Compiling Constraint Networks into
AND/OR Multi-Valued Decision Diagrams (AOMDDSs)

Robert Mateescu and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{mat eescu, dechter }@cs. uci . edu

Abstract. Inspired by AND/OR search spaces for graphical models recently in-
troduced, we propose to augment Ordered Decision Diagrams with AldB,

in order to capture function decomposition structure. This yiaAR®/OR multi-
valued decision diagratAOMDD) which compiles a constraint network into a
canonical form that supports polynomial time queries such as solutiamtiog,
solution enumeration or equivalence of constraint networks. We pg@abmpi-
lation algorithm based on Variable Elimination for assembling an AOMDD for a
constraint network starting from the AOMDDs for its constraints. The #lgor
uses theapPLY operator which combines two AOMDDs by a given operation.
This guarantees the complexity upper bound for the compilation time anizéhe s
of the AOMDD to be exponential in the treewidth of the constraint grapherath
than pathwidth as is known for ordered binary decision diagrams (OBDDs

1 Introduction

The work presented in this paper is based on two existingdveorks: (1) AND/OR
search spaces for graphical models and (2) decision diagf@im). AND/OR search
spaces [1-3] have proven to be a unifying framework for weriolasses of search
algorithms for graphical models. The main characterigithe exploitation of inde-
pendencies between variables during search, which camderexponential speedups
over traditional search methods that can be viewed as siagpan OR structure. The
AND nodes capture problem decomposition imidependent subproblems and the
OR nodes represent branching according to variable vaBsekjumping schemes for
constraint satisfaction and satisfiability can be showrnxpdare the AND/OR space au-
tomatically if only one solution is sought. However, for ating and other enumeration
tasks a deliberate exploration of the AND/OR space is ben&fd.

Decision diagrams are widely used in many areas of reseaspkcially in software
and hardware verification [5, 6]. A BDD represents a Boolaarcfion by a directed
acyclic graph with two sink nodes (labeled 0 and 1), and eirggrnal node is labeled
with a variable and has exactly two childrdaw for 0 andhigh for 1. If isomorphic
nodes were not merged, on one extreme we would have the &ulilsieee also called
Shannon tree, which is the usual full tree explored by backing algorithm. The tree
can be ordered if we impose that variables be encounteréaisame order along ev-
ery branch. It can then be compressed by merging isomorlies(i.e., with the same
label and identical children), and by eliminating redurtdasdes (i.e., whoskw and

high children are identical). The result is the celebrateduced ordered binary deci-
sion diagram or OBDD for short, introduced by Bryant [7]. However, thedenlying
structure is OR, because the initial Shannon tree is an @RIfrAND/OR search trees
are reduced by node merging and redundant nodes eliminati@et a compact search
graph that can be viewed as a BDD representation augmentiedND nodes.

In this paper we combine the two ideas, in order to createigidaaliagram that has
an AND/OR structure, thus exploiting problem decompositiss a detail, the number
of values is also increased from two to any constant, butishisss significant for the
algorithms. Our proposal is closely related to two earkmearch lines within the BDD
literature. The first is the work on Disjoint Support Decorsitions (DSD) investigated
within the area of design automation [8], that were propasedntly as enhancements
for BDDs aimed at exploiting function decomposition [9].€l'kecond is the work on
BDDs trees [10]. Another related proposal is the recent vioyrlEargier and Vilarem
[11] on compiling CSPs into tree-driven automata.

A decision diagram offers a compilation of a problem. It tglly requires an ex-
tended offline effort in order to be able to support polyndriraits size) or constant
time online queries. In the context of constraint netwoikspuld be used to repre-
sent the whole set of solutions, to give the solutions cousbtution enumeration and
to test satisfiability or equivalence of constraint netvgorkhe benefit of moving from
OR structure to AND/OR is a lower complexity of the algorithand size of the com-
piled structure. It typically moves from being bounded exgtially inpathwidthpw™*,
which is characteristic to chain decompositions or lingarcsures, to being exponen-
tially bounded irtreewidthw™, which is characteristic of tree structures (it always kold
thatw* < pw* andpw* < w* - logn).

Our contribution consists of: (1) we formally describe thRBYOR multi-valued
decision diagram (AOMDD) and prove that it is a canonicakespntation of a con-
straint network; (2) we describe tA@pPLY operator that combines two AOMDDs by an
operation and prove its complexity to be linear in the outpve show that the output
of apply is bounded by the product of the sizes of the inp@&swe give a schedul-
ing of building the AOMDD of a constraint network startingttvithe AOMDDs of its
constraints. It is based on an ordering of variables, whiebsyise to a pseudo tree (or
bucket tree) according to the execution of Variable Eliiovaalgorithm. This gives
the complexity guarantees in terms of theuced widthalong that ordering (equal to
the treewidth of the corresponding decomposition).

The structure of the paper is as follows: Sect. 2 provideSnpirgary definitions,

a description of Variable Elimination and AND/OR searchcgsa Sect. 3 describes
the AOMDD, its graphical representation and properties, @d@monstrates its compi-
lation by Variable Elimination; Sect. 5 presents trPLY operation; Sect. 6 discusses
extensions to probabilistic models; Sect. 7 presentsa@labrk and Sect. 8 concludes.

2 Preliminaries

A constraint network and its associated graph are defindteinsual way:

Definition 1 (constraint network). A constraint networks a 3-tupleR = (X, D, C),
where: X = {X3,...,X,} is a set of variablesD = {Ds,...,D,} is the set of

their finite domains of values, with cardinalitiés = |D;| andk = max} , k; ; C =
{C4,...,C.} is a set of constraints over subsetsXf Each constraint is defined as
C = (S, R;), whereS; is the set of variables on which the constraint is definededal
its scope, andr; is the relation defined oA;.

Definition 2 (constraint graph). The constraint graplof a constraint network is an
undirected graphG = (X, E), that has variables as its vertices and an edge connect-
ing any two variables that appear in the scope (set of argus)erfithe same constraint.

A pseudo tree resembles the tree rearrangements introdufEy:

Definition 3 (pseudo tree).A pseudo treef a graphG = (X, E) is a rooted treel’
having the same set of nod&s such that every arc irE is a backarc in7 (i.e., it
connects nodes on the same path from root).

Definition 4 (induced graph, induced width, treewidth, pathwidth). An ordered
graphis a pair (G, d), whereG is an undirected graph, and = (Xy,..., X,,) is an
ordering of the nodes. Theidth of a noden an ordered graph is the number of neigh-
bors that precede it in the ordering. Thédth of an orderingd, denotedw(d), is the
maximum width over all nodes. Theduced width of an ordered graph*(d), is the
width of the induced ordered graph obtained as follows: fackenode, from last to first
in d, its preceding neighbors are connected in a clique. ifokeiced width of a graph
w*, is the minimal induced width over all orderings. The indlieédth is also equal
to thetreewidthof a graph. Thepathwidthpw* of a graph is the treewidth over the
restricted class of orderings that correspond to chain depositions.

2.1 Variable Elimination (VE)

Variable elimination YE) [13, 14] is a well known algorithm for inference in grapHica
models. We will describe it using the terminology from [1@bnsider a constraint net-
work R = (X, D, C) and an ordering = (X1, X», ..., X,,). The orderingl dictates
an elimination order foWE, from last to first. Each constraints fro@is placed in the
bucket of its latest variable id. Buckets are processed fralf, to X; by eliminating
the bucket variable (the constraints residing in the bueketjoined together, and the
bucket variable is projected out) and placing the resultiogstraint (also calleches-
sage in the bucket of its latest variable ih After its executionVE renders the network
backtrack free, and a solution can be produced by assigmingbles alongl. VE can
also produce the solutions count if marginalization is dopesummation (rather than
projection) and join is substituted with multiplication.

VE also constructs a bucket tree, by linking the bucket of eacto the destination
bucket of its message (called the parent bucket). A nodeeibvticket tree typically has
a bucket variablea collection of constraintsand ascope(the union of the scopes of
its constraints). If the nodes of the bucket tree are regldgetheir respective bucket
variables, it is easy to see that we obtain a pseudo tree.

Example 1.Figure 1a shows a network with four constraints. Figure liwshthe exe-
cution of Variable Elimination along = (A4, B, E, C, D). The buckets are processed
from D to A L. Figure 1c shows the bucket tree. The pseudo tree is giveiyirR&.

! This representation reverses the top down bucket processing @esiriarlier papers.

(™) A hyA)

© C,(AB) X h,(AB) b h,(AB)

£00

TE T3

m®O

m=°

@\
OI
w

: C4(ABE)

@ bucket-C
. Cy(AC) 5h,(BC)

BC
® © D: C,(BCD) (BCD) bucket-D
@ (b) ©

bucket-E

@
e}
S
l.
o m

Fig. 1. Execution of Variable Elimination

2.2 AND/OR Search for Constraint Problems

The AND/OR search space is a recently introduced [1-3] imgfyramework for ad-
vanced algorithmic schemes for graphical models. Its matnes consists in exploit-
ing independencies between variables during search, wddohprovide exponential
speedups over traditional search methods oblivious tol@nobtructure.

Definition 5 (AND/OR search tree of a constraint network).Given a constraint net-
workR = (X, D, C), its constraint graphG and a pseudo tre& of GG, the associated
AND/OR search tree has alternating levels of OR and AND notles OR nodes are
labeledX; and correspond to variables. The AND nodes are labékéd «;) and cor-
respond to value assignments. The structure of the AND/@RIs&ee is based off .
The root is an OR node labeled with the rootZof The children of an OR nod¥; are
AND nodes labeled with assignmeii;, ;) that are consistent with the assignments
along the path from the root. The children of an AND nddg, «,;) are OR nodes la-
beled with the children of variabl&’; in the pseudo tre& . The leaves of AND nodes
are labeled with “1”. There is a one to one correspondencengen solution subtrees
of the AND/OR search graph and solutions of the constraitwork [1].

The AND/OR search tree can be traversed by a depth first sadgohithm, thus
using linear space. It was already shown [12, 15, 16, 1] that:

Theorem 1. Given a constraint networlR and a pseudo tre& of depthm, the size
of the AND/OR search tree based @nis O(n k™), wherek bounds the domains of
variables. A constraint network of treewidih* has a pseudo tree of depth at most
w* log n, therefore it has an AND/OR search tree of gig: k" 1°87),

The AND/OR search tree may contain nodes that root identicatlitioned sub-
problems. These nodes are said taubdiable When unifiable nodes are merged, the
search space becomes a graph. Its size becomes smallereapthese of using addi-
tional memory by the search algorithm. The depth first sealgbrithm can therefore
be modified to cache previously computed results, and vetieem when the same
nodes are encountered again. The notion of unifiable nodkdireed formally next.

Definition 6 (isomorphism, minimal AND/OR graph). Two AND/OR search graphs
G and G’ are isomorphicif there exists a one to one mappiadgrom the vertices ofr
to the vertices of+’ such that for any vertex, if o(v) = v/, thenv andv’ root identical
subgraphs relative te. Theminimal AND/OR graphis such that all the isomorphic
subgraphs are merged. Isomorphic nodes are also callechintéfi

Fig. 2. AND/OR search space

Some unifiable nodes can be identified based on tugitexts We can define graph
based contexts for both OR nodes and AND nodes, just by esiptethe set of ancestor
variables in7 that completely determine a conditioned subproblem. Hewet/can be
shown that using caching based on OR contexts makes caciseg lon AND contexts
redundant and vice versa, so we will only @R cachingAny value assignment to the
context of X separates the subproblem belaiMrom the rest of the network.

Definition 7 (OR context). Given a pseudo tre& of an AND/OR search space,
context(X) = [X;...X,] is the set of ancestors df in 7, ordered descendingly,
that are connected in the primal graph #6 or to descendants of .

Definition 8. Thecontext minimaAND/OR graph is obtained from the AND/OR search
tree by merging all the context unifiable OR nodes.

It was already shown that [15, 1]:

Theorem 2. Given a constraint networR, its primal graphG and a pseudo treg, the
size of the context minimal AND/OR search graph base@ @O (n k*7()), where
wi(G) is the induced width off over the depth first traversal &f, andk bounds the
domain size.

Example 2.Figure 2 shows AND/OR search spaces for the constraint mietfvom
Fig. 1, assuming universal relations (no constraints) anar valued variables. When
constraints are tighter, some of the paths in these graphstdexists. Figure 2a shows
the pseudo tree derived from orderitig= (A, B, E, C, D), having the same structure
as the bucket tree for this ordering. The (OR) context of eamde appears in square
brackets, and the dotted arcs are backarcs. Notice thabttiext of a node is identical
to the message scope from its bucket in Fig. 1. Figure 2b siiosv&ND/OR search
tree, and 2c shows the context minimal AND/OR graph.

3 AND/OR Multi-Valued Decision Diagrams (AOMDDSs)

The context minimalAND/OR graph, described in section 2.2 offers an effectiay w
of identifying unifiable nodes during the execution of tharsé algorithm. However,
merging based on context is not complete, i.e. there maybstiunifiable nodes in
the search graph that do not have identical contexts. Meregeme of the nodes in
the context minimal AND/OR graph may be redundant, for examyhen the set of

solutions rooted at variabl&; is not dependant on the specific value assigne# to
(this situation is not detectable based on context).

As overviewed earlier, in [1] we defined the completéinimal AND/OR graph
which is an AND/OR graph whose all unifiable nodes are mergedvee also proved
canonicity [4]. Here we propose to augment the minimal ANR/&earch graph with
removing redundant variables as is common in OBDD repratientas well as adopt
some notational conventions common in this community. Yie&ds a data structure
that we call AND/OR BDDs, that exploits decomposition byngsiAND nodes. We
present this extension over multi-valued variables yrejdAND/OR MDD or AOMDD.

3.1 AND/OR Relation Graphs and Canonical AND/OR Decision Digrams

We first define the AND/OR constraint function graph, whicansAND/OR data struc-
ture that defines a relation relative to a tree structure awst of variables.

Definition 9 (AND/OR constraint function graph). Given a set of variableX =
{Xy,...,X,}, domain of value{ D, ..., D, } and a tree7 overX as its nodes, an
AND/OR constraint function grap8i is a rooted, directed, labeled acyclic graph, hav-
ing alternating levels of OR and AND nodes and two speciahiteal nodes labeled
“0” and “1". The OR nodes are labeled by variables frold and the AND nodes are
labeled by value assignments from respective the domairese re arcs from nodes
to their child nodes defined as follows:

— A nonterminal OR vertex is labeled ad(v) = X;, X; € X and any of its child
AND nodes is labeled (u) = (X;, x;), whenz; is a value ofX;. An OR node can
also have a single child node which is the terminal “0” node.

— An AND nodeu labeled!(u) = (X;, z;) has OR child nodes. If an OR child node
w of AND nodeu, is labeledi(w) = Y, thenY must be a descendant &fin 7.

If any two variablesZ andY label two OR child nodes of wherel(u) = (X, x),
thenZ andY must be on different paths frofi down to the leaves ifi. An AND
nodewu can also have as a single child node the special node “1”.

The AND/OR constraint function graph defines a relation dkierset of variables
that are mentioned iff which can be obtained from the set of adilution subtreesf
G. A solution subtree ofj contains its root node and if it contains an OR node, then
it must contain one of its child nodes, and if it contains anDARbde, it must contain
all its child nodes. Its only leaf nodes are labeled “1”. Audmn tree defines a patrtial
assignment that includes all the assignment labeling AN&esadn the solution tree.
We say that this partial assignment is generate@ by

Definition 10 (the relation defined by a constraint function gaph). Given an
AND/OR constraint function grapé over variablesX = { X, ..., X,, } having domain
of values{D,...,D,} and a tree7, the relationrel(G) includes all and only full
assignments that extend partial assignments generatéd by

Similar to the case of OBDDs, AND/OR constraint functiongra can be reduced
into canonical form by removingomorphisnmandredundancy The notion of isomor-
phism was defined earlier for AND/OR graphs. In order to capthe notion of re-
dundancy, it is useful to group every OR node together wighAID children into a
meta-nodeThe underlying graph is still an AND/OR graph.

Definition 11 (meta-node).A nonterminal meta-node in an AND/OR search graph
consists of an OR node labeledr(v) = X; and itsk; AND children labeled X;, =,),
oo (X x”> that correspond to its value assignments. We will sometabbseviate
(X, xi;), by z;,. Each AND node labeled;, points to a list of child meta-nodes,
u.children;. Examples of meta-nodes appear in Fig. 4.

A variable is considered redundant with respect to theglatisignment of its par-
ents, if assigning it any specific value does not change thee\at any possible full
assignment. Formally:

Definition 12 (redundant vertex). Given an AND/OR constraint function gragh a
nodew is redundanif for all w; andwuy which are AND child nodes af, u; and us
have the same child meta nodes.

If we want to remove a redundant verteXrom an AND/OR constraint function
graphg, then we make all of its parent AND nodes, point directly to the common
set of its grandchild meta nodes and the meta-nodei®femoved from the graph.

Finally we define AOMDD:

Definition 13 (AOMDD). An AND/OR multi-valued decision diagram (AOMDD) is
an AND/OR constraint function graph that: (1) contains nduadant vertex and (2) it
contains no isomorphic subgraphs.

Analogously to OBDDs we can show that AOMDDs are a canongalasentation
of constraint networks, with respect to a given pseudo frkes, AOMDDs can be used
as a compiled representation of a constraint network.

Theorem 3 (AOMDDs are canonical).Given a constraint network, whose constraint
set isC, having a constraint grapli” and given a pseudo treg of G, there is a unique
(up to isomorphism) reduced AND/OR constraint functiorpyraf C based or/, and
any other constraint function graph &f based oriZ” has more vertices.

4 Using Variable Elimination to Generate AOMDDs

In this section we propose to us&/& type algorithm to guide the compilation of a set
of constraints into an AOMDD. Let’s look at an example first.

Example 3.Consider the network defined X = {A,B,...,H}, Dy = ... =

Dy = {0,1} and the constraints(denotes XOR)(C; = FV H, Cy = AV —H,
C3y=A®BpG,Cy = FVG, Cy = BVF, Cg = AVE C;, = CVE,

Cs = C@® D, Cy = BV C. The constraint graph is shown in Figure 3a. Consider the
orderingd = (A, B,C, D, E, F,G, H). The pseudo tree (or bucket tree) inducediby

is given in Fig. 3b. Figure 4 shows the executionvif with AOMDDs along order-

ing d. Initially, the constraint”; throughCy are represented as AOMDDs and placed
in the bucket of their latest variable th Eachoriginal constraint is represented by
an AOMDD based on a chain. For bi-valued variables, they &8Bs, for multiple-
valued they are MDDs. Note that we depict meta-nodes: oned@R and its two AND

®
®
© ®
ONGRONG
(@) (b)

Fig. 3. (a) Constraint graph fo€ = {Ci,...,Co}, whereC; = FV H,C, = AV —H,
C3=A®B&®G Cy=FVG Cs=BVF,Ceg=AVEC;=CVECs=Ca&D,
Cy = BV C; (b) Pseudo tree (bucket tree) for orderihg- (A, B,C,D,E, F,G, H)

Fig. 4. Execution of VE with AOMDDs

children, that appear inside each gray node. The dotted@ugesponds to the 0 value
(thelow edge in OBDDs), the solid edge to the 1 value (tigh edge). We have some
redundancy in our notation, keeping both AND value nodesandypes (doted arcs
from “0” and solid arcs from “1”).

TheVE scheduling is used to process the buckets in reverse orderobucket is
processed bjoining all the AOMDDs inside it, using thapply operator. However, the
step of eliminating the bucket variable will be omitted besmwe want to generate the
full AOMDD. In our example, the messages, = C; <t Cs andme = C3 <1 Cy are
still based on chains, so they are still OBDDs. Note that #ti#lycontain the variables
H andG, which have not been eliminated. However, the message- Cs > mq >
mq IS not an OBDD anymore. We can see that it follows the strectirthe pseudo

Fig. 5. (a) The final AOMDD; (b) The OBDD corresponding &o

tree, whereF' has two children and H. Some of the nodes correspondingitdhave
two outgoing edges for value 1.

The processing continues in the same manner The final oufghealgorithm,
which coincides withnz, is shown in Figure 5a. The OBDD based on the same ordering
d is shown in Fig. 5b. Notice that the AOMDD has 18 nontermirades and 47 edges,
while the OBDD has 27 nonterminal nodes and 54 edges.

4.1 Algorithm VE-AOMDD

Given an ordering there is a unique pseudo trég (or bucket tree) corresponding to it
Each constrain€; is compiled into an AOMDD that is compatible with and placed
into the appropriate bucket. The buckets are processed#sivariable to first as usual.
Each bucket contains AOMDDs that are either initial constssor AOMDDs received
from previously processed buckets. The scope of all thelbas that are mentioned in
a bucket includeelevantvariables, i.e. the ones whose buckets were not yet pratesse
(note that they are identical to the OR context), augerfluousvariables, the ones
whose buckets had been proceessed. The number of relevaiilea is bounded by
the induced width (because so is the OR context). It is easgadhat all the AOMDDs
in a bucket only have in common variables which are relevamd,which reside on the
top chain portion of the bucket pseudo tree. The superfluatiables appear in disjoint
branches of the bucket pseudo tree.

Consequently combining any two AOMDDs in a bucket amountssiag the reg-
ular MDD (OBDD) apply operator on their respective common parts that are simple
MDDs. The rest of the branches can be attached at the end obthbine operation.
Thus, the complexity of processing a bucket of AOMDDs is ttke complexity of pair-
wise MDD applyover constraints restricted to scopes bounded by the indwizkth.

Proposition 1. The complexity of processing a bucket\ifg-AOMDD is exponential
in the number of relevant variables, therefore it is expdiatin the induced width.

In summary, to create the compiled AOMDD, we can use only lesgdDD ap-
ply operators on the common (separator) portion in each bubtikeéhe next section
however we will define a more general AOMDApply operator that can combine any

two AOMDDs whose pseudo trees are compatible (to be defifdd.can be useful
when the two input AOMDDs are created completely indepetigemd we want to
still exploit their given structure.

5 The AOMDD APPLY Operation

We will now describe how to combine two general AOMDDs. Weuf@on combination
by join, as usual in constraint processing, but other oeratcan be equally easily
applied. The apply operator takes as an input two AOMDDseasgmting constraints
C, andCs and returns an AOMDD representidg 0 Cs, respectively.

In traditional OBDDs the combiningpplyoperator assumes that the two input OB-
DDs have compatible variable ordering. Likewise, in ordecémbine two AOMDDS,
we assume that their backbone pseudo trees@ratible Namely, there should be a
pseudo tree in which both can be embedded. In general a psemedmduces a strict
partial order between the variables where a parent nodg/alpracedes its child nodes.

Definition 14 (compatible pseudo tree)A strict partial orderd; = (X, <;) over a
setX is consistent with a partial orded, = (Y, <2) over a sefY’, if for all 1,25 €

X NY andz; <9 x5 thenx; <; xo. Two partial ordersd; andd, are compatible iff
there exists a partial orded that is consistent with both. Two pseudo trees are compat-
ible iff the partial orders induced via the parent-child agibnship, are compatible.

For simplicity, we focus on a more restricted notion of cotitpkty, which is suf-
ficient when using a VE like schedule for tlagply operator to combine the input
AOMDDs. It is easy to extend this operator to the more germaytibn of compatibility.

Definition 15 (strictly compatible pseudo trees)A pseudo tre€/; having the set of
nodesX; can beembeddedn a pseudo treg having the set of nodeX if X; C X
and7; can be obtained fromT™ by deleting each node iX \ X; and connecting its
parent to each of its descendents. Two pseudo tfeesd 7; are compatibleif there
exists7 such that bott; and7; can be embedded ih.

Algorithm 1, calledappLy, takes as input two AOMDDs for two constraintsand
g defined along strictly compatible pseudo trees, and a contarget pseudo tre@.
We will start by describing the intuition behind the algbrit. An AOMDD along a
pseudo tree can be regarded as a union of regular MDDs, esitittied to a full path
from root to a leaf in the pseudo tree. lzet be a path ir/. Based on the definition of
strictly compatible pseudo trees; has a corresponding path#} and7,, which are
the pseudo trees fgrandg. The MDDs fromf andg corresponding tar, andrz, can
be combined using the regular MDdpply. This process can be repeated for every path
7. The resulting MDDs, one for each pathdnneed to be synchronized by another
MDD applyon their common parts (on the intersection of the paths).alterithm we
propose does all this processing at once, in a depth firstls&aversal over the inputs.
Based on our construction it is clear that the complexity ©MDD-apply is governed
by the complexity of MDD-apply.

Algorithm 1: APPLY(v1; w1, ..., W)
input : AOMDDs f with nodesv; andg with nodesw;, based orcompatiblepseudo
treesT7;, 7, that can be embedded .
var(vi) is an ancestor of attar(w1), . .., var(wm,) in 7.
var(w;) andvar(w;) are not in ancestor-descendant relatioin
output : AOMDD vy i (w1 A ... A wp,), based orT.

1 if Hi(vi,wi,...,wn) # null thenreturn Hy (vi,w1,...,wm); // is in cache
2 if (any ofvy, w1, ..., wn is 0) then return O

3 if (v1 = 1) thenreturn 1

4 if (m = 0) then return v, /1 nothing to join

5 create new nonterminal meta-node

6 var(u) — var(vi) (callit X;, with domainD; = {z1,...,zx, })

7 for j — 1tok,; do

8 u.children; «— ¢ /1 children of the j-th AND node of wu
9 if ((m =1)and @ar(vi) = var(wi) = X;)) then

10 L temp Children «— wi.children;

11 else

12 L temp Children — {w1,...,wm}

13 | group nodes from; .children; U temp Children in several{v'; w', ..., w"}

14 | for each{v'; w',...,w"} do

15 y — APPLY(v"; w?, ..., w")

16 if (y = 0) then

17 L u.children; < 0; break

18 else

19 L u.children; «— wu.children; U {y}

20 if (u.children: = ... = u.childreny,) then /1 redundancy
21 | return w.children,

22 if (Hz2(var(u),u.children,...,u.childreny,;) # null)then// i somor phi sm
23 L return Ha(var(u),u.childreny, ..., u.childreny;)

24 Let Hi(vi,w1,...,Wm) =u // add v to H;
25 Let Ha(var(u), u.childreny, ..., u.childreng;) = u /1l add u to H»
26 return u

Theorem 4. Letry,...m be the set of path il enumerated from left to right and Iét}
andg’; be the OBDDs restricted to path, then the size of the output of AOBDD-apply
is bounded by, |G| - |Gi| < n-max|G}|-|G;|. The time complexity is also bounded
by > i 1G] - 1Gg| < n - maxi|Gy| - |Ggl.

Algorithm APPLY takes as input one node frofhand a list of nodes frorg. Ini-
tially, the node fromf is the root off, and the list of nodes from is in fact just one
node, the root of;. The list of nodes frony always has a special property: there is
no node in it that can be the ancestorZinof another (we refer to the variable of the
meta-node). Therefore, the ligt, . . . , w,, from g expresses a decomposition with re-
spect to7, so all those nodes appear on different branches. We willantpe usual

techniques from OBDDs to make the operation efficient. Féigte join can be viewed
as multiplication, if one of the argumentsQsthen we can safely retuth Second, a
hash tableH; is used to store the nodes that have already been processed, ¢n the
nodes(vq, w1, ..., w,). Therefore, we never need to make multiple recursive calls o
the same arguments. Third, a hash talbleis used to detect isomorphic nodes. If at the
end of the recursion, before returning a value, we discdvatr & meta-node with the
same variable and the same children had already been créaedve don't need to
store it and we simply return the existing node. And fourtaf the end of the recursion
we discover we created a redundant node (all children argstime), then we don’t store
it, and return instead one of its identical lists of children

Note thatv, is always an ancestor of ally, ..., w,, in 7. We consider a variable
in 7 to be an ancestor of itself. A few self explaining checks adgmed in lines
1-4. Line 2 is specific for multiplication, and needs to berged for other operations.
The algorithm creates a new meta-nadevhose variable isar(v;) = X; - recall that
var(v1) is highest (closest to root) I amonguy, wy, . . ., w.,. Then, for each possible
value of X;, line 7, it starts building its list of children.

One of the important steps happens in line 13. There are si® df meta-nodes,
one from each original AOMDL¥ andg, and we will refer only to their variables, as
they appear ir¥". Each of these lists has the important property mentionedeglihat
its nodes are not ancestors of each other. The union of thdidtgois grouped into
maximal sets of nodes, such that the highest node in each aatancestor of all the
others. It follows that the root node in each set belongs todadrthe original AOMDD,
sayv! is from f, and the others, say!,...,w" are fromg. As an example, suppose
7 is the pseudo tree from Fig. 3b, and the two listsfgteG, H} from f and{E, F'}
from g. The grouping from line 13 will creatéC; E} and{F'; G, H}. Sometimes, it
may be the case that a newly created group contains only ate fihis means there is
nothing more to join in recursive calls, so the algorithm waturn, via line 4, the single
node. From there on, only one of the input AOMDDs is traversed this is important
for the complexity ofappLy, discussed below.

5.1 Complexity of APPLY

Given AOMDDs f andg, based on compatible pseudo trédesand7; and the common
pseudo tred, we define théntersection pseudo treg, as being obtained frorf by
marking all the subtrees whose nodes belong to eifhesr 7> but not to both, and
removing them simultaneously (not recursively). The pfA@MDD f corresponding
to the variables ir¥, is denoted by ...

Proposition 2. The time complexity okPPLY and the size of the output a€e(|G; | *
Gyl + 1G5 +1941)-

Proof (sketch)The proof thanppLy makes an efforO (|G |*|G, - |) when combining
nodes fromf~ andgn, is identical to the proof that OBDDs have complexity of thder
of the product of the inputs. For the partsfoéndg that don't belong t@j; . andg, .,
APPLY generates recursive calls that have only one argurmgngffectively calling for
a simple traversal of just one of the inputs.

6 Compiling any probabilistic model to AOMDD

As we showed in the past, the notion of AND/OR graphs is appleto any graphical
models, such as probabilistic networks, cost networks afidence diagrams. Indeed,
the compiled canonical forms ofinimal AND/OR graphsire well defined and were
already introduced [1, 4]. Therefore all the ideas we intcd] in this paper can be gen-
eralized, yielding a canonical representation in the sifl&@OMDD (i.e., by removing
redundant variables), which we can teweighted AOMDDsIn particular, weighted
AOMDD can be compiled using Variable Elimination schedulattexploits arapply
operatorin each bucket, very similar to the way we carried this tasieh&he apply
operator by itself, combining two weighted AOMDDS shouldséahe same flavor.
Compiling graphical models into weighted AOMDDs also exienhe work of [17],
which defines decision diagrams for the computation of samialuations, from lin-
ear variable ordering into tree-based partial ordering.

7 Related Work

There are various lines of related research. The formdieation literature, beginning
with [7] contains a very large number of papers dedicatetiécstudy of BDDs. How-
ever, BDDs are in fact OR structures (the underlying pseuvel® s a chain) and do
not take advantage of the problem decomposition in an ekplay. The complexity
bounds for OBDDs are based pathwidthrather thartreewidth

As noted earlier, the work on Disjoint Support DecompositfpSD) is related to
AND/OR BDDs in various ways [9]. The main common aspect i$ Hwth approaches
show how structure decomposition can be exploited in a Blk®rkpresentation. DSD
is focused on Boolean functions and can exploit more refitedttsiral information
that is inherent to Boolean functions. In contrast, AND/ORIB assumes only the
structure conveyed in the constraint graph, they are thexehore broadly applicable
to any constraint expression and also to graphical modefgeireral. They allow a
simpler and higher level exposition that yields graph-daseunds on the overall size
of the generated AOMDD. The full relationship between theseformalisms should
be studied further.

McMillan introduced the BDD trees [10], along with the op@ras for combin-
ing them. For circuits of bounded tree width, BDD trees havedr upper space bound
O(|g|27~"22w), where|g| is the size of the circui (typically linear in the number of vari-
ables) andv is the treewidth. This bound hides some very large constardtim the
linear dependence dp| whenw is bounded. However, McMillan maintains that when
the input function is a CNF expression BDD-trees have theesaounds as AND/OR
BDDs, namely they are exponential in the treewidth only.

Darwiche has done much research on compilation, usinghitsfgom the Al com-
munity. The AND/OR structure restricted to propositiorfaaries is very similar to
deterministic decomposable negation normal form (d-DNNIBJ. More recently, in
[19], the trace of the DPLL algorithm is used to generate albOBand compared with
the bottom up approach of combining the OBDDs of the inputfiom according to
some schedule (as is typical in formal verification). Thadtres that are investigated

are still OR. The idea can nevertheless be extended to ANB#2Rch. We could run
the depth first AND/OR search with caching, generatingcihr@ext minimaAND/OR
graph, which can then be processed bottom up by layers tadoeed even further by
eliminating isomorphic subgraphs and redundant nodes.

McAllester [20] introduced the case factor diagrams (CFhjolv subsume Markov
random fields of bounded tree width and probabilistic canfiee grammars (PCFG).
CFDs are very much related to the AND/OR graphs. The CFDsténg minimal rep-
resentation, by exploiting decomposition (similar to ANBdes) but also by exploiting
context sensitive information and allowing dynamic ordgrof variables based on con-
text. CFDs do not eliminate the redundant nodes, and pahteofause is that they use
zero suppression. There is no claim about CFDs being a czaldorm, and also there
is no description of how to combine two CFDs.

More recently, independently and in parallel to our work dIXOR graphs [1, 2],
Fargier and Vilarem [11] proposed the compilation of CSRs iree-driven automata,
which have many similarities to our work. In particular, tbempiled tree-automata
proposed there is essentially the same as what we propaseltneir main focus is the
transition from linear automata to tree automata (simdahat from OR to AND/OR),
and the possible savings for tree-structured networks gperktrees of constraints due
to decomposition. Their compilation approach is guided bng@-decomposition while
ours is guided by a variable-elimination based algorithfrgd, it is well known that
Variable Elimination and cluster-tree decomposition arprinciple, the same [21].

We see that our work using AND/OR search graphs has a unifyiatjty that helps
make connections among seemingly different compilatigr@grches.

8 Conclusion

We propose the AND/OR multi-valued decision diagram (AOMDihich emerges
from the study of AND/OR search for graphical models [1-3]l @ndered binary de-
cision diagrams (OBDDs) [7]. This data-structure can belusecompile any set of
relations over multi-valued variables as well as any CNFIBao expression.

The approach we take in this paper may seem to go against trenttrend in
model checking, which moves away from BDD-based algoritmtes CSP/SAT based
approaches. However, constraint processing algorithatsatie search-based and com-
piled data-structures such as BDDs differ primarily by tlebioices of time vs memory.
When we move from regular OR search space to an AND/OR seaack $ipe spectrum
of algorithms available is improved for all time vs memoncid@ns. We believe that
the AND/OR search space clarifies the available choices alps lguide the user into
making an informed selection of the algorithm that would ésbthe particular query
asked, the specific input function and the available contjoual resources.

In summary, the contribution of our work is: (1) We formallgstribe the AOMDD
and prove that it is a canonical representation of a comstnaitwork; (2) We describe
the APPLY operator that combines two AOMDDs by an operation and givedm-
plexity bounded by the product of the sizes of the inputs\W®)give a scheduling of
building the AOMDD of a constraint network starting with tA®MDDs of its con-
straints. It is based on an ordering of variables, which gige to a pseudo tree (or
bucket tree) according to the execution of Variable Elirtiovaalgorithm. This gives

the complexity guarantees in terms of theluced widthalong the ordering (equal to
the treewidth of the corresponding decomposition); 4) Vienshow AOMDDs relate to

va

rious earlier and recent works, providing a unifying pergive for all these methods.

Acknowledgments

This work was supported in part by the NSF grant 11S-04128%# initial part of this
work was also supported by the Radcliffe fellowship 2009&as part of the partner
program, with Harvard undergraduate student John Cobb [22]

References

1.

2.

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22

Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic adtsvand their and/or
search space. In: UAI'04. (2004) 120-129

Dechter, R., Mateescu, R.: The impact of and/or search spac@metraint satisfaction and
counting. In: CP’04. (2004) 731-736

. Mateescu, R., Dechter, R.: The relationship between and/or ssadcrariable elimination.

In: UAI'05. (2005) 380-387

. Dechter, R., R.Mateescu: And/or search spaces for graphadgisy Artificial Intelligence

(2006) forthcoming.

. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT B(&999)
. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic (1993)
. Bryant, R.E.: Graph-based algorithms for boolean function méatipn. IEEE Transaction

on Computer85(1986) 677-691

. Brayton, R., McMullen, C.: The decomposition and factorization @iéan expressions. In:

ISCAS,Proceedings of the International Symposium on Circuits angi@gs (1982) 49-54

. Bertacco, V., Damiani, M.: The disjunctive decomposition of logiccfions. In: ICCAD,

International Conference on Computer-Aided Design. (1997) 78-82

McMillan, K.L.: Hierarchical representation of discrete functiorithwapplication to model
checking. In: Computer Aided Verification. (1994) 41-54

Fargier, H., Vilarem, M.: Compiling csps into tree-driven automatdriteractive solving.
Constraint9(4) (2004) 263-287

Freuder, E.C., Quinn, M.J.: Taking advantage of stable setariafbles in constraint satis-
faction problems. In: IJCAI'85. (1985) 1076-1078

Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Acaid Press (1972)
Dechter, R.: Bucket elimination: A unifying framework for reaisgn Artificial Intelligence
113(1999) 41-85

Bayardo, R., Miranker, D.: A complexity analysis of space-lbl@arning algorithms for
the constraint satisfaction problem. In: AAAI'96. (1996) 298-304

Darwiche, A.: Recursive conditioning. Artificial Intelligent251-2) (2001) 5-41
Wilson, N.: Decision diagrams for the computation of semiring valuatidn: IJCAI'05.
(2005) 331-336

Darwiche, A., Marquis, P.: A knowledge compilation map. Jouohd&lrtificial Intelligence
Research (JAIR)7 (2002) 229-264

Huang, J., Darwiche, A.: Dpll with a trace: From sat to knowledgeglation. In: IJCAI'05.
(2005) 156-162

McAllester, D., Collins, M., Pereira, F.: Case-factor diagramssfructured probabilistic
modeling. In: UAI'04. (2004) 382—-391

Dechter, R., Pearl, J.: Tree clustering for constraint networksificial Intelligence 38
(1989) 353-366

. Cobb, J.: Joining and/or networks. In: Report, Radcliffe fellopysBambridge, MA. (2006)

