Best-First AND/OR Search for Graphical Models

Radu Marinescu and Rina Dechter
School of Information and Computer Science
University of California, Irvine, CA 92627
{radum decht er }@ cs. uci . edu

Abstract

The paper presents and evaluates the powebest-first
searchover AND/OR search spaces in graphical models. The
main virtue of the AND/OR representation is its sensitivity to
the structure of the graphical model, which can translate into
significant time savings. Indeed, in recent years depth-first
AND/OR Branch-and-Bound algorithms were shown to be
very effective when exploring such search spaces, especially
when using caching. Since best-first strategies are known to
be superior to depth-first when memory is utilized, exploring
the best-first control strategy is called for. In this paper we in-
troduce two classes of best-first AND/OR search algorithms:
those that explore a context-minimal AND/OR search graph
and use static variable orderings, and those that use dynamic
variable orderings but explore an AND/OR search tree. The
superiority of the best-first search approach is demonstrated
empirically on various real-world benchmarks.

Introduction

Graphical models such as belief networks or constraint
networks are a widely used representation framework for
reasoning with probabilistic and deterministic infornoati

These models use graphs to capture conditional independen-

cies between variables, allowing a concise representafion

when the same subproblems are encountered again. These
algorithms were initially restricted to a static variable o
dering. More recently, (Marinescu & Dechter 2006b)
showed how dynamic variable selection heuristics influence
Branch-and-Bound search over AND/OR trees. The depth-
first AND/OR search algorithms were shown to outperform
dramatically state-of-the-art Branch-and-Bound aldonis
searching the traditional OR space.

In this paper we focus on best-first search algorithms. We
present a new AND/OR search algorithm that explores a
context-minimal AND/OR search graph irbast-firstrather
than depth-first manner. Since variable selection can have
a dramatic impact on search performance, we also intro-
duce a best-first AND/OR search algorithm that explores the
AND/OR search tree, rather than the graph, and combines
the static AND/OR decomposition principle with dynamic
variable selection heuristics. Under conditions of adiniss
bility and monotonicity of the heuristic function, bestsfir
search is known to expand the minimal number of nodes, at
the expense of using additional memory (Dechter & Pearl
1985). In practice, these savings in number of nodes may
often translate into time savings as well.

We focus the empirical evaluation on three common op-
timization problems: solving Weighted CSPs (de Giety

the knowledge as well as efficient graph-based query pro- al. 2005), finding the Most Probable Explanation in be-
cessing algorithms. Optimization problems such as finding Jief networks (Pearl 1988), and 0/1 Integer Linear Program-
the most likely state of a belief network or finding a solution ming (Nemhauser & Wolsey 1988). Our results show con-
that violates the least number of constraints can be defined clusively that the best-first AND/OR search approach out-

within this framework and they are typically tackled with
eithersearchor inferencealgorithms.

The AND/OR search space for graphical models (Dechter
& Mateescu 2006) is a framework for search that is sensi-
tive to the independencies in the model, often resulting in

performs significantly the depth-first AND/OR Branch-and-
Bound search algorithms on various benchmarks.

Background

reduced search spaces. The impact of the AND/OR search Constraint Optimization Problems

to optimization in graphical models was explored in recent
years focusing exclusively on depth-first search.

The AND/OR Branch-and-Bound first introduced by
(Marinescu & Dechter 2005) traverses the AND/OR search
tree in a depth-first manner. The memory intensive Branch-
and-Bound algorithm (Marinescu & Dechter 2006c) ex-

plores an AND/OR search graph, rather than a tree, by

caching previously computed results and retrieving them

Copyright(© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A finite Constraint Optimization ProblertCOP) is a triple

P = (X,D,F), whereX = {X1,..., X, } is a set of vari-
ables, D {Dz,...,D,} is a set of finite domains and

F ={f1,..., fm} is a set of cost functions. Cost functions
can be eithesoftor hard (constraints). Without loss of gen-
erality we assume that hard constraints are represented as
(bi-valued) cost functions. Allowed and forbidden tuples
have cost0 and oo, respectively. The scope of function

fi, denotedscope(f;) C X, is the set of arguments ¢f.

The goal is to find a complete value assignment to the vari-

Figure 1: AND/OR Search Spaces for Graphical Models

ables that minimizes the global cost function, namely to find Example 1 Figures 1(a) and 1(b) show the primal graph
T =argminy Y ., fi. of a binary COP instance and its pseudo-tree together with

Given a COP instance, ipgimal graphG associates each the back-arcs (dotted lines). Figure 1(c) shows the AND/OR
variable with a node and connects any two nodes whose vari- search tree based on the pseudo-tree, for bi-valued vari-
ables appear in the scope of the same function. ables. A solution subtree is highlighted.

AND/OR Search Spaces for Graphical Models ArcLabelsand Node Values The arcs from OR nodek;

The usual way to do search is to instantiate variables yollo ;On'r?(la\'l[gt;(?(tj)iaséfa(lggéiil/géhf?oﬁnl\ltﬁé Ocl(?)sst?‘ﬁgir':i(t)ff % are
ing a static/dynamic variable ordering. In the simplesecas '
this process defines an OR search tree, whose nodes repreDEFINITION 2 (label) Thelabel I(X;, (X;, z;)) of the arc
sent partial assignments. This search space does noteaptur from the OR nod€&; to the AND nodé X, ;) is the sum of
the structure of the underlying graphical model. However, all the cost functions whose scope includésand is fully
to remedy this problem, AND/OR search spaces for graph- assigned alongath(X;, z;), evaluated at the values along
ical models were recently introduced by (Dechter & Ma- the path.
teescu 2006). They are defined using a backiuseido- Given a labeled AND/OR search tree, each node can be
tree (Freuder 8(‘ Quu;n 198;_’)'6 . .) associated with alue(Dechter & Mateescu 2006).
DEFINITION 1 (pseudo-tree) Given an undirected grap
G = (V,E), a directed rooted tre§" = (V, E’) defined DEdF'wT'gN 3(val_ue? Thefvaltlluev.(n) (zgeino)?en € St
on all its nodes is callegseudo-treé any arc of G which is IS de mtlaAI(lelgursg/e yhas ollows:) . <_i’x;(> IS a
not included inE” is a back-arc, namely it connects a node ©"™Min& node them(n) = 0; (i) if n = (X ;)

is an internal AND node then(n) = >,/ ¢ ycen) v(7);

to an ancestor irf".

(i) if » = X, is an internal OR node them(n) =
AND/OR ~Search Trees Given a COP instance min, cgyce(n)(L(n,n')+v(n’)), wheresucc(n) are the chil-
P =(X,D,F), its primal graphG and a pseudo-tree dren ofn in Sp.
T of G, the associated AND/OR search tree, dendied
has alternating levels of OR nodes and AND nodes. The OR
nodes are labele&’; and correspond to the variables. The
AND nodes are labeledX;, z;) and correspond to value
assignments in the domains of the variables. The root of the . . . L
AND/OR search tree is an OR node, labeled with the root of Sr, thenv(n) is the minimal cost solution to the initial
of the pseudo-tre. problem (Marinescu & Dechter 2005).

The children of an OR nod&; are AND nodes labeled AND/OR Search Graphs The AND/OR search tree may
with assignmentg X;, x;), consistent along the path from contain nodes that root identical subtrees (in particsia;
the root,path(X;, z;) = ((X1,71), ..., (Xi—1,7-1)). The problems with identical optimal solutions) which canure-
children of an AND node(X;, z;) are OR nodes labeled fied When unifiable nodes are merged, the search tree be-
with the children of variableX; in 7. Semantically, the ~ comes a graph and its size becomes smaller. Some unifiable
OR states represent alternative solutions, whereas the AND nodes can be identified based on theintexts
states represent problem decomposition into independent
subproblems, all of which need be solved. When the pseudo-
tree is a chain, the AND/OR search tree coincides with the
regular OR search tree.

A solution treeSolg,. of Sy is an AND/OR subtree such
that: (i) it contains the root a$r; (i) if a nonterminal AND
noden € St is in Solg, then all its children are i¥ols,.; It is easy to verify that any two nodes having the same
(iii) if a nonterminal OR noden € Sr is in Solg, then context represent the same subproblem. Therefore, we can
exactly one of its children is i§ol ... solve Px,, the subproblem rooted &;, once and use its

It is easy to see that the valuén) of a node in the
AND/OR search treé is the minimal cost solution to the
subproblem rooted at, subject to the current variable in-
stantiation along the path from the roottolf n is the root

DEFINITION 4 (context) Given a COP instance and the
corresponding AND/OR search trég relative to a pseudo-
treeT’, thecontextof any AND nodé X, z;) € Sr, denoted
by context(X;), is defined as the set of ancestorsXfin
T, including X, that are connected to descendantsXgf

optimal solution whenever the same subproblem is encoun-
tered again.

The context-minimalAND/OR search graph based on
pseudo-tred’, denotedG 7, is obtained by merging all the
AND nodes that have the same context. It can be shown
(Dechter & Mateescu 2006) that the size of the largest con-
textis bounded by the induced widih' of the primal graph,
extended with the pseudo-tree extra arcs, over the ordering
given by the depth-first traversal @f(i.e. induced width of
the pseudo-tree). Therefore,

THEOREM1 (complexity) The complexity of any search
algorithm traversing a context-minimal AND/OR search
graph is time and spac@(exp(w*)), wherew* is the in-
duced width of the underlying pseudo-tree.

Example2 Consider the context-minimal AND/OR search
graph in Figure 1(d) of the pseudo-tree from Figure 1(b).
Its size is far smaller than that of the AND/OR tree from
Figure 1(c) (16 nodes vs. 36 nodes). The contexts of
the nodes can be read from the pseudo-tree, as follows:
context(A) = {A}, context(B) = {B,A}, context(C)

= {C,B}, context(D) = {D}, context(E) = {E,A} and
context(F) = {F}.

Best-First AND/OR Search

In recent years, depth-first AND/OR Branch-and-Bound
algorithms were shown to be very effective, especially
when using extensive caching (Marinescu & Dechter 2005;
2006¢). Since best-first search is known to be superior
among memory intensive search algorithms (Dechter &
Pearl 1985), the comparison with the best-first approadh tha
exploits similar amounts of memory is warranted. In this
section we introduce two new classes of best-first AND/OR
search algorithms: one that explores a context-minimal
AND/OR search graph and is restricted to a static variable
ordering, and one that uses dynamic variable orderings but
traverses an AND/OR search tree, rather than a graph.

Best-First AND/OR Graph Search

Our best-first AND/OR graph search algorithm, denoted by
AOBF, that traverses the context-minimal AND/OR search
graph is described in Algorithm 1. It specializes Nillson’s
AC* algorithm (Nillson 1980) to AND/OR spaces in graph-
ical models. The algorithm interleaves forward expansion
of the best partial solution tree with a cost revision stegt th
updates estimated node values. First, a top-down, graph-
growing operationgt ep 2. a) finds the best partial solu-
tion tree by tracing down through the marked arcs of the
explicit AND/OR search grapti’.. These previously com-
puted marks indicate the current best partial solution tree
from each node irz’.. One of the nonterminal leaf nodes
n of this best partial solution tree is then expanded, and a
static heuristic estimate(n;), underestimating(n;), is as-
signed to its successorst(ep 2. b). The successors of an
AND noden = (X;,z;) are X;’s children in the pseudo-
tree, while the successors of an OR nade X; correspond

to X;’'s domain values. Notice that when expanding an OR
node, the algorithm does not generates AND children that
are already present in the explicit search gré&h All these

Algorithm 1. AOBF

Data: ACOPP = (X, D, F), pseudo-tred’, root s.
Result: Minimal cost solution tgP.
1. Create explicit grapltt’., consisting solely of the start node Set
v(s) = h(s).
2. until s is labeled SOLVEDdo:
(a) Compute gartial solution treeby tracing down thenarkedarcs in
G from s and select any nonterminal tip node
(b) Expand node: and add any new successor nogeto G.. For each
new noden; setv(n;) = h(n;). Label SOLVED any of these
successors that are terminal nodes.
(c) Create a sef containing nodex.
(d) until S is empty,do:
i. Remove fromS a nodem such thatm has no descendants @’
stillin S.
ii. Revise the value (m) as follows:
A. if m is an AND nodethen v(m) = ijawc(m) v(my). If
all the successor nodes are labeled SOLVED, then label node
SOLVED.
B.if m is an OR nodéhen
v(m) = minmj esuce(m) (l(m, mj) 4+ v(m;)) and mark the
arc through which this minimum is achieved. If the marked successor
is labeled SOLVED, then labeh SOLVED.
iii. If m has been marked SOLVED or if the revised vaiuen) is
different than the previous one, then addstall those parents af.
such thatn is one of their successors through a marked arc.
3.return v(s).

identical AND nodes irG/. are easily recognized based on
their contexts.

The second operation iIMOBF is a bottom-up, cost
revision, arc marking, SOLVE-labeling procedurst €p
2. c). Starting with the node just expandegdthe procedure
revises its value(n) (using the newly computed values of
its successors) and marks the outgoing arcs on the estimated
best path to terminal nodes. This revised value is then prop-
agated upwards in the graph. The revised e¢s} is an up-
dated estimate of the cost of an optimal solution to the sub-
problem rooted at. If we assume the monotone restriction
on h, the algorithm considers only those ancestors that root
best partial solution subtrees containing descendantseit
vised values. The optimal cost solution to the initial pesbl
is obtained when the root nodes solved.

Dynamic Variable Orderings

It is well known that variable selection may influence dra-
matically search performance. Recent work by (Marinescu
& Dechter 2006b) showed how several dynamic variable
orderings affect depth-first Branch-and-Bound search over
AND/OR trees. One version, called AND/OR Branch-and-
Bound with Partial Variable OrderindhOBB+PVO) that or-
ders dynamically the variables forming chains in the pseudo
tree was shown to outperform significantly static AND/OR
search as well as state-of-the-art OR Branch-and-Bound
solvers for general COPs. Next, we extend the idea of partial
variable ordering to best-first search on AND/OR trees.
Note thatAOBF is restricted to a static variable ordering
that corresponds to the pseudo-tree arrangement. The mech-
anism of identifying unifiable AND nodes based solely on

spot5 toolbar3 AOEDAC

DVO i=4 i=6

AOBBMB()

AOBFEMB()

i=8 i=12 i=4 i=6 i=8

29 83

476

14
42

time
nodes

4.56
218,846

0.81
8,698

5.53
48,995

4.80
29,702

0.56
2,267

21.67]
111

6.42
36,396

2.23
12,801

0.47
757

i=2 i=4

i=6 i=10 i=2 i=4 i=6

54 68

283

11
33

time
nodes

0.31
21,939

0.06
688

546.89
5,094,051

18.42
198,712

0.23
2,477

0.69
12

0.69
3,906

0.41
2,714

0.11

0 631

i=6 i=8

i=10 i=14 i=6 i=8 i=10 i=12

404 100

710

19
42

time
nodes

151.11
6,215,135

12.09
88,079

51.88
529,002

2.55
23,565

0.55
1,704

1.16
598

3.98
232

1.20
6,399

1.02
5,140

0.62
1,303

1.22
576

i=6 i=8

i=10 i=12 i=14 i=6 i=8 i=10 i=12

408b 201

1847

24
59

time
nodes

7507.10

54,826,929 3

114,294

515.94 75.08

408,619

47.03 52.53
61,986 175,366

44.99
145,901

25.20
98,616

16.97
39,238

i=2 i=4

i=6 i=8 i=10 i=2 i=4 i=6 i=8

503 144

639

time
nodes

10005.00
44,495,545

2,442,998

189.39 291.72

4,050,474

0.42 10.25
259 22,967

5.28
16,114

1.56
9,929

1.59

9,186 144

i=10 i=12 i=14 i=6 i=8 i=10 i=12

i=6 i=8
505b 241 B B

1721

16
98

time
nodes

1180.48
8,905,473

367.93| 42.73
16,020 144,723

2925
111,223

31.20
108,256

54.09
31,692

Table 1: CPU time in seconds and nodes visited to prove ofitynfiar SPOT5 benchmarks. Time limit 3 hours.

their contexts is hard to extend when variables are instanti

ated in a different order than that dictated by the pseuee-tr
Best-first AND/OR search with Partial Variable Ordering

(ACBF+PVO) traverses an AND/OR search tree in a best-

& Dechter 2006c) and denoted IAOBBMVB(i) . The pa-
rameter; represents the mini-bucketbound and controls
the accuracy of the heuristic. Both algorithms traverse the
context-minimal AND/OR search graph restricted to a static

first manner and combines the static graph-based problem variable ordering determined by the pseudo-tree.

decomposition given by a pseudo-tree with a dynamic se-
mantic variable selection heuristic. We illustrate theaide
with an example. Consider the pseudo-tree from Figure
1(b) inducing the following variable group orderinfA,B},
{C,D}, {E,F}; which dictates that variablegA,B} should

be considered beforeC,D} and{E,F}. Variables in each
group (or chain) can be dynamically ordered based on a
second, independent heuristic. Notice that after var&@able
{A,B} are instantiated, the problem decomposes into two in-
dependent components (represented by varigiilel} and
{E,F}, resp.) that can be solved separately.

Experiments

We also report results obtained with the OR Branch-and-
Bound maintaining Existential Directional Arc-Consistgn
(EDAC) developed in (de Givret al. 2005) and denoted
by t ool bar 3, and the AND/OR Branch-and-Bound with
EDAC and full dynamic variable orderindhQEDAC+DVO)
from (Marinescu & Dechter 2006b). These algorithms
instantiate variables dynamically, using th@&n-dom/deg
heuristic which selects the variable with the smallesborati
of the domain size divided by the future degree.

Earth Observing Satellites The problem of scheduling

an Earth observing satellite is to select from a set of can-
didate photographs, the best subset such that a set of im-
perative constraints are satisfied and the total importahce

We evaluate the performance of the two classes of best-first the selected photographs is maximized. We experimented

AND/OR search algorithms on three common optimization
problems: solving Weighted CSPs (de Giveyal. 2005),
finding the Most Probable Explanation (MPE) in belief net-
works (Pearl 1988) and solving 0/1 Integer Linear Programs
(Nemhauser & Wolsey 1988). All experiments were run on
a 2.4GHz Pentium IV with 2GB of RAM.

with problem instances from the SPOT5 benchmark (Ben-
sana, Lemaitre, & Verfaillie 1999) which can be formulated
as WCSPs with binary and ternary constraints and domain
sizes of 2 and 4 (instance®)8b and505b contain only
binary constraints).

Table 1 shows the results for experiments with 6 schedul-

We report the average CPU time (in seconds) and number jng problems. The columns are indexed by the mini-bucket

of nodes visited, required for proving optimality of thesol
tion. We also record the number of variables (n), the number

i-bound. When comparing the best-first against the depth-
first AND/OR search algorithms with static mini-bucket

of constraints (c), the depth of the pseudo-trees (h) and the heuristics we observe that, for relatively smalbounds,

induced width of the graphsuf) obtained for the test in-

AOBFMB(i) improves significantly (up to several orders

stances. The pseudo-trees were generated using the min-fillof magnitude) in terms of both CPU time and number of

heuristic, as described in (Marinescu & Dechter 2005). The
best performance points are highlighted.

Weighted CSPs

For this domain we experimented with real-world schedul-
ing and circuit diagnosis benchmarks. We consider the best-
first AND/OR search algorithm guided by pre-compiled
mini-bucket heuristics (Marinescu & Dechter 2005) and de-
noted byACBFMB(¢) . We compare it against the depth-first
AND/OR Branch-and-Bound algorithm with static mini-
bucket heuristics and full caching introduced by (Marinesc

nodes visited. For example, &®5b, one of the hardest in-
stancesAOBFMB(8) proves optimality in less than 30 sec-
onds, whereadOBBMB(8) exceeds the 3 hour time limit.
This observation verifies the theory because best-firstbear
is likely to expand the smallest number of nodes at the search
frontier, especially when having relatively weak heudisti
estimates. As the mini-buckétbound increases and the
heuristics become strong enough to cut the search space
substantially the difference between Branch-and-Boumid an
best-first search decreases, because Branch-and-Bousd find
almost optimal solutions fast, and therefore will not explo

iscas89 n w* toolbar3 | AOBB+EDAC AOBBMB(i) AOBFMB(i)
c h DVO i=8 i=10 i=12 i=14 i=16 i=8 i=10 i=12 i=14 i=16
c432 432 27 time - - 422.08 40.91 0.89 0.89 0.64 39.33 0.52 031 0.38 0.67
432 45 nodes 2,945,230 337,574 6,254 6,010 914 196,892 2,154 1,007 847 445
c880 881 27 time - - 100.66 91.66 31.06 59.35 14.7 1.36 0.91 0.81 1.19 1.44
883 67 nodes 516,056 446,893 169,138 316,124 78,268 4,454 2,792 2,231 2,862 1,58
s935 441 66 time - - 1285.07 143.53 - 22.28 4.8(6.16 1.22 1.19 1.22 2.42
464 101 nodes 6,623,608 763,933 128,372 15,01p 25,493 4,087 3,319 2,216 88
s1196 562 54 time - - 3347.38 503.30 2299.72 734.66 149.81 22.67 2.89 13.02 7.27 3.56
564 97 nodes 13,554,137 2,425,152 11,488,366 3,524,780 793,417 72,075 9,336 40,210 21,989 2,090
s1238 541 59 time - - 1897.37 1682.99 281.05 248.27 12.64 34.09 29.41 12.31 6.64 463
543 94 nodes 8,386,634 7,431,223 1,350,933 1,220,658 59,6B5137,960 111,205 53,095 26,101 7,142
s1494 661 48 time - - 364.80 5.64 27.64 6.92 9.0 1.44 0.59 0.95 1.50 3.81
661 69 nodes 953,945 17,279 80,895 23,131 20,004 5,694 1,472 2,311 1,476 985

Table 2: CPU time in seconds and nodes visited to prove ofitinfiar | SCAS' 89 benchmarks. Time limit 1 hour.

ped n w* Superink 1.5 ACBBMB() AOCBFMB()
c h i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
T 299 | 15 time 131.30 719 217 0.39 0.65 136 1.30 217 0.26 0.87 154
340 | 61 | nodes 69,751 33,908 4,576 6,306 4490 7,314 13784 1,177 4016 311
=10 =12 =14 =16 =18 =10 =12 =14 =16 =18
23 310 | 23 time 5,809 53.70 4933 877 273 3.04 35.49 29.29 10.59 359 3.48
410 | 37 | nodes 486,991 437,688 85,721 14,019 7,099 185,761 150,214 52,710 11,414 5790
=12 =14 =16 =18 =20 =12 =14 =16 =18 =20
30 | 1016 | 25 time 28,740 1440.26 597.88 1023.90 151.96 1393 186.77 58.38 8553 4938 3303
1298 | 51 | nodes 11,694534 5580555 10,458,174 1,179,236 146,§9%692,870 253465 350497 179,790 37,705
=8 =10 =12 =8 =10 =12
38 582 | 17 time 6218 1554.65 2046.00 272.69 13441 21694 10317
727 | 59 | nodes 8,986,648 11,868,672 1,412,976 348,723 583,401 242,429
=6 =8 =10 =12 =6 =8 =10 =12
50 | 479 | 18 time 716.60 4140.29 249375 66.66 52.11 7853 3603 1275 3852
517 | 58 | nodes 28,201,843 15729294 403,234 110,302 204,886 104,289 25507 5,766

Table 3: CPU time in seconds and nodes visited to prove ofitinfiar genetic linkage analysis.

solutions whose cost is above the optimal one, like bedt-firs ~ Table 3 displays the results obtained for 5 hard linkage
search. Notice thatool bar 3 andACEDAC+DVOare able analysis networks In addition to the depth-first and best-
to solve relatively efficiently only the first 3 test instasce first AND/OR search algorithms with pre-compiled mini-

, L , - bucket heuristics (i.eAOBBVB(i) , AOBFMB(7)), we also
Lﬁﬁr?miaz?rkc&rs%udlt?n fgg’gﬁv%?ifg;?ilg;éaﬁ:je d?agr?(r)grigonFor ran Supe_rllnk 1.5, which is one of the most_efﬁuent sol_ve_rs
our purpose, we converted each of these circuits into é non- for genetic linkage analysis. We notice again the supéyior
binary WCSI’3 instance by removing flip-flops and buffers in of ACBFVB(i) overA(BBI\/B() , especially for relatively
a standard way, creating hard constraints for gates and uni- small z’—bqunds. on some Instances (epyedl, ped30),
form unary cost’functions for inputs. The penalty costs were tr}e beStTI'rSt s}ea;chtﬁlgoréthAG?Fll\(/B() is several orders
distributed uniformly randomly between 1 and 10. of magnitude faster than superiink.

Table 2 reports the results for experiments with 6 cir- o/ Int Li p
cuits. We observe again thAOBFMB(i) is the best per- nieger Linear Frograms
forming algorithm. For instance, on thel196 circuit, For this domain we experimented with random combinato-
AOBFMB(10) is 174 times faster and explores a search rial auctions which were drawn from the=gi ons- upv
space 260 times smaller th&©BBVB(10) . In summary, distribution of the CATS 2.0 test suftand simulate the auc-
the best-first AND/OR search algorithms with mini-bucket tion of radio spectrum for different geographical areas.

heuristics cause signifiqant time savings .especially flar re In combinatorial auctions, an auctioneer has a set of goods
t!vely s_mallz'-bounds which generate relatively weak heuris- to sell and the buyers submit a set of bids over subsets of
tic estimates. The performance of theol bar 3 and goods. The winner determination problem is to label the

ACEDAC+DVO algorithms that are designed specifically for bids as winning or loosing so as to maximize the sum of the
WCSP was very poor on this dataset and they were not able accepted bid prices under the constraint that each good is

to solve the problems within the 1 hour time limit. allocated to at most one bid. The problem can be formu-
] lated as 0/1 ILP, as described in (Leyton-Brown, Pearson, &

Belief Networks Shoham 2000).

The maximum likelihood haplotype problem in genetic link- We consider two classes of best-first AND/OR search al-

age analysis is the task of finding a joint haplotype config- gorithms, as follows: AGBF which explores the context-

uration for all members of the pedigree which maximizes minimal AND/OR search graph, amOBF+PVOwhich ex-

the probability of data. It is equivalent to finding the most plores a dynamic AND/OR search tree using partial variable

probable explanation of a belief network that represengs th orderings, respectively. We compare the best-first search

pedigree data (Fishelson & Geiger 2002). N
2http://bicinfo.cs.technion.ac.il/superlink/
Available at http://www.fm.vslib.cz/ kes/asic/iscas/ 3http://cats.stanford.edu/

toolbar3
BB (Ip_solve)
AOBB

- AOBF
AOBB+PVO
AOBF+PVO

time (sec)

50 100

Figure 2: Results for combinatorial auctions.

algorithms against two depth-first AND/OR Branch-and-
Bound algorithms for 0/1 ILPs which were recently pro-
posed by (Marinescu & Dechter 2006a): AND/OR Branch-
and-Bound with full context-based caching(BB), and
AND/OR Branch-and-Bound with partial variable ordering
(ACBB+PVO), respectively. The guiding heuristic function
is computed by solving the linear relaxation of the current
subproblem with thesiMmpPLEX method (we used the imple-
mentation from thé p_sol ve5. 5 library?).

For reference, we include results obtained with the clas-
sic OR Branch-and-Bound algorithnBE) available from
the | p_sol ve library. The algorithmsBB, AOCBB+PVO
and AOBF+PVO used a dynamic variable selection heuris-
tic based omeduced costéor dual values) which selects the
next fractional variable with the smallest reduced cosicSi
combinatorial auctions can be formulated as binary WCSP
instances (Dechter 2003), we also tayol bar 3.

Figure 2 displays the results for experiments with com-
binatorial auctions with 100 goods and increasing number
of bids. Each data point represents an average over 10 ran-
dom samples. We observe that the best-first AND/OR search
algorithms AOBF, ACBF+PVO) outperform their AND/OR
Branch-and-Bound counterpartddBB, AOBF+PVO), es-
pecially when the number of bids increases. When look-
ing at the two best-first algorithms we notice the superior-
ity of AOBF+PVO over ACBF. This demonstrates the power
of the dynamic variable selection heuristic which is able in
this case to cut the search tree dramatically. In summary,
AOBF+PVO s the best performing algorithm and, on some
of the hardest instances, it outperforms its competitoth wi
up to one order of magnitude.

Conclusion

In this paper we introduced a best-first AND/OR search al-
gorithm which extends the classkO* algorithm and tra-
verses a context-minimal AND/OR search graph for solv-
ing optimization tasks in graphical models. We also pro-
posed a best-first search algorithm that explores an AND/OR
search tree, rather than a graph, and incorporates dynamic

“http://groups.yahoo.com/group/imlve/

variable ordering heuristics. The efficiency of the best-
first AND/OR search approach compared to the depth-first
AND/OR Branch-and-Bound search is demonstrated empir-
ically on various benchmarks including random as well as
real-world problem instances.

Our approach leaves room for further improvements. The
space required bAOBF can be enormous, due to the fact
that all the nodes generated by the algorithm have to be
saved prior to termination. TherefordOBF can be ex-
tended to incorporate a memory bounding scheme similar
to the one suggested in (Chakrakettal. 1989).

Acknowledgments
This work was supported by the NSF grant 11S-0412854.

References
Bensana, E.; Lemaitre, M.; and Verfaillie, G. 1999. Earth
observation satellite managemer@onstraints4(3):293—
299.
Chakrabati, P.; Ghose, S.; Acharya, A.; and de Sarkar, S.
1989. Heuristic search in restricted memohy. Artificial
Intelligence3(41):197-221.
de Givry, S.; Heras, F.; Larrosa, J.; and Zytnicki, M. 2005.
Existential arc consistency: getting closer to full arc-con
sistency in weighted csp#n IJCAL.
Dechter, R., and Mateescu, R. 2006. And/or search spaces
for graphical modelsArtificial Intelligence
Dechter, R., and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of ath Journal of
ACM 32(3):505-536.
Dechter, R. 2003Constraint ProcessingMIT Press.

Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigre@&oinformatics

Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in constraint satisfaction prable
In IJCAI 1076-1078.

Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000.
Towards a universal test suite for combinatorial auctien al
gorithms.In ACM Electronic Commerc&6—76.

Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical modelsn IJCAI 224—-229.

Marinescu, R., and Dechter, R. 2006a. And/or branch-
and-bound search for pure 0/1 integer linear programming
problems.In CPAIOR152-166.

Marinescu, R., and Dechter, R. 2006b. Dynamic orderings
for and/or branch-and-bound search in graphical models.
In ECAI138-142.

Marinescu, R., and Dechter, R. 2006c. Memory intensive
branch-and-bound search for graphical modeglAAAI.
Nemhauser, G., and Wolsey, L. 1988teger and combi-
natorial optimization.Wiley.

Nillson, K. 1980. Principles of Atrtificial Intelligence.
Tioga.

Pearl, J. 1988Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann.

