 0.110] 0.454] 3.006]] 25.14Q
[ORFC][0.010] 0.032] 0.113] 0.509]| 13.842] 7293.473
i=9 [AJOFC][0.010] 0.030]] 0.114]] 0.453] 2.899]] 21.558
[ORFC|[0.010] 0031 0.111] 0.509 12.334] 5809.917
=13[A/OFC][0.011]] 0.030] 0.111] 0.457 2.605]] 11.974
[ORFC|| 0010] 0032 0.123] 0.9 8.703] 1170.203
[Number of expanded nodes (# n) / Number of dead-ends (# d) |
#n[#d][#n[#d][] #n] #d][] #n] #d #n #d #n #d|

i=0 [AJO FC[| 78| 159][265[533]| 999|1994][47359229|| 6016310113 1601674 171194
[OR FC [78] 159]] 265[533][1000[2003|| 4947/ 9897][273547 407350 38412080132454590

i=3 [AJO FC|| 78]|159|| 265|533|| 986|1990||4525/9166|] 46763 98413 689154 162507
OR FC | 78]159][265] 533[] 1000[2003[[4947[9897][224739 399210[22866736328770107'

i=6 | A/JO FC|| 78]|159|[265|533|| 981|1971||4467/8991]| 41876 85583 48732 91761

OR FC || 78]159][265] 533[| 1000[2003|494 7] 9897][185422 329754[141610990 20815906

=9 [AJO FCJ[78] 159]| 265]533]] 981] 1958][4451]8866]] 37314 70337 362024 58032
ORFC || 78[159][265]533([T000] 2003|[4947[9897|| 147329 270446 102316411 13565535
=13[AJO FC|[78] 159]| 265 533]] 981]1955][4415[8533] 30610 50228 170827 _ 181157
[ORFC || 78] 159][265]533|| 999| 199447619283 99923 176630] 16210029 20018823

Table 2. AND/OR search vs. OR search vs. Bucket Elimination

7 Empirical Demonstration

We present here an empirical evaluation of the countingrétlgon. We ran two different
versions of it, using forward checking (FC) and relatioralifard checking (RFC) as
the constraint propagation methods. This was done by dgfthimconsistenfunction
in step 3 of the algorithm accordingly. RFC is a bit more gostimputationally, but its
search space is at most as big as that of FC. For the smalleleprs, the algorithms
were ran on AND/OR and OR search spaces, resulting in a tofaioalgorithms:A/O
FC, A/O RFC, OR FC, OR RFC. We only mention that the basic versf the counting
algorithm for whichconsistenfunction only checks the existing constraints, but does
no propagation, was in general too slow so we do not includselresults here. For
each of the above four algorithms, we tried different lewdlsaching, controlled by an
i-bound from O up to as much as our computer memory permitted (thislse= for
the smaller problems). The i-bound is the maximum contezd #iat can be cached.
We also compared against bucket elimination (BE) in somes;ashere space was
available. We report average measures over 20 instaticesin seconds)number of
expanded nodes (#mumber of deadends (#ahdnumber of solutions (# solplso,
wx is the induced width and is the height of the legal tree.

The constraint networks were generated randomly uniforgnhgn a number of
input parametersN - number of variablesK - number of values per variablé€; -
number of constraintsy - the scope size of the constraints;the tightness (percentage
of allowed tuples per constraint).

[N=40, K=2, C=40, S=3, 20 instances, w*=10, h=17 |

t [10%] 20%] 30%] 40%] 50%] 60%] 70%] 80%] 90%] 100%)]
[# sol | 0] 0] 0] 0] 0[13,5332,414,724190,430,00021,549,650,0001,099,511,627,776
Time

AJO FC] i=0[0.000][0.001]0.002]0.005[0.011] 0.065 0.289 1.931] 7.979 30.094
1=3[0.001] 0.002[0.002{ 0.003[0.008] 0.060| 0.253 1.525 6.062] 22.340
1=6[0.001] 0.001| 0.004{ 0.003[0.009] 0.052| 0.182] 0.883 2.873 8.847]
i=10{0.000{0.001/0.003[0.004{0.010] 0.038 0.110| 0.343] 0.587 0.985]

OR FC [i=10{0.000{0.003[0.003]0.004{0.012| 0.671 24.912 1009.02§ - -

Number of nodes

A/O FC| i=0 11 17 32 55 166 3078 22273 204562 988134 4145934
i=3 11] 17| 32| 55| 155 1503 8747 5777 236466 870866

i=6 11| 17| 32| 55| 148] 975 4292 24542 95394 298234

=10 11 17 32 55[135 746 2365 8646 15050 25717

ORFC [i=10] 11| 17| 32| 55| 166] 14049 635331 250781864 - -

Number of deadends

AIO FCJ i=0 13] 19 34 57| 162 1978 10298 57678 134324 0
1=3 13 19 34 571 159 1662 8569 45336 92263 0

1=6 13 19 34 56 149 974 3721] 13655 1925 0

0

i=10] 13] 19] 34| 55[125] 533 1312] 2313] 1887
ORFC |i=10| 13| 19| 34| 57| 164 9693 299139 11541863 -

Table 3. The impact of caching (algorithms A/O FC and OR FC)

Tables 1 and 2 show an ample comparison of the algorithms aerate size
problems which allowed bucket elimination to run. The bdldiene numbers show
the best values in each column. The most important thing te isathe vast superior-
ity of AND/OR space over the traditional OR space. Only fa tery tight problems
(t = 10% —40%), which are also inconsistent, the two search spaces seeectumpa-
rable. The picture is clearer if we look at the number of exfesinodes and number of
deadends. When the problems are loose and have a large nofsbéartions AND/OR
algorithms are orders of magnitudes better ¢geg#dbolded figures foi=9 in Table
1, and fori=13 in Table 2, where A/O FC explores a space two orders of madgmitu
smaller than that of OR FC, resulting in a time two orders ofynmitude smaller). In
Table 1 we also see the impact of more constraint propagafioe RFC algorithms
always explore a smaller space than the FC, but this combsawibverhead cost, and
may not always be faster. For BE we only report time, whichads sensitive to the
tightness of the problem, so we see that for tight networisckecan be faster than BE.

Caching doesn’t seem to play a big role in this first set of fmais. Especially, for
inconsistent networks, caching doesn’timprove perforeeaihis is probably because
the type of networks we generate turn out to be fairly easyfdoward checking, so
even without caching the no-goods of the inconsistent neédsydorward checking is
able to easily detect them.

Table 3 gives a better idea of why caching is useful. Firgls leok at the A/O
FC entries. This is again a smaller problem for which A/O FQldde run even for
t = 100%. When problems become loose, caching is essential to sjpebd search. Of
course, caching no-goods which are hard to detect by prépagaould also improve
the search. We show here again that AND/OR space can yietthexyial improvement
over OR space. OR FC is shown fed 0 (see bolded figures). Ft+90% andt=100%
OR FC would take too long. Fdr80% even the linear space A/O FC is 3 orders of
magnitude faster than OR FC with= 10 caching.

[N=60,K=3, C=80, S=3, 20 instances;=19, h=28][N=100,K=2, C=130, S=3, 20 instances?=32, h=43]

[t | 10%[20%[30%| 40%] 50%] 60%]|[t | 10%[20%] 30%[40%] 50%| 60%| 70%]

[#so 0] 0] 0 0| 2161|2156438278f#so 0] 0| 0] 0 0] 0] 0|

[Time (seconds) I Time (seconds) |

[F12]0.042[0.186]1.229] 14.499 279.05] 2296.488[i=20]0.0690.096/0.193[0.725 3.572 27.68(] 677.049

[Number of nodes I Number of nodes |

[F12] 155] 643] 4181 50544 109174§ 14874684[i=20] 70] 96] 406 832[4264] 35353 113986(
Number of deadends Number of deadends

| | |
[F12] 314] 1289 8365[10076 2118274 _ 25006533(i=20] 72| 98] 204] 834] 4266] 347931043693

Table 4. A/O FC, N=60, K=3 Table 5. A/O FC, N=100, K=2

Finally, Tables 4 and 5 show examples of large networks factwBE was infeasi-
ble. Traditional OR space search would also not be possigean only A/O FC with
the maximum cache size possible for our machine. This shaWwAND/OR search is
more flexible, being able to solve problems of much larges $i|mn inference algo-
rithms or OR search.

8 Conclusions, Discussion and Related Work

The primary contribution of this paper is in viewing searoh ¢onstraint processing
in the context of AND/OR search spaces rather than OR spakBalemonstrating
the impact of this view on counting solutions. The paper firstrviews the notion of
AND/OR search space (which was introduced for graphicaletsoish general [4]) for
constraint networks. It describes the AND/OR search tresvsty that its size can be
bounded exponentially by the depth of its legal tree imgjy@xponential saving for
any linear space algorithms traversing the AND/OR graplleKcribes the minimal
AND/OR search graph, showing that it is exponential in tleetwidth while the size
of the minimal OR graph is exponential in the path-width.cgifior some graphs the
difference between the path-width and tree-width is suthste(e.g., balanced trees) the
AND/OR representation implies exponential time and spawgé@ngs for all algorithms
that cache goods and no-goods.

The paper then shows how counting algorithms can be affeetesh formulated
as searching AND/OR search trees and graphs rather tharhsepatheir OR counter-
parts. We present and analyze counting algorithms and gednitial empirical eval-
uation along the full spectrum of space and time. We compeoeating algorithms
on the AND/OR search space when pruning is accomplished dydward-checking
strategies and showed how their performance is affectedfteyeht levels of caching
and how it is compared to bucket-elimination, as a functiérpmblem tightness.
These results show that AND/OR search space is always lietiarthe traditional
OR space, often yielding exponential improvements. Coegbér inference based al-
gorithms (bucket elimination), AND/OR search is more flégind able to adapt to the
amount of space available. All the existing constraint pigation techniques are read-
ily available for AND/OR search. Coupling this with the piliskty of caching makes
AND/OR search a very powerful scheme.

Related work. Algorithm backjumping [13], graph-based or conflict-bé&m con-
straint satisfaction was designed to overcome the redwydamposed by the OR struc-

ture of the search tree. It can be shown that graph-baseglinggikg mimics the explo-
ration of an AND/OR search tree. Indeed, it was shown thatiépgh of a DFS-tree or
a legal-tree [14, 7] plays an important role in bounding lpaciping complexity. Also,
recent algorithms in probabilistic reasoning such as eerconditioning [15] can op-
erate in linear space and can be viewed as searching AND/a@®rs&ees and graphs.
Memory-intensive algorithms can be viewed as searchind\ti®/OR search graph,
such as recent work [16] which performs search guided byedszomposition for
constraint satisfaction and optimization. A similar apgrio was introduced recently in
[17] both for belief updating and counting models of a CNFiafa. The notion of min-
imal OR search graphs is similar to the known conce@fered Binary Decision Di-
agrams (OBDD)n the literature of hardware and software design and vatitia[11].

It is well known that the size of OBDDs is bounded exponehtiay the path-widthof
the CNF's interaction graph. Our notion of minimal AND/ORaseh graphs, if applied
to CNFs, resemblasee OBDDSdeveloped subsequently [12].

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmannighdys (2003)

2. Pearl, J.: Probabilistic Reasoning in Intelligent SysteMorgan Kaufmann (1988)

3. Howard, R.A., Matheson, J.E.: Influence diagrams. (1984)

4. Dechter, R.: AND/OR search spaces for graphical modelsSubmitted, UAI. (2004)

5. Arnborg, S.A.: Efficient algorithms for combinatorialgtmems on graphs with bounded

decomposability - a survey. BIZ5(1985) 2—-23

. Bodlaender, H., Gilbert, J.R.: Approximating treewidgiathwidth and minimum elimination

tree-height. In: Technical report RUU-CS-91-1, Utrechiudrsity. (1991)

7. Bayardo, R., Miranker, D.: A complexity analysis of spdoeind learning algorithms for
the constraint satisfaction problem. In: AAAI'96: Procewgs of the Thirteenth National
Conference on Atrtificial Intelligence. (1996) 298-304

8. Dechter, R., Pearl, J.: Network-based heuristics fostramt satisfaction problems. Artifi-
cial Intelligence34 (1987) 1-38

9. Dechter, R.: Enhancement schemes for constraint priage€ackjumping, learning and
cutset decomposition. Artificial Intelligen@d (1990) 273-312

10. Frost, D.H.: Algorithms and heuristics for constraatisfaction problems. Technical report,
Ph.D. thesis, Information and Computer Science, UnivergiCalifornia, Irvine, California
(1997)

11. McMillan, K.L.: Symbolic Model Checking. Kluwer Acadéc(1993)

12. McMillan, K.L.: Hierarchical representation of distadunctions with application to model
checking. In: Computer Aided Verification, 6th Internatibgonference, David L. Dill ed.
(1994) 41-54

13. Gaschnig, J.: Performance measurement and analysiarchsalgorithms. Technical Report
CMU-CS-79-124, Carnegie Mellon University (1979)

14. Freuder, E.C., Quinn, M.J.: The use of lineal spanniegsito represent constraint satisfac-
tion problems. Technical Report 87-41, University of Newntishire, Durham (1987)

15. Darwiche, A.: Recursive conditioning. In: Proceedinfishe 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI99). (1999)

16. Terrioux, C., Jegou, P.: Hybrid backtracking boundedrbg-decomposition of constraint
networks. In: Artificial Intelligence. (2003)

17. F. Bacchus, S.D., Piassi, T.: Value elimination: Bagesnference via backtracking search.
In: Uncertainty in Al (UAIO3). (2003)

(]

