
Compiling Constraint Networks into
AND/OR Multi-Valued Decision Diagrams (AOMDDs)

Robert Mateescu and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{mateescu,dechter}@ics.uci.edu

Abstract. Inspired by AND/OR search spaces for graphical models recently in-
troduced, we propose to augment Ordered Decision Diagrams with AND nodes,
in order to capture function decomposition structure. This yieldsAND/OR multi-
valued decision diagram(AOMDD) which compiles a constraint network into a
canonical form that supports polynomial time queries such as solution counting,
solution enumeration or equivalence of constraint networks. We provide a compi-
lation algorithm based on Variable Elimination for assembling an AOMDD for a
constraint network starting from the AOMDDs for its constraints. The algorithm
uses theAPPLY operator which combines two AOMDDs by a given operation.
This guarantees the complexity upper bound for the compilation time and the size
of the AOMDD to be exponential in the treewidth of the constraint graph, rather
than pathwidth as is known for ordered binary decision diagrams (OBDDs).

1 Introduction

The work presented in this paper is based on two existing frameworks: (1) AND/OR
search spaces for graphical models and (2) decision diagrams (DD). AND/OR search
spaces [1–3] have proven to be a unifying framework for various classes of search
algorithms for graphical models. The main characteristic is the exploitation of inde-
pendencies between variables during search, which can provide exponential speedups
over traditional search methods that can be viewed as traversing an OR structure. The
AND nodes capture problem decomposition intoindependent subproblems, and the
OR nodes represent branching according to variable values.Backjumping schemes for
constraint satisfaction and satisfiability can be shown to explore the AND/OR space au-
tomatically if only one solution is sought. However, for counting and other enumeration
tasks a deliberate exploration of the AND/OR space is beneficial [4].

Decision diagrams are widely used in many areas of research,especially in software
and hardware verification [5, 6]. A BDD represents a Boolean function by a directed
acyclic graph with two sink nodes (labeled 0 and 1), and everyinternal node is labeled
with a variable and has exactly two children:low for 0 andhigh for 1. If isomorphic
nodes were not merged, on one extreme we would have the full searchtree, also called
Shannon tree, which is the usual full tree explored by backtracking algorithm. The tree
can be ordered if we impose that variables be encountered in the same order along ev-
ery branch. It can then be compressed by merging isomorphic nodes (i.e., with the same
label and identical children), and by eliminating redundant nodes (i.e., whoselow and



high children are identical). The result is the celebratedreduced ordered binary deci-
sion diagram, or OBDD for short, introduced by Bryant [7]. However, the underlying
structure is OR, because the initial Shannon tree is an OR tree. If AND/OR search trees
are reduced by node merging and redundant nodes eliminationwe get a compact search
graph that can be viewed as a BDD representation augmented with AND nodes.

In this paper we combine the two ideas, in order to create a decision diagram that has
an AND/OR structure, thus exploiting problem decomposition. As a detail, the number
of values is also increased from two to any constant, but thisis less significant for the
algorithms. Our proposal is closely related to two earlier research lines within the BDD
literature. The first is the work on Disjoint Support Decompositions (DSD) investigated
within the area of design automation [8], that were proposedrecently as enhancements
for BDDs aimed at exploiting function decomposition [9]. The second is the work on
BDDs trees [10]. Another related proposal is the recent workby Fargier and Vilarem
[11] on compiling CSPs into tree-driven automata.

A decision diagram offers a compilation of a problem. It typically requires an ex-
tended offline effort in order to be able to support polynomial (in its size) or constant
time online queries. In the context of constraint networks,it could be used to repre-
sent the whole set of solutions, to give the solutions count or solution enumeration and
to test satisfiability or equivalence of constraint networks. The benefit of moving from
OR structure to AND/OR is a lower complexity of the algorithms and size of the com-
piled structure. It typically moves from being bounded exponentially inpathwidthpw∗,
which is characteristic to chain decompositions or linear structures, to being exponen-
tially bounded intreewidthw∗, which is characteristic of tree structures (it always holds
thatw∗ ≤ pw∗ andpw∗ ≤ w∗ · log n).

Our contribution consists of: (1) we formally describe the AND/OR multi-valued
decision diagram (AOMDD) and prove that it is a canonical representation of a con-
straint network; (2) we describe theAPPLY operator that combines two AOMDDs by an
operation and prove its complexity to be linear in the output. We show that the output
of apply is bounded by the product of the sizes of the inputs. (3) we give a schedul-
ing of building the AOMDD of a constraint network starting with the AOMDDs of its
constraints. It is based on an ordering of variables, which gives rise to a pseudo tree (or
bucket tree) according to the execution of Variable Elimination algorithm. This gives
the complexity guarantees in terms of theinduced widthalong that ordering (equal to
the treewidth of the corresponding decomposition).

The structure of the paper is as follows: Sect. 2 provides preliminary definitions,
a description of Variable Elimination and AND/OR search spaces; Sect. 3 describes
the AOMDD, its graphical representation and properties, and demonstrates its compi-
lation by Variable Elimination; Sect. 5 presents theAPPLY operation; Sect. 6 discusses
extensions to probabilistic models; Sect. 7 presents related work and Sect. 8 concludes.

2 Preliminaries

A constraint network and its associated graph are defined in the usual way:

Definition 1 (constraint network). A constraint networkis a 3-tupleR = 〈X,D,C〉,
where:X = {X1, . . . ,Xn} is a set of variables;D = {D1, . . . ,Dn} is the set of



their finite domains of values, with cardinalitieski = |Di| andk = maxn
i=1 ki ; C =

{C1, . . . , Cr} is a set of constraints over subsets ofX. Each constraint is defined as
C = (Si, Ri), whereSi is the set of variables on which the constraint is defined, called
its scope, andRi is the relation defined onSi.

Definition 2 (constraint graph). Theconstraint graphof a constraint network is an
undirected graph,G = (X, E), that has variables as its vertices and an edge connect-
ing any two variables that appear in the scope (set of arguments) of the same constraint.

A pseudo tree resembles the tree rearrangements introducedin [12]:

Definition 3 (pseudo tree).A pseudo treeof a graphG = (X, E) is a rooted treeT
having the same set of nodesX, such that every arc inE is a backarc inT (i.e., it
connects nodes on the same path from root).

Definition 4 (induced graph, induced width, treewidth, pathwidth). An ordered
graphis a pair (G, d), whereG is an undirected graph, andd = (X1, ...,Xn) is an
ordering of the nodes. Thewidth of a nodein an ordered graph is the number of neigh-
bors that precede it in the ordering. Thewidth of an orderingd, denotedw(d), is the
maximum width over all nodes. Theinduced width of an ordered graph, w∗(d), is the
width of the induced ordered graph obtained as follows: for each node, from last to first
in d, its preceding neighbors are connected in a clique. Theinduced width of a graph,
w∗, is the minimal induced width over all orderings. The induced width is also equal
to the treewidthof a graph. Thepathwidthpw∗ of a graph is the treewidth over the
restricted class of orderings that correspond to chain decompositions.

2.1 Variable Elimination (VE)

Variable elimination (VE) [13, 14] is a well known algorithm for inference in graphical
models. We will describe it using the terminology from [14].Consider a constraint net-
work R = 〈X,D,C〉 and an orderingd = (X1,X2, . . . ,Xn). The orderingd dictates
an elimination order forVE, from last to first. Each constraints fromC is placed in the
bucket of its latest variable ind. Buckets are processed fromXn to X1 by eliminating
the bucket variable (the constraints residing in the bucketare joined together, and the
bucket variable is projected out) and placing the resultingconstraint (also calledmes-
sage) in the bucket of its latest variable ind. After its execution,VE renders the network
backtrack free, and a solution can be produced by assigning variables alongd. VE can
also produce the solutions count if marginalization is doneby summation (rather than
projection) and join is substituted with multiplication.

VE also constructs a bucket tree, by linking the bucket of eachXi to the destination
bucket of its message (called the parent bucket). A node in the bucket tree typically has
a bucket variable, a collection of constraints, and ascope(the union of the scopes of
its constraints). If the nodes of the bucket tree are replaced by their respective bucket
variables, it is easy to see that we obtain a pseudo tree.

Example 1.Figure 1a shows a network with four constraints. Figure1b shows the exe-
cution of Variable Elimination alongd = (A,B,E,C,D). The buckets are processed
from D to A 1. Figure 1c shows the bucket tree. The pseudo tree is given in Fig. 2a.

1 This representation reverses the top down bucket processing described in earlier papers.



A

BCD

AB

ABCABE

A

AB

BC

AB

bucket-A

bucket-E

bucket-B

bucket-C

bucket-D

(a) (b) (c)

A

D

B C

E

C3(ABE)

C2(AB)

C4(BCD)

C1(AC)

D:    C4 (BCD)

C:    C1(AC)     h1(BC)

E:    C3(ABE)

B:    C2(AB)     h3(AB)     h2(AB)

A:    h4(A)

Fig. 1.Execution of Variable Elimination

2.2 AND/OR Search for Constraint Problems

The AND/OR search space is a recently introduced [1–3] unifying framework for ad-
vanced algorithmic schemes for graphical models. Its main virtue consists in exploit-
ing independencies between variables during search, whichcan provide exponential
speedups over traditional search methods oblivious to problem structure.

Definition 5 (AND/OR search tree of a constraint network).Given a constraint net-
workR = 〈X,D,C〉, its constraint graphG and a pseudo treeT of G, the associated
AND/OR search tree has alternating levels of OR and AND nodes. The OR nodes are
labeledXi and correspond to variables. The AND nodes are labeled〈Xi, xi〉 and cor-
respond to value assignments. The structure of the AND/OR search tree is based onT .
The root is an OR node labeled with the root ofT . The children of an OR nodeXi are
AND nodes labeled with assignments〈Xi, xi〉 that are consistent with the assignments
along the path from the root. The children of an AND node〈Xi, xi〉 are OR nodes la-
beled with the children of variableXi in the pseudo treeT . The leaves of AND nodes
are labeled with “1”. There is a one to one correspondence between solution subtrees
of the AND/OR search graph and solutions of the constraint network [1].

The AND/OR search tree can be traversed by a depth first searchalgorithm, thus
using linear space. It was already shown [12, 15, 16, 1] that:

Theorem 1. Given a constraint networkR and a pseudo treeT of depthm, the size
of the AND/OR search tree based onT is O(n km), wherek bounds the domains of
variables. A constraint network of treewidthw∗ has a pseudo tree of depth at most
w∗ log n, therefore it has an AND/OR search tree of sizeO(n kw∗ log n).

The AND/OR search tree may contain nodes that root identicalconditioned sub-
problems. These nodes are said to beunifiable. When unifiable nodes are merged, the
search space becomes a graph. Its size becomes smaller at theexpense of using addi-
tional memory by the search algorithm. The depth first searchalgorithm can therefore
be modified to cache previously computed results, and retrieve them when the same
nodes are encountered again. The notion of unifiable nodes isdefined formally next.

Definition 6 (isomorphism, minimal AND/OR graph). Two AND/OR search graphs
G andG′ are isomorphicif there exists a one to one mappingσ from the vertices ofG
to the vertices ofG′ such that for any vertexv, if σ(v) = v′, thenv andv′ root identical
subgraphs relative toσ. Theminimal AND/OR graphis such that all the isomorphic
subgraphs are merged. Isomorphic nodes are also called unifiable.



0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

(b)(a)

A

D

B

CE

[ ]

[A]

[AB]

[BC]

[AB]

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

(c)

Fig. 2. AND/OR search space

Some unifiable nodes can be identified based on theircontexts. We can define graph
based contexts for both OR nodes and AND nodes, just by expressing the set of ancestor
variables inT that completely determine a conditioned subproblem. However, it can be
shown that using caching based on OR contexts makes caching based on AND contexts
redundant and vice versa, so we will only useOR caching. Any value assignment to the
context ofX separates the subproblem belowX from the rest of the network.

Definition 7 (OR context). Given a pseudo treeT of an AND/OR search space,
context(X) = [X1 . . . Xp] is the set of ancestors ofX in T , ordered descendingly,
that are connected in the primal graph toX or to descendants ofX.

Definition 8. Thecontext minimalAND/OR graph is obtained from the AND/OR search
tree by merging all the context unifiable OR nodes.

It was already shown that [15, 1]:

Theorem 2. Given a constraint networkR, its primal graphG and a pseudo treeT , the
size of the context minimal AND/OR search graph based onT is O(n kw∗

T
(G)), where

w∗
T

(G) is the induced width ofG over the depth first traversal ofT , andk bounds the
domain size.

Example 2.Figure 2 shows AND/OR search spaces for the constraint network from
Fig. 1, assuming universal relations (no constraints) and binary valued variables. When
constraints are tighter, some of the paths in these graphs donot exists. Figure 2a shows
the pseudo tree derived from orderingd = (A,B,E,C,D), having the same structure
as the bucket tree for this ordering. The (OR) context of eachnode appears in square
brackets, and the dotted arcs are backarcs. Notice that the context of a node is identical
to the message scope from its bucket in Fig. 1. Figure 2b showsthe AND/OR search
tree, and 2c shows the context minimal AND/OR graph.

3 AND/OR Multi-Valued Decision Diagrams (AOMDDs)

Thecontext minimalAND/OR graph, described in section 2.2 offers an effective way
of identifying unifiable nodes during the execution of the search algorithm. However,
merging based on context is not complete, i.e. there may still be unifiable nodes in
the search graph that do not have identical contexts. Moreover, some of the nodes in
the context minimal AND/OR graph may be redundant, for example when the set of



solutions rooted at variableXi is not dependant on the specific value assigned toXi

(this situation is not detectable based on context).
As overviewed earlier, in [1] we defined the completeminimal AND/OR graph

which is an AND/OR graph whose all unifiable nodes are merged and we also proved
canonicity [4]. Here we propose to augment the minimal AND/OR search graph with
removing redundant variables as is common in OBDD representation as well as adopt
some notational conventions common in this community. Thisyields a data structure
that we call AND/OR BDDs, that exploits decomposition by using AND nodes. We
present this extension over multi-valued variables yielding AND/OR MDD or AOMDD.

3.1 AND/OR Relation Graphs and Canonical AND/OR Decision Diagrams

We first define the AND/OR constraint function graph, which isan AND/OR data struc-
ture that defines a relation relative to a tree structure overa set of variables.

Definition 9 (AND/OR constraint function graph). Given a set of variablesX =
{X1, ...,Xn}, domain of values{D1, ...,Dn} and a treeT over X as its nodes, an
AND/OR constraint function graphG is a rooted, directed, labeled acyclic graph, hav-
ing alternating levels of OR and AND nodes and two special terminal nodes labeled
“0” and “1”. The OR nodes are labeled by variables fromX and the AND nodes are
labeled by value assignments from respective the domains. There are arcs from nodes
to their child nodes defined as follows:

– A nonterminal OR vertexv is labeled asl(v) = Xi, Xi ∈ X and any of its child
AND nodesu is labeledl(u) = 〈Xi, xi〉, whenxi is a value ofXi. An OR node can
also have a single child node which is the terminal “0” node.

– An AND nodeu labeledl(u) = 〈Xi, xi〉 has OR child nodes. If an OR child node
w of AND nodeu, is labeledl(w) = Y , thenY must be a descendant ofX in T .
If any two variablesZ andY label two OR child nodes ofu wherel(u) = 〈X,x〉,
thenZ andY must be on different paths fromX down to the leaves inT . An AND
nodeu can also have as a single child node the special node “1”.

The AND/OR constraint function graph defines a relation overthe set of variables
that are mentioned inT which can be obtained from the set of allsolution subtreesof
G. A solution subtree ofG contains its root node and if it contains an OR node, then
it must contain one of its child nodes, and if it contains an AND node, it must contain
all its child nodes. Its only leaf nodes are labeled “1”. A solution tree defines a partial
assignment that includes all the assignment labeling AND nodes in the solution tree.
We say that this partial assignment is generated byG.

Definition 10 (the relation defined by a constraint function graph). Given an
AND/OR constraint function graphG over variablesX = {X1, ...,Xn} having domain
of values{D1, ...,Dn} and a treeT , the relationrel(G) includes all and only full
assignments that extend partial assignments generated byG.

Similar to the case of OBDDs, AND/OR constraint function graphs can be reduced
into canonical form by removingisomorphismandredundancy. The notion of isomor-
phism was defined earlier for AND/OR graphs. In order to capture the notion of re-
dundancy, it is useful to group every OR node together with its AND children into a
meta-node. The underlying graph is still an AND/OR graph.



Definition 11 (meta-node).A nonterminal meta-nodev in an AND/OR search graph
consists of an OR node labeledvar(v) = Xi and itski AND children labeled〈Xi, xi1〉,
. . . , 〈Xi, xiki

〉 that correspond to its value assignments. We will sometimesabbreviate
〈Xi, xij

〉, by xij
. Each AND node labeledxij

points to a list of child meta-nodes,
u.childrenj . Examples of meta-nodes appear in Fig. 4.

A variable is considered redundant with respect to the partial assignment of its par-
ents, if assigning it any specific value does not change the value of any possible full
assignment. Formally:

Definition 12 (redundant vertex). Given an AND/OR constraint function graphG, a
nodev is redundantif for all u1 and u2 which are AND child nodes ofv, u1 and u2

have the same child meta nodes.

If we want to remove a redundant vertexv from an AND/OR constraint function
graphG, then we make all of its parent AND nodesv1, point directly to the common
set of its grandchild meta nodes and the meta-node ofv is removed from the graph.

Finally we define AOMDD:

Definition 13 (AOMDD). An AND/OR multi-valued decision diagram (AOMDD) is
an AND/OR constraint function graph that: (1) contains no redundant vertex and (2) it
contains no isomorphic subgraphs.

Analogously to OBDDs we can show that AOMDDs are a canonical representation
of constraint networks, with respect to a given pseudo tree.Thus, AOMDDs can be used
as a compiled representation of a constraint network.

Theorem 3 (AOMDDs are canonical).Given a constraint network, whose constraint
set isC, having a constraint graphG and given a pseudo treeT of G, there is a unique
(up to isomorphism) reduced AND/OR constraint function graph ofC based onT , and
any other constraint function graph ofC based onT has more vertices.

4 Using Variable Elimination to Generate AOMDDs

In this section we propose to use aVE type algorithm to guide the compilation of a set
of constraints into an AOMDD. Let’s look at an example first.

Example 3.Consider the network defined byX = {A,B, . . . ,H}, DA = . . . =
DH = {0, 1} and the constraints (⊕ denotes XOR):C1 = F ∨ H, C2 = A ∨ ¬H,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E,
C8 = C ⊕ D, C9 = B ∨ C. The constraint graph is shown in Figure 3a. Consider the
orderingd = (A,B,C,D,E, F,G,H). The pseudo tree (or bucket tree) induced byd

is given in Fig. 3b. Figure 4 shows the execution ofVE with AOMDDs along order-
ing d. Initially, the constraintsC1 throughC9 are represented as AOMDDs and placed
in the bucket of their latest variable ind. Eachoriginal constraint is represented by
an AOMDD based on a chain. For bi-valued variables, they are OBDDs, for multiple-
valued they are MDDs. Note that we depict meta-nodes: one OR node and its two AND



D

C B F

AE

G

H

A

B

C F

D E G H

(a) (b)

Fig. 3. (a) Constraint graph forC = {C1, . . . , C9}, whereC1 = F ∨ H, C2 = A ∨ ¬H,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E, C8 = C ⊕ D,
C9 = B ∨ C; (b) Pseudo tree (bucket tree) for orderingd = (A, B, C, D, E, F, G, H)

H
G

ED

C
F

B

A

F
0 1

H
0 1

0 1
C1     

A
0 1

H
0 1

0 1
C2     

A
0 1

B
0 1

G
0 1

G
0 1

B
0 1

0 1C3     

F
0 1

G
0 1

0 1
C4     

A
0 1

E
0 1

0 1
C6     

C
0 1

E
0 1

0 1
C7     

C
0 1

D
0 1

D
0 1

0 1
C8

B
0 1

C
0 1

0 1
C9     

B
0 1

F
0 1

0 1
C5     

m
1

m3

m7

m6

m
4 m2m5

A
0 1

F
0 1

H
0 1

F
0 1

H
0 1

0 1
m1     

A
0 1

B
0 1

G
0 1

F
0 1

B
0 1

G
0 1

0 1
m2     

A
0 1

E
0 1

C
0 1

0 1
m4     

C
0 1

D
0 1

D
0 1

0 1
m5    

A
0 1

B
0 1

F
0 1

G
0 1

H
0 1

F
0 1

G
0 1

B
0 1

F
0 1

F
0 1

H
0 1

0 1m3     

A
0 1

B
0 1

C
0 1

C
0 1

D
0 1

E
0 1

D
0 1

B
0 1

C
0 1

C
0 1

0 1m6    

m7     

A

F

H

A

B

F

G H

C

D

A

B

C

D E

A

B

C F

D E G H

A

B

F

G

C

E

A

Fig. 4. Execution of VE with AOMDDs

children, that appear inside each gray node. The dotted edgecorresponds to the 0 value
(the low edge in OBDDs), the solid edge to the 1 value (thehigh edge). We have some
redundancy in our notation, keeping both AND value nodes andarc-types (doted arcs
from “0” and solid arcs from “1”).

TheVE scheduling is used to process the buckets in reverse order ofd. A bucket is
processed byjoining all the AOMDDs inside it, using theapplyoperator. However, the
step of eliminating the bucket variable will be omitted because we want to generate the
full AOMDD. In our example, the messagesm1 = C1 ./ C2 andm2 = C3 ./ C4 are
still based on chains, so they are still OBDDs. Note that theystill contain the variables
H andG, which have not been eliminated. However, the messagem3 = C5 ./ m1 ./

m2 is not an OBDD anymore. We can see that it follows the structure of the pseudo



A
0 1

B
0 1

C
0 1

0

D
0 1

1

F
0 1

G
0 1

H
0 1

C
0 1

D
0 1

E
0 1

F
0 1

G
0 1

B
0 1

C
0 1

F
0 1

C
0 1

F
0 1

H
0 1

(a)

D

C

B

F

A

E

G

H

1 0

B

CC C

D D D D D

E E

F F F

G G G G

H

(b)

Fig. 5. (a) The final AOMDD; (b) The OBDD corresponding tod

tree, whereF has two children,G andH. Some of the nodes corresponding toF have
two outgoing edges for value 1.

The processing continues in the same manner The final output of the algorithm,
which coincides withm7, is shown in Figure 5a. The OBDD based on the same ordering
d is shown in Fig. 5b. Notice that the AOMDD has 18 nonterminal nodes and 47 edges,
while the OBDD has 27 nonterminal nodes and 54 edges.

4.1 Algorithm VE-AOMDD

Given an orderingd there is a unique pseudo treeTd (or bucket tree) corresponding to it
Each constraintCi is compiled into an AOMDD that is compatible withT and placed
into the appropriate bucket. The buckets are processed fromlast variable to first as usual.
Each bucket contains AOMDDs that are either initial constraints or AOMDDs received
from previously processed buckets. The scope of all the variables that are mentioned in
a bucket includerelevantvariables, i.e. the ones whose buckets were not yet processed
(note that they are identical to the OR context), andsuperfluousvariables, the ones
whose buckets had been proceessed. The number of relevant variables is bounded by
the induced width (because so is the OR context). It is easy tosee that all the AOMDDs
in a bucket only have in common variables which are relevant,and which reside on the
top chain portion of the bucket pseudo tree. The superfluous variables appear in disjoint
branches of the bucket pseudo tree.

Consequently combining any two AOMDDs in a bucket amounts tousing the reg-
ular MDD (OBDD) apply operator on their respective common parts that are simple
MDDs. The rest of the branches can be attached at the end of thecombine operation.
Thus, the complexity of processing a bucket of AOMDDs is likethe complexity of pair-
wise MDDapplyover constraints restricted to scopes bounded by the induced width.

Proposition 1. The complexity of processing a bucket byVE-AOMDD is exponential
in the number of relevant variables, therefore it is exponential in the induced width.

In summary, to create the compiled AOMDD, we can use only regular MDD ap-
ply operators on the common (separator) portion in each bucket.In the next section
however we will define a more general AOMDDapplyoperator that can combine any



two AOMDDs whose pseudo trees are compatible (to be defined).This can be useful
when the two input AOMDDs are created completely independently and we want to
still exploit their given structure.

5 The AOMDD APPLY Operation

We will now describe how to combine two general AOMDDs. We focus on combination
by join, as usual in constraint processing, but other operations can be equally easily
applied. The apply operator takes as an input two AOMDDs representing constraints
C1 andC2 and returns an AOMDD representingC1 ./ C2, respectively.

In traditional OBDDs the combiningapplyoperator assumes that the two input OB-
DDs have compatible variable ordering. Likewise, in order to combine two AOMDDs,
we assume that their backbone pseudo trees arecompatible. Namely, there should be a
pseudo tree in which both can be embedded. In general a pseudotree induces a strict
partial order between the variables where a parent node always precedes its child nodes.

Definition 14 (compatible pseudo tree).A strict partial orderd1 = (X,<1) over a
setX is consistent with a partial orderd2 = (Y,<2) over a setY , if for all x1, x2 ∈
X ∩ Y andx1 <2 x2 thenx1 <1 x2. Two partial ordersd1 andd2 are compatible iff
there exists a partial orderd that is consistent with both. Two pseudo trees are compat-
ible iff the partial orders induced via the parent-child relationship, are compatible.

For simplicity, we focus on a more restricted notion of compatibility, which is suf-
ficient when using a VE like schedule for theapply operator to combine the input
AOMDDs. It is easy to extend this operator to the more generalnotion of compatibility.

Definition 15 (strictly compatible pseudo trees).A pseudo treeT1 having the set of
nodesX1 can beembeddedin a pseudo treeT having the set of nodesX if X1 ⊆ X

andT1 can be obtained fromT by deleting each node inX \ X1 and connecting its
parent to each of its descendents. Two pseudo treesT1 andT2 are compatibleif there
existsT such that bothT1 andT2 can be embedded inT .

Algorithm 1, calledAPPLY, takes as input two AOMDDs for two constraintsf and
g defined along strictly compatible pseudo trees, and a commontarget pseudo treeT .
We will start by describing the intuition behind the algorithm. An AOMDD along a
pseudo tree can be regarded as a union of regular MDDs, each restricted to a full path
from root to a leaf in the pseudo tree. LetπT be a path inT . Based on the definition of
strictly compatible pseudo trees,πT has a corresponding path inTf andTg, which are
the pseudo trees forf andg. The MDDs fromf andg corresponding toπTf

andπTg
can

be combined using the regular MDDapply. This process can be repeated for every path
πT . The resulting MDDs, one for each path inT need to be synchronized by another
MDD applyon their common parts (on the intersection of the paths). Thealgorithm we
propose does all this processing at once, in a depth first search traversal over the inputs.
Based on our construction it is clear that the complexity of AOMDD-apply is governed
by the complexity of MDD-apply.



Algorithm 1 : APPLY(v1; w1, . . . , wm)
input : AOMDDs f with nodesvi andg with nodeswj , based oncompatiblepseudo

treesT1, T2 that can be embedded inT .
var(v1) is an ancestor of allvar(w1), . . . , var(wm) in T .
var(wi) andvar(wj) are not in ancestor-descendant relation inT .

output : AOMDD v1 ./ (w1 ∧ . . . ∧ wm), based onT .
if H1(v1, w1, . . . , wm) 6= null then return H1(v1, w1, . . . , wm); // is in cache1

if (any ofv1, w1, . . . , wm is 0) then return 02

if (v1 = 1) then return 13

if (m = 0) then return v1 // nothing to join4

create new nonterminal meta-nodeu5

var(u)← var(v1) (call it Xi, with domainDi = {x1, . . . , xki
} )6

for j ← 1 to ki do7

u.childrenj ← φ // children of the j-th AND node of u8

if ( (m = 1) and (var(v1) = var(w1) = Xi) ) then9

temp Children← w1.childrenj10

else11

temp Children← {w1, . . . , wm}12

group nodes fromv1.childrenj ∪ temp Children in several{v1; w1, . . . , wr}13

for each{v1; w1, . . . , wr} do14

y ← APPLY(v1; w1, . . . , wr)15

if (y = 0) then16

u.childrenj ← 0; break17

else18

u.childrenj ← u.childrenj ∪ {y}19

if (u.children1 = . . . = u.childrenki
) then // redundancy20

return u.children121

if (H2(var(u), u.children1, . . . , u.childrenki
) 6= null) then // isomorphism22

return H2(var(u), u.children1, . . . , u.childrenki
)23

Let H1(v1, w1, . . . , wm) = u // add u to H124

Let H2(var(u), u.children1, . . . , u.childrenki
) = u // add u to H225

return u26

Theorem 4. Letπ1, ...πl be the set of path inT enumerated from left to right and letGi
f

andGi
g be the OBDDs restricted to pathπi, then the size of the output of AOBDD-apply

is bounded by
∑

i |G
i
f | · |G

i
g| ≤ n ·maxi|G

i
f | · |G

i
g|. The time complexity is also bounded

by
∑

i |G
i
f | · |G

i
g| ≤ n · maxi|G

i
f | · |G

i
g|.

Algorithm APPLY takes as input one node fromf and a list of nodes fromg. Ini-
tially, the node fromf is the root off , and the list of nodes fromg is in fact just one
node, the root ofg. The list of nodes fromg always has a special property: there is
no node in it that can be the ancestor inT of another (we refer to the variable of the
meta-node). Therefore, the listw1, . . . , wm from g expresses a decomposition with re-
spect toT , so all those nodes appear on different branches. We will employ the usual



techniques from OBDDs to make the operation efficient. First, since join can be viewed
as multiplication, if one of the arguments is0, then we can safely return0. Second, a
hash tableH1 is used to store the nodes that have already been processed, based on the
nodes(v1, w1, . . . , wr). Therefore, we never need to make multiple recursive calls on
the same arguments. Third, a hash tableH2 is used to detect isomorphic nodes. If at the
end of the recursion, before returning a value, we discover that a meta-node with the
same variable and the same children had already been created, then we don’t need to
store it and we simply return the existing node. And fourth, if at the end of the recursion
we discover we created a redundant node (all children are thesame), then we don’t store
it, and return instead one of its identical lists of children.

Note thatv1 is always an ancestor of allw1, . . . , wm in T . We consider a variable
in T to be an ancestor of itself. A few self explaining checks are performed in lines
1-4. Line 2 is specific for multiplication, and needs to be changed for other operations.
The algorithm creates a new meta-nodeu, whose variable isvar(v1) = Xi - recall that
var(v1) is highest (closest to root) inT amongv1, w1, . . . , wm. Then, for each possible
value ofXi, line 7, it starts building its list of children.

One of the important steps happens in line 13. There are two lists of meta-nodes,
one from each original AOMDDf andg, and we will refer only to their variables, as
they appear inT . Each of these lists has the important property mentioned above, that
its nodes are not ancestors of each other. The union of the twolists is grouped into
maximal sets of nodes, such that the highest node in each set is an ancestor of all the
others. It follows that the root node in each set belongs to one of the original AOMDD,
sayv1 is from f , and the others, sayw1, . . . , wr are fromg. As an example, suppose
T is the pseudo tree from Fig. 3b, and the two lists are{C,G,H} from f and{E,F}
from g. The grouping from line 13 will create{C;E} and{F ;G,H}. Sometimes, it
may be the case that a newly created group contains only one node. This means there is
nothing more to join in recursive calls, so the algorithm will return, via line 4, the single
node. From there on, only one of the input AOMDDs is traversed, and this is important
for the complexity ofAPPLY, discussed below.

5.1 Complexity of APPLY

Given AOMDDsf andg, based on compatible pseudo treesT1 andT2 and the common
pseudo treeT , we define theintersection pseudo treeT∩ as being obtained fromT by
marking all the subtrees whose nodes belong to eitherT1 or T2 but not to both, and
removing them simultaneously (not recursively). The part of AOMDD f corresponding
to the variables inT∩ is denoted byGf∩

.

Proposition 2. The time complexity ofAPPLY and the size of the output areO(|Gf∩
| ∗

|Gg∩
| + |Gf | + |Gg|).

Proof (sketch).The proof thatAPPLY makes an effortO(|Gf∩
|∗|Gg∩

|) when combining
nodes fromf∩ andg∩ is identical to the proof that OBDDs have complexity of the order
of the product of the inputs. For the parts off andg that don’t belong toGf∩

andGg∩
,

APPLY generates recursive calls that have only one argument,v1, effectively calling for
a simple traversal of just one of the inputs.



6 Compiling any probabilistic model to AOMDD

As we showed in the past, the notion of AND/OR graphs is applicable to any graphical
models, such as probabilistic networks, cost networks and influence diagrams. Indeed,
the compiled canonical forms ofminimal AND/OR graphsare well defined and were
already introduced [1, 4]. Therefore all the ideas we introduced in this paper can be gen-
eralized, yielding a canonical representation in the styleof AOMDD (i.e., by removing
redundant variables), which we can termweighted AOMDDs. In particular, weighted
AOMDD can be compiled using Variable Elimination schedule that exploits anapply
operator in each bucket, very similar to the way we carried this task here. The apply
operator by itself, combining two weighted AOMDDS should have the same flavor.
Compiling graphical models into weighted AOMDDs also extends the work of [17],
which defines decision diagrams for the computation of semiring valuations, from lin-
ear variable ordering into tree-based partial ordering.

7 Related Work

There are various lines of related research. The formal verification literature, beginning
with [7] contains a very large number of papers dedicated to the study of BDDs. How-
ever, BDDs are in fact OR structures (the underlying pseudo tree is a chain) and do
not take advantage of the problem decomposition in an explicit way. The complexity
bounds for OBDDs are based onpathwidthrather thantreewidth.

As noted earlier, the work on Disjoint Support Decomposition (DSD) is related to
AND/OR BDDs in various ways [9]. The main common aspect is that both approaches
show how structure decomposition can be exploited in a BDD-like representation. DSD
is focused on Boolean functions and can exploit more refined structural information
that is inherent to Boolean functions. In contrast, AND/OR BDDs assumes only the
structure conveyed in the constraint graph, they are therefore more broadly applicable
to any constraint expression and also to graphical models ingeneral. They allow a
simpler and higher level exposition that yields graph-based bounds on the overall size
of the generated AOMDD. The full relationship between thesetwo formalisms should
be studied further.

McMillan introduced the BDD trees [10], along with the operations for combin-
ing them. For circuits of bounded tree width, BDD trees have linear upper space bound
O(|g|2w22w

), where|g| is the size of the circuitg (typically linear in the number of vari-
ables) andw is the treewidth. This bound hides some very large constantsto claim the
linear dependence on|g| whenw is bounded. However, McMillan maintains that when
the input function is a CNF expression BDD-trees have the same bounds as AND/OR
BDDs, namely they are exponential in the treewidth only.

Darwiche has done much research on compilation, using insights from the AI com-
munity. The AND/OR structure restricted to propositional theories is very similar to
deterministic decomposable negation normal form (d-DNNF)[18]. More recently, in
[19], the trace of the DPLL algorithm is used to generate an OBDD, and compared with
the bottom up approach of combining the OBDDs of the input function according to
some schedule (as is typical in formal verification). The structures that are investigated



are still OR. The idea can nevertheless be extended to AND/ORsearch. We could run
the depth first AND/OR search with caching, generating thecontext minimalAND/OR
graph, which can then be processed bottom up by layers to be reduced even further by
eliminating isomorphic subgraphs and redundant nodes.

McAllester [20] introduced the case factor diagrams (CFD) which subsume Markov
random fields of bounded tree width and probabilistic context free grammars (PCFG).
CFDs are very much related to the AND/OR graphs. The CFDs target the minimal rep-
resentation, by exploiting decomposition (similar to AND nodes) but also by exploiting
context sensitive information and allowing dynamic ordering of variables based on con-
text. CFDs do not eliminate the redundant nodes, and part of the cause is that they use
zero suppression. There is no claim about CFDs being a canonical form, and also there
is no description of how to combine two CFDs.

More recently, independently and in parallel to our work on AND/OR graphs [1, 2],
Fargier and Vilarem [11] proposed the compilation of CSPs into tree-driven automata,
which have many similarities to our work. In particular, thecompiled tree-automata
proposed there is essentially the same as what we propose here. Their main focus is the
transition from linear automata to tree automata (similar to that from OR to AND/OR),
and the possible savings for tree-structured networks and hyper-trees of constraints due
to decomposition. Their compilation approach is guided by atree-decomposition while
ours is guided by a variable-elimination based algorithms.And, it is well known that
Variable Elimination and cluster-tree decomposition are in principle, the same [21].

We see that our work using AND/OR search graphs has a unifyingquality that helps
make connections among seemingly different compilation approaches.

8 Conclusion

We propose the AND/OR multi-valued decision diagram (AOMDD), which emerges
from the study of AND/OR search for graphical models [1–3] and ordered binary de-
cision diagrams (OBDDs) [7]. This data-structure can be used to compile any set of
relations over multi-valued variables as well as any CNF Boolean expression.

The approach we take in this paper may seem to go against the current trend in
model checking, which moves away from BDD-based algorithmsinto CSP/SAT based
approaches. However, constraint processing algorithms that are search-based and com-
piled data-structures such as BDDs differ primarily by their choices of time vs memory.
When we move from regular OR search space to an AND/OR search space the spectrum
of algorithms available is improved for all time vs memory decisions. We believe that
the AND/OR search space clarifies the available choices and helps guide the user into
making an informed selection of the algorithm that would fit best the particular query
asked, the specific input function and the available computational resources.

In summary, the contribution of our work is: (1) We formally describe the AOMDD
and prove that it is a canonical representation of a constraint network; (2) We describe
the APPLY operator that combines two AOMDDs by an operation and give its com-
plexity bounded by the product of the sizes of the inputs; (3)We give a scheduling of
building the AOMDD of a constraint network starting with theAOMDDs of its con-
straints. It is based on an ordering of variables, which gives rise to a pseudo tree (or
bucket tree) according to the execution of Variable Elimination algorithm. This gives



the complexity guarantees in terms of theinduced widthalong the ordering (equal to
the treewidth of the corresponding decomposition); 4) We show how AOMDDs relate to
various earlier and recent works, providing a unifying perspective for all these methods.

Acknowledgments

This work was supported in part by the NSF grant IIS-0412854.The initial part of this
work was also supported by the Radcliffe fellowship 2005-2006, as part of the partner
program, with Harvard undergraduate student John Cobb [22].

References

1. Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic networks and their and/or
search space. In: UAI’04. (2004) 120–129

2. Dechter, R., Mateescu, R.: The impact of and/or search spaces on constraint satisfaction and
counting. In: CP’04. (2004) 731–736

3. Mateescu, R., Dechter, R.: The relationship between and/or searchand variable elimination.
In: UAI’05. (2005) 380–387

4. Dechter, R., R.Mateescu: And/or search spaces for graphical models. Artificial Intelligence
(2006) forthcoming.

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
6. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic (1993)
7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transaction

on Computers35 (1986) 677–691
8. Brayton, R., McMullen, C.: The decomposition and factorization of boolean expressions. In:

ISCAS,Proceedings of the International Symposium on Circuits and Systems. (1982) 49–54
9. Bertacco, V., Damiani, M.: The disjunctive decomposition of logic functions. In: ICCAD,

International Conference on Computer-Aided Design. (1997) 78–82
10. McMillan, K.L.: Hierarchical representation of discrete functions with application to model

checking. In: Computer Aided Verification. (1994) 41–54
11. Fargier, H., Vilarem, M.: Compiling csps into tree-driven automata for interactive solving.

Constraints9(4) (2004) 263–287
12. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satis-

faction problems. In: IJCAI’85. (1985) 1076–1078
13. Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press (1972)
14. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence

113(1999) 41–85
15. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for

the constraint satisfaction problem. In: AAAI’96. (1996) 298–304
16. Darwiche, A.: Recursive conditioning. Artificial Intelligence125(1-2) (2001) 5–41
17. Wilson, N.: Decision diagrams for the computation of semiring valuations. In: IJCAI’05.

(2005) 331–336
18. Darwiche, A., Marquis, P.: A knowledge compilation map. Journalof Artificial Intelligence

Research (JAIR)17 (2002) 229–264
19. Huang, J., Darwiche, A.: Dpll with a trace: From sat to knowledge compilation. In: IJCAI’05.

(2005) 156–162
20. McAllester, D., Collins, M., Pereira, F.: Case-factor diagrams for structured probabilistic

modeling. In: UAI’04. (2004) 382–391
21. Dechter, R., Pearl, J.: Tree clustering for constraint networks.Artificial Intelligence 38

(1989) 353–366
22. Cobb, J.: Joining and/or networks. In: Report, Radcliffe fellowship, Cambridge, MA. (2006)


