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Abstract

We investigate three parameterized algorithmic
schemes for graphical models that can accom-
modate trade-offs between time and space: 1)
AND/OR Adaptive Caching (AOC(i) ); 2) Variable
Elimination and Conditioning (VEC(i) ); and 3)
Tree Decomposition with Conditioning (TDC(i) ).
We show thatAOC(i) is better than the vanilla ver-
sions of bothVEC(i) andTDC(i) , and use the guid-
ing principles ofAOC(i) to improve the other two
schemes. Finally, we show that the improved ver-
sions ofVEC(i) andTDC(i) can be simulated by
AOC(i) , which emphasizes the unifying power of
the AND/OR framework.

1 Introduction
This paper addresses some long-standing questions regarding
the computational merits of several time-space sensitive algo-
rithms for graphical models. All exact algorithms for graph-
ical models, either search or inference based, are time and
space exponentially bounded by the treewidth of the problem.
For real life networks with large treewidth, the space limi-
tation can be quite severe, therefore schemes that can trade
space for time are of outmost importance.

In the past ten years, four types of algorithms have
emerged, based on: (1) cycle-cutset andw-cutset [Pearl,
1988; Dechter, 1990]; (2) alternating conditioning and elim-
ination controlled by induced-widthw [Rish and Dechter,
2000; Larrosa and Dechter, 2002; Fishelson and Geiger,
2002]; (3) recursive conditioning[Darwiche, 2001], which
was recently recast as context-based AND/OR search
[Dechter and Mateescu, 2004]; (4) varied separator-sets for
tree decompositions[Dechter and Fattah, 2001]. The ques-
tion is how do all these methods compare and, in particular,
is there one that is superior? A brute-force analysis of time
and space complexities of the respective schemes does not
settle the question. For example, if we restrict the available
space to be linear, the cycle-cutset scheme is exponential in
the cycle-cutset size while recursive conditioning is exponen-
tial in the depth of the pseudo tree (or d-tree) that drives the
computation. However some graphs have small cycle-cutset
and larger tree depth, while others have large cycle-cutsets

and small tree depth (e.g., grid-like chains). The immediate
conclusion seems to be that the methods are not comparable.

In this paper we show that by looking at all these schemes
side by side, and analyzing them using the context mini-
mal AND/OR graph data structure[Mateescu and Dechter,
2005b], each of these schemes can be improved via the
AND/OR search principle and by careful caching, to the
point that they all become identically good. Specifically, we
show that the new algorithmAdaptive Caching(AOC(i) ), in-
spired by the recently proposed AND/OR cutset condition-
ing [Mateescu and Dechter, 2005a] (improving cutset, andw-cutset schemes), can simulate any execution of alternat-
ing elimination and conditioning, if the latter is augmented
with AND/OR search over the conditioning variables, and
can also simulate any execution of separator controlled tree-
clustering schemes[Dechter and Fattah, 2001], if the clusters
are augmented with AND/OR cutset search, rather than regu-
lar search, as was initially proposed.

All the analysis is done assuming that the problem contains
no determinism. When the problem has determinism all these
schemes become incomparable, as was shown in[Mateescu
and Dechter, 2005b], because they exploit the deterministic
information in reversed ordering of variables.

2 Preliminaries
This section provides the basic definitions.

DEFINITION 1 (graphical model) A graphical modelis a 3-
tupleM = hX;D;Fi, where: X = fX1;: : : ;Xng is a set
of variables;D = fD1;: : : ;Dng is the set of their finite do-
mains of values;F = ff1;: : : ;frg is a set of real-valued func-
tions defined on variables fromX.

DEFINITION 2 (primal graph) Theprimal graphof a graph-
ical model is an undirected graph,G = (X; E), that has
variables as its vertices and an edge connecting any two vari-
ables that appear in the scope (set of arguments) of the same
function.

DEFINITION 3 (pseudo tree)A pseudo treeof a graphG =(X; E) is a rooted treeT having the same set of nodesX,
such that every arc inE is a back-arc inT (i.e., it connects
nodes on the same path from root).

DEFINITION 4 (induced graph, induced width, treewidth)
An ordered graphis a pair (G; d), whereG is an undirected



graph, andd = (X1; :::; Xn) is an ordering of the nodes.
The width of a nodein an ordered graph is the number of
neighbors that precede it in the ordering. Thewidth of an
orderingd, denoted byw(d), is the maximum width over all
nodes. Theinduced width of an ordered graph, w�(d), is the
width of the induced ordered graph obtained as follows: for
each node, from last to first ind, its preceding neighbors are
connected in a clique. Theinduced width of a graph, w�, is
the minimal induced width over all orderings. The induced
width is also equal to thetreewidthof a graph.

3 Description of Algorithms
In this section we describe the three algorithms that will be
compared. They are all parameterized memory intensive al-
gorithms that need to use space in order to achieve the worst
case time complexity ofO(n kw�), wherek bounds domain
size, andw� is the treewidth of the primal graph. The task
that we consider is one that is #P-hard (e.g., belief updating
in Bayesian networks, counting solutions in SAT or constraint
networks). We also assume that the model has no determin-
ism (i.e., all tuples have a strictly positive probability).

The algorithms we discuss work by processing variables
either byelimination or by conditioning. These operations
have an impact on the primal graph of the problem. When
a variable is eliminated, it is removed from the graph along
with its incident edges, and its neighbors are connected in a
clique. When it is conditioned, it is simply removed from the
graph along with its incident edges.

The algorithms we discuss typically depend on a variable
orderingd = (X1; :::; Xn). Search proceeds by instanti-
ating variables fromX1 to Xn, while Variable Elimination
processes the variables backwards, fromXn to X1. Given
a graphG and an orderingd, an elimination tree, denoted byT (G; d), is uniquely defined by the Variable Elimination pro-
cess.T (G; d) is also a valid pseudo tree to drive the AND/OR
search. Note however that several orderings can give rise to
the same elimination tree.

3.1 AND/OR Search Space
The AND/OR search space is a recently introduced[Dechter
and Mateescu, 2004; Mateescu and Dechter, 2005b; 2005a]
unifying framework for advanced algorithmic schemes for
graphical models. Its main virtue consists in exploiting inde-
pendencies between variables during search, which can pro-
vide exponential speedups over traditional search methods
oblivious to problem structure.

Given a graphical modelM = hX;D;Fi, its primal graphG and a pseudo treeT of G (see Figure 6 for an example
of a pseudo tree), the associated AND/OR search tree has al-
ternating levels of OR and AND nodes (see Figure 7 for an
example of OR and AND nodes; however, the figure shows
a search graph, not a tree). The OR nodes are labeledXi
and correspond to the variables. The AND nodes are labeledhXi; xii, or simplyxi, and correspond to the value assign-
ments in the domains of the variables. The structure of the
AND/OR search tree is based on the underlying pseudo treeT . The root of the AND/OR search tree is an OR node la-
beled with the root ofT . The children of an OR nodeXi

are AND nodes labeled with assignmentshXi; xii. The chil-
dren of an AND nodehXi; xii are OR nodes labeled with the
children of variableXi in the pseudo treeT .

The AND/OR search tree can be traversed by a depth first
search algorithm, thus using linear space. It was already
shown [Freuder and Quinn, 1985; Bayardo and Miranker,
1996; Darwiche, 2001; Mateescu and Dechter, 2005a] that:

THEOREM 1 Given a graphical modelM and a pseudo treeT of depthm, the size of the AND/OR search tree based onT is O(n km), wherek bounds the domains of variables. A
graphical model of treewidthw� has a pseudo tree of depth
at mostw� logn, therefore it has an AND/OR search tree of
sizeO(n kw� logn).

The AND/OR search tree may contain nodes that root iden-
tical conditioned subproblems. These nodes are said to be
unifiable. When unifiable nodes are merged, the search space
becomes a graph. Its size becomes smaller at the expense of
using additional memory by the search algorithm. The depth
first search algorithm can therefore be modified to cache pre-
viously computed results, and retrieve them when the same
nodes are encountered again. Some unifiable nodes can be
identified based on theircontexts[Darwiche, 2001]. We can
define graph based contexts for both OR nodes and AND
nodes, just by expressing the set of ancestor variables inT
whose assignment would completely determine the condi-
tioned subproblem. However, it can be shown that using
caching based on OR contexts makes caching based on AND
contexts redundant, so we will only useOR caching.

DEFINITION 5 (OR context) Given a pseudo treeT of an
AND/OR search space, the context of an OR nodeX, de-
noted bycontext(X) = [X1 : : : Xk], is the set of ancestors
of X in T ordered descendingly, that are connected in the
primal graph toX or to descendants ofX.

It is easy to verify that the context ofX d-separates[Pearl,
1988] the subproblem belowX from the rest of the network.
Thecontext minimalAND/OR graph is obtained by merging
all the context unifiable OR nodes. An example will appear
later in Figure 7. It was already shown that[Bayardo and
Miranker, 1996; Dechter and Mateescu, 2004]:

THEOREM 2 Given a graphical modelM, its primal graphG and a pseudo treeT , the size of the context minimal
AND/OR search graph based onT is O(n kw�T (G)), wherew�T (G) is the induced width ofG over the depth first traver-
sal ofT , andk bounds the domain size.

3.2 AND/OR Cutset Conditioning - AOCutset(i)
AND/OR Cutset Conditioning (AOCutset(i)) [Mateescu
and Dechter, 2005a] is a search algorithm that combines
AND/OR search spaces with cutset conditioning. The con-
ditioning (cutset) variables form astart pseudo tree. The re-
maining variables (not belonging to the cutset), have bounded
conditioned context size that can fit in memory.

DEFINITION 6 (start pseudo tree) Given a primal graphG
and a pseudo treeT ofG, a start pseudo treeTstart is a con-
nected subgraph ofT that contains the root ofT .



Algorithm AOCutset(i) depends on a parameter i that
bounds the maximum size of a context that can fit in memory.
Given a graphical model and a pseudo treeT , we first find a
start pseudo treeTstart such that the context of any node not
in Tstart contains at most i variables that are not inTstart.
This can be done by starting with the root ofT and then in-
cluding as many descendants as necessary in the start pseudo
tree until the previous condition is met.Tstart now forms the
cutset, and when its variables are instantiated, the remaining
conditioned subproblem has induced width bounded by i. The
cutset variables can be explored by linear space (no caching)
AND/OR search, and the remaining variables by using full
caching, of size bounded by i. The cache tables need to be
deleted and reallocated for each new conditioned subproblem
(i.e., each new instantiation of the cutset variables).

3.3 Algorithm AOC(i) - Adaptive Caching
The cutset principle inspires a new algorithm, based on a
more refined caching scheme for AND/OR search, which we
call Adaptive Caching- AOC(i) (in the sense that it adapts to
the available memory), that caches some values even at nodes
with contexts greater than the bound i that defines the mem-
ory limit. Lets assume thatcontext(X) = [X1 : : : Xk] andk > i. During search, when variablesX1; : : : ; Xk�i are in-
stantiated, they can be regarded as part of a cutset. The prob-
lem rooted byXk�i+1 can be solved in isolation, like a sub-
problem in the cutset scheme, after variablesX1; : : : ; Xk�i
are assigned their current values in all the functions. In this
subproblem,context(X) = [Xk�i+1 : : : Xk], so it can be
cached within space bounded by i. However, when the search
retracts toXk�i or above, the cache table forX needs to
be deleted and will be reallocated when a new subproblem
rooted atXk�i+1 is solved.

DEFINITION 7 (i-context, flag) Given a graphical model, a
pseudo treeT , a variableX andcontext(X) = [X1 : : : Xk],
the i-contextofX is:i-context(X) = � [Xk�i+1 : : : Xk]; if i < kcontext(X); if i � kXi is called theflag of i-context(X).
Algorithm AOC(i)

input : M=hX;D;Fi; G=(X;E);d=(X1;: : :; Xn); i
output : Updated belief forX1
Let T = T (G; d) // create elimination tree1

for eachX 2 X do
allocate a table fori-context(X)2

Initialize search with root ofT ;3

while search not finisheddo4

Pick next successor not yet visited // EXPAND;5

Purge cache tables that are not valid;6

if value in cachethen7

retrieve value; mark successors as visited;8

while all successors visiteddo // PROPAGATE9

Save value in cache;10

Propagate value to parent;11

The high level pseudocode forAOC(i) is given here. The
algorithm works similar to AND/OR search based on full
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Figure 1: Context minimal graph (full caching)
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Figure 2:AOC(2) graph (Adaptive Caching)
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Figure 3:AOCutset(2)graph (AND/OR Cutset)

context. The difference is in the management of cache ta-
bles. Whenever a variableX is instantiated (when an AND
node is reached), the cache table is purged (reinitialized with
a neutral value) for any variableY such thatX is the flag
of i-context(Y ) (line 6). Otherwise, the search proceeds as
usual, retrieving values from cache if possible (line 7) or else
continuing to expand, and propagating the values up when the
search is completed for subproblem below (line 11). We do
not detail here the alternation of OR and AND type of nodes.

Example 1 We will clarify here the distinction between
AND/OR with full caching, AND/OR Cutset and AND/OR
Adaptive Caching. We should note that the scope of a cache



table is always a subset of the variables on the current path
in the pseudo tree. Therefore, the caching method (e.g., full
caching based on context, cutset conditioning cache, adaptive
caching) is an orthogonal issue to that of the search space
decomposition. We will show an example based on an OR
search space (pseudo tree is a chain), and the results will
carry over to the AND/OR search space.

Figure 1 shows a pseudo tree, with binary valued variables,
the context for each variable, and the context minimal graph.
If we assume the boundi = 2, some of the cache tables
don’t fit in memory. We could in this case useAOCutset(2),
shown in Figure 3, that takes more time, but can execute in
the bounded memory. The cutset in this case is made of vari-
ablesA andB, and we see four conditioned subproblems, the
four columns, that are solved independently from one another
(there is no sharing of subgraphs). Figure 2 showsAOC(2),
which falls between the previous two. It uses bounded mem-
ory, takes more time than full caching (as expected), but less
time thanAOCutset(2)(because the graph is smaller). This
can be achieved because Adaptive Caching allows the shar-
ing of subgraphs. Note that the cache table ofH has the
scope[BG], which allows merging.

3.4 Variable Elimination and Conditioning -VEC(i)

Variable Elimination and Conditioning (VEC) [Rish and
Dechter, 2000; Larrosa and Dechter, 2002] is an algorithm
that combines the virtues of both inference and search. One of
its remarkably successful applications is the genetic linkage
analysis software Superlink[Fishelson and Geiger, 2002].
VEC works by interleaving elimination and conditioning of
variables. Typically, given an ordering, it prefers the elimina-
tion of a variable whenever possible, and switches to condi-
tioning whenever space limitations require it, and continues
in the same manner until all variables have been processed.
We say that the conditioning variables form aconditioning
set, or cutset(this can be regarded as aw-cutset, where thew
defines the induced width of the problems that can be han-
dled by elimination). The pseudocode for the vanilla ver-
sion, calledVEC-OR(i) because the cutset is explored by OR
search rather than AND/OR, is shown below:

Algorithm VEC-OR(i)

input : M = hX;D;Fi; d = (X1; : : : ; Xn)
output : Updated belief forX1
if (context(Xn) � i) then1

eliminateXi;2

call VEC-OR(i) on reduced problem3

else foreachxn 2 Dn do4

assignXn = xn;5

call VEC-OR(i) on the conditioned subproblem6

When there are no conditioning variables,VEC becomes
the well known Variable Elimination (VE) algorithm. In this
caseAOC also becomes the usual AND/OR graph search
(AO), and it was shown[Mateescu and Dechter, 2005b] that:

THEOREM 3 (VE and AO are identical) Given a graphical
model with no determinism and a pseudo tree,VE traverses
the full context minimal graph bottom-up by layers (breadth
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Figure 4: Primal graph and pseudo tree

first), whileAO is a top-down depth-first search that explores
(and records) the full context minimal graph as well.

3.5 Tree Decomposition with Conditioning - TDC
One of the most widely used methods of processing graph-
ical models, especially belief networks, is tree clustering
(also known as join tree or junction tree algorithm[Lauritzen
and Spiegelhalter, 1988]). The work in [Dechter and Fat-
tah, 2001] presents an algorithm calleddirectional join tree
clustering, that corresponds to an inward pass of messages
towards a root in the regular tree clustering algorithm. If
space is not sufficient for the separators in the tree decom-
position, then[Dechter and Fattah, 2001] proposes the use of
secondary join trees, which simply combine any two neigh-
boring clusters whose separator is too big to be stored. The
resulting algorithm that uses less memory at the expense of
more time is calledspace based join tree clustering,

The computation in each cluster can be done by any suit-
able method. The obvious one would be to simply enumerate
all the instantiations of the cluster, which corresponds toan
OR search over the variables of the cluster. A more advanced
method advocated by[Dechter and Fattah, 2001] is the use
of cycle cutset inside each cluster. We can improve the cycle
cutset scheme first by using an AND/OR search space, and
second by using Adaptive Caching bounded byi, rather than
simple AND/OR Cutset in each cluster. We call the resulting
methodtree decomposition with conditioning(TDC(i) ).

4 AOC(i) Compared to VEC(i)
We will begin by following an example. Consider the graph-
ical model given in Figure 4a having binary variables, the
orderingd1 = (A;B;E; J;R;H;L;N;O;K;D; P ;C;M -; F ;G), and the space limitationi = 2. The pseudo tree cor-
responding to this ordering is given in Figure 4b. The context
of each node is shown in square brackets.

If we applyVEC alongd1 (eliminating from last to first),
variablesG, F andM can be eliminated. However,C can-
not be eliminated, because it would produce a function with
scope equal to its context,[ABEHLKDP ], violating the
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Figure 5: Components after conditioning onC
boundi = 2. VEC switches to conditioning onC and all
the functions that remain to be processed are modified accord-
ingly, by instantiatingC. The primal graph has two connected
components now, shown in Figure 5. Notice that the pseudo
trees are based on this new graph, and their shape changes
from the original pseudo tree.

Continuing with the ordering,P andD can be eliminated
(one variable from each component), but thenK cannot be
eliminated. After conditioning onK, variablesO, N andL
can be eliminated (all from the same component), thenH is
conditioned (from the other component) and the rest of the
variables are eliminated. To highlight the conditioning set,
we will box its variables when writing the ordering,d1 = (A-; B;E; J;R; H ; L;N;O; K ; D; P ; C ;M; F;G).

If we take the conditioning set[HKC] in the order im-
posed on it byd1, reverse it and put it at the beginning of the
orderingd1, then we obtain:d2=�C ;�K ;hH ;�A;B;E;J;R�H ;L;N;OiK ;D;P�C ;M;F;G�
where the indexed squared brackets together with the under-
lines represent subproblems that need to be solved multiple
times, for each instantiation of the index variable.

So we started withd1 and boundi = 2, then we iden-
tified the corresponding conditioning set[HKC] for VEC,
and from this we arrived atd2. We are now going to used2
to build the pseudo tree that guidesAOC(2), given in Figure
6. The outer box corresponds to the conditioning ofC. The
inner boxes correspond to conditioning onK andH, respec-
tively. The context of each node is given in square brackets,
and the2-contextis on the right side of the dash. For exam-
ple, context(J) = [CH-AE], and2-context(J) = [AE].
The context minimal graph corresponding to the execution of
AOC(2) is shown in Figure 7.

We can follow the execution of bothAOC andVEC along
this context minimal graph. After conditioning onC, VEC
solves two subproblems (one for each value ofC), which are
the ones shown on the large rectangles. The vanilla version
VEC-OR is less efficient thanAOC, because it uses an OR
search over the cutset variables, rather than AND/OR. In our
example, the subproblem onA;B;E; J;R would be solved
eight times byVEC-OR, once for each instantiation ofC,K
andH, rather than four times. It is now easy to make the first
improvement toVEC, so that it uses an AND/OR search over
the conditioning variables, an algorithm we callVEC-AO(i) ,
by changing line 6 ofVEC-OR to:
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Algorithm VEC-AO(i): : :
call VEC-AO(i) on each connected6

component of conditioned subproblem separately;

Let’s look at one more condition that needs to be satisfied
for the two algorithms to be identical. If we change the order-
ing to d3 = (A;B;E; J;R; H ; L;N;O; K ; D; P ; F ;G; C-;M), (F andG are eliminated after conditioning onC), then
the pseudo tree is the same as before, and the context minimal
graph forAOC is still the one shown in Figure 7. However,
VEC-AO would require more effort, because the elimination
of G andF is done twice now (once for each instantiation ofC), rather than once as was for orderingd1. This shortcom-
ing can be eliminated by defining a pseudo tree based version
for VEC, rather than one based on an ordering. The final
algorithm,VEC(i) is given below (whereNG(Xi) is the set
of neighbors ofXi in the graphG). Note that the guiding
pseudo tree is regenerated after each conditioning.

Algorithm VEC(i)

input : M=hX;D;Fi; G=(X;E); d=(X1;: : :; Xn); i
output : Updated belief forX1
Let T = T (G; d) // create elimination tree ;
while T not emptydo

if ((9Xi leaf inT )^(jNG(Xi)j� i)) then eliminateXi
elsepickXi leaf fromT ;

for eachxi 2 Di do
assignXi = xi;
call VEC(i) on each connected component of
conditioned subproblem

break;

Based on the previous example, we can prove:

THEOREM 4 (AOC(i) simulates VEC(i)) Given a graphical
modelM= hX;D;Fi with no determinism and an execution
of VEC(i), there exists a pseudo tree that guides an execution
of AOC(i) that traverses the same context minimal graph.

Proof: The pseudo tree ofAOC(i) is obtained by reversing
the conditioning set ofVEC(i) and placing it at the beginning
of the ordering. The proof is by induction on the number of
conditioning variables, by comparing the corresponding con-
texts of each variable.
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Figure 7: Context minimal graph

Basis step.If there is no conditioning variable, Theorem
3 applies. If there is only one conditioning variable. Given
the orderingd = (X1; : : : ; Xj ; : : : ; Xn), let’s sayXj is the
conditioning variable.

a) ConsiderX 2 fXj+1; : : : ; Xng. The function recorded
by VEC(i) when eliminatingX has the scope equal to the
context ofX in AOC(i) .

b) For Xj , both VEC(i) and AOC(i) will enumerate its
domain, thus making the same effort.

c) AfterXj is instantiated byVEC(i) , the reduced subprob-
lem (which may contain multiple connected components) can
be solved by variable elimination alone. By Theorem 3,
variable elimination on this portion is identical to AND/OR
search with full caching, which is exactlyVEC(i) on the re-
duced subproblem.

From a), b) and c) it follows thatVEC(i) andAOC(i) are
identical if there is only one conditioning variable.

Inductive step.We assume thatVEC(i) and AOC(i) are
identical for any graphical model if there are at mostk condi-
tioning variables, and have to prove that the same is true fork + 1 conditioning variables.

If the ordering isd = (X1; : : : ; Xj ; : : : ; Xn) andXj is the
last conditioning variable in the ordering, it follows (similar
to the basis step) thatVEC(i) andAOC(i) traverse the same
search space with respect to variablesfXj+1; : : : ; Xng, and
also forXj . The remaining conditioned subproblem now falls
under the inductive hypothesis, which concludes the proof.
Note that it is essential thatVEC(i) uses AND/OR over cut-
set, and is pseudo tree based, otherwiseAOC(i) is better. 2
5 AOC(i) Compared to TDC(i)
We will look again at the example from Figures 6 and 7, and
the orderingd2. It is well known that a tree decomposition
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Figure 8: Tree decompositions: a) ford2; b) maximal cliques
only; c) secondary tree fori = 2
corresponding tod2 can be obtained by inducing the graph
alongd2 (from last to first), and then picking as clusters each
node together with its parents in the induced graph, and con-
necting each cluster to that of its latest (in the ordering) in-
duced parent. Because the induced parent set is equal to the
context of a node, the method above is equivalent to creatinga
cluster for each node in the pseudo tree from Figure 6, and la-
beling it with the variable and its context. The result is shown
in Figure 8a. A better way to build a tree decomposition is
to pick only the maximal cliques in the induced graph, and
this is equivalent to collapsing neighboring subsumed clusters
from Figure 8a, resulting in the tree decomposition in Figure
8b. If we want to runTDC with boundi = 2, some of the sep-
arators are bigger than 2, so a secondary tree is obtained by
merging clusters adjacent to large separators, obtaining the
tree in Figure 8c.TDC(2) now runs by sending messages
upwards, toward the root. Its execution, when augmented
with AND/OR cutset in each cluster, can also be followed on
the context minimal graph in Figure 7. The separators[AF ],[AR] and [CD] correspond to the contexts ofG, F andM .
The root cluster[CHABEJDR] corresponds to the part of
the context minimal graph that contains all these variables. If
this cluster would be processed by enumeration (OR search),
it would result in a tree with28 = 256 leaves. However,



when explored by AND/OR search with adaptive caching the
context minimal graph of the cluster is much smaller, as can
be seen in Figure 7. By comparing the underlying context
minimal graphs, it can be shown that:

THEOREM 5 Given a graphical modelM = hX;D;Fi with
no determinism, and an execution ofTDC(i), there exists a
pseudo tree that guides an execution ofAOC(i) that traverses
the same context minimal graph.

Proof: Algorithm TDC(i) is already designed to be an im-
provement overspace based join tree clustering(Section 3.5),
in that it uses AND/OR Adaptive Caching (rather than cut-
set conditioning) inside each cluster to compute the messages
that are sent.TDC(i) is based on a rooted tree decompo-
sition, which can serve as the skeleton for the underlying
pseudo tree. Each cluster has its own pseudo tree to guide
the AND/OR Adaptive Caching. Each message sent between
neighboring clusters couples all the variables in its scope,
therefore the scope variables have to appear on a chain at the
top of the pseudo tree of the cluster where the message is gen-
erated, and also they have to appear on a chain in the pseudo
tree of the cluster where the message is received. This im-
plies that two neighboring clusters can agree on an ordering
of the common variables (since we assume no determinism,
the order of variables on a chain doesn’t change the size of
the context minimal graph). All this allows us to build a com-
mon pseudo tree for two neighboring clusters, by superim-
posing the common variables in their respective pseudo trees
(which are the variables in the separator between the clus-
ters). In this way we can build the pseudo tree for the entire
problem. Now, for any variableXi in the problem pseudo
tree,i-context(Xi) is the same as it was in the highest clus-
ter (closest to the root of the tree decomposition) whereXi
is mentioned. From this, it follows thatAOC(i) based on the
pseudo tree for the entire problem traverses the same context
minimal graph asTDC(i) . 2
6 Conclusion
We have compared three parameterized algorithmic schemes
for graphical models that can accommodate time-space trade-
offs. They have all emerged from seemingly different princi-
ples:AOC(i) is search based,TDC(i) is inference based and
VEC(i) combines search and inference.

We show that if the graphical models contain no determin-
ism, AOC(i) can have a smaller time complexity than the
vanilla versions of bothVEC(i) andTDC(i) . This is due to
a more efficient exploitation of the graphical structure of the
problem through AND/OR search, and the adaptive caching
scheme that benefits from the cutset principle. These ideas
can be used to enhanceVEC(i) andTDC(i) . We show that if
VEC(i) uses AND/OR search over the conditioning set and is
guided by the pseudo tree data structure, then there exists an
execution ofAOC(i) that is identical to it. We also show that
if TDC(i) processes clusters by AND/OR search with adap-
tive caching, then there exists an execution ofAOC(i) iden-
tical to it. AND/OR search with adaptive caching (AOC(i) )
emerges therefore as a unifying scheme, never worse than the

other two. All the analysis was done by using the context
minimal data structure, which provides a powerful methodol-
ogy for comparing the algorithms.

When the graphical model contains determinism, all the
above schemes become incomparable. This is due to the fact
that they process variables in reverse orderings, and will en-
counter and exploit deterministic information differently.
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