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Abstract

This paper presents an any-time scheme for computing lower and upper bounds on the
posterior marginals in Bayesian networks with discrete variables. Its power is in that it can
use any available scheme that bounds the probability of evidence, enhance its performance
in an anytime manner, and transform it effectively into bounds for posterior marginals.
The scheme is novel in that using the cutset condition principle (Pearl, 1988), it converts
a bound on joint probabilities into a bound on the posterior marginals that is tighter than
earlier schemes, while at the same time facilitates anytime improved performance. At the
heart of the scheme is a new data structure which facilitate the efficient computation of such
a bound without enumerating all the cutset tuples. Using a variant of bound propagation
algorithm (Leisink & Kappen, 2003) as the plugged-in scheme, we demonstrate empirically
the value of our scheme, for bounding posterior marginals and probability of evidence.

1. Introduction

This paper addresses the problem of bounding the probability of evidence and posterior
marginals in Bayesian networks with discrete variables. Deriving bounds on posteriors with
a given accuracy is clearly an NP-hard problem (Abdelbar & Hedetniemi, 1998; Dagum
& Luby, 1993) and indeed, most available approximation algorithms provide little or no
guarantee on the quality of the approximation. Still, few approaches were presented in
the past few years for bounding posterior marginals (Horvitz, Suermondt, & Cooper, 1989;
Poole, 1996, 1998; Mannino & Mookerjee, 2002; Mooij & Kappen, 2008) and for bounding
the probability of evidence (Dechter & Rish, 2003; Larkin, 2003; Leisink & Kappen, 2003).

In this paper? we develop a framework that can accept any earlier developed bounding
scheme and boost its performance in an anytime manner using the cutset-conditioning
principle (Pearl, 1988). To facilitate our scheme we develop an expression that effectively
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converts bounds on the probability on evidence into bounds on posterior marginals using
cutset conditioning. The expression yields an algorithm that is anytime, that can use any off
the shelve bounding algorithm, and can output improved bounds on the posterior marginals
and on the probability of evidence.

Given a Bayesian network defined over a set of variables X, a variable X € X, and a
domain value z € D(X), a posterior marginal P(xz|e) (where e is a subset of assignments
to the variables, called evidence) can be computed directly from two joint probabilities,
P(z,e) and P(e):

Given a set C={C",...,C,} C X of cutset variables (e.g., a loop-cutset), we can compute
the probability of evidence by enumerating over all the cutset tuples ¢! € D(C) over cutset
variables using the formula:

Pe) =Y P(ee) @

where M = [[?_, |D(C;)| is the number of cutset tuples. We can also compute the posterior

marginals by:
M

P(zle) =Y P(z|c',e)P(c'|e) (3)
i=1

The computation of P(c!,e) for any assignment ¢ = ¢’ is linear in the network size if
C' is a loop-cutset and exponential in w if C' is a w-cutset (see definition in Section 2).
The limitation of the cutset-conditioning method, as defined in Eq. (2) and (3), is that
the number of cutset tuples M grows exponentially with the cutset size. Furthermore,
while computing the joint probability of a single tuple P(c,e) is easy due to loop-cutset,
computing a single conditional P(cle) in Eq. (3) already requires enumeration of all the
cutset tuples because of the need to compute the normalization constant in formula (3).

There are two basic approaches to handling the combinatorial explosion in the cutset-
conditioning scheme. One is to sample over the cutset space and subsequently approximate
the distribution P(C|e) from the samples, as we have shown in (Bidyuk & Dechter, 2007).
The second approach, which we investigate here, and which was first presented in (Horvitz
et al., 1989), is to enumerate a specified constant number of cutset tuples h, over which we
compute exactly the quantities P(c’, e) for 1 <4 < h, and bound the tails of the distribution
(over the remaining tuples). This approach is likely to perform well if the selected h tuples
contain most of the probability mass of P(e).

There are several alternative formulations for bounding the posterior marginals via
bounds on joint probabilities. Using PY and PY to denote available lower and upper
bounds over joint probabilities, we can obtain naive bounds on posterior marginals from
Eq. (1):

Pl(xz,e) < P(ale) < PY(z,e)
PU(e) PL(e)
which usually perform very poorly and often yield an upper bound > 1.

In their derivation Horvitz et. al (Horvitz et al., 1989) started with the standard formula

shown in Eq. (3) and used the prior probabilities P(¢;) to select the h tuples, hoping that



AN ANYTIME SCHEME FOR BOUNDING POSTERIOR BELIEFS

this will yield high posterior probability (on the assumption that priors for all tuples can be
computed and stored and this will be amortized over computation of many beliefs for many
different sets of evidence). Their resulting bounded conditioning algorithm was shown to
compute good bounds on some variables in an Alarm network (with M = 108). However,
the algorithm does not scale well with the network size since computing all the priors over
all tuples becomes impractical. Also when the probability of the evidence is small, the priors
become bad predictors of the high probability tuples in P(Cle) and the intervals between
lower and upper bound values increase.

The expression we derive in this paper gives rise to a far improved formulation for cutset-
based bounds of posterior marginals yielding our Any Time Bounds (ATB) framework. The
generated bounds are provably tighter compared with bounded conditioning. In addition,
our expression accommodates the use of any off-the shelve scheme which bounds the proba-
bility of evidence (or joint probabilities of partial tuples). Namely, it accepts any algorithm
for bounding P(e) and generates an algorithm that bounds the posterior marginals.

The time complexity of AT'B is linear in the number of explored cutset tuples h. Thus, if
the complexity of bounding P(e) is O(T'), bounding the probability mass of the unexplored
tuples is O(T' - h - (d — 1) - |C]) where |C| is the number of variables in the cutset and d is
the maximum domain size.

We evaluate our framework experimentally, using a variant of bound propagation al-
gorithm (Leisink & Kappen, 2003) as the plug-in bounding scheme. Bound propagation
computes bounds by iteratively solving a linear optimization problem for each variable
where the minimum and maximum of the objective function correspond to lower and upper
bounds on the posterior marginals. The performance of the scheme was demonstrated on
the Alarm network, the Ising grid network, and on regular bi-partite graphs. Since bound
propagation is exponential in the Markov boundary size, and since it requires solution of lin-
ear programming problems many times, its overhead as a plug-in scheme was too high and
not cost-effective. We therefore developed several variants which we describe and evaluate
in (Bidyuk & Dechter, 2006b).

We use Gibbs cutset sampling (Bidyuk & Dechter, 2003a, 2003b) for finding high-
probability cutset tuples. Other schemes, such as stochastic local search (Kask & Dechter,
1999) can also be used. The investigation into generating high-probabiliy cutset tuples is
outside the primary scope of the paper.

We prove that our bounds are superior to those obtained by bounded conditioning
(Horvitz et al., 1989) and show empirically that AT B using a variant bound propaga-
tion as a plug-in scheme is sometimes superior to bound propagation alone, even when both
are given comparable time resources. More importantly, when more time is available AT'B
achieves greater accuracy validating our general claim. We also demonstrate the power of
AT B for boosting the probability of evidence.

The paper is organized as follows. Section 2 provides background on the previously
proposed method of bounded conditioning. Section 3 defines our AT B framework and
analyzes its properties. Section 4 describes the implementation details of using bound
propagation as an AT B plug-in and present our empirical evaluation. Section 5 discusses
related work. inally, Section 6 concludes and points out directions of future work.
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2. Background
2.1 Preliminaries

In this section, we define essential terminology and provide background information on
Bayesian networks.

DEFINITION 2.1 (graph concepts) A directed graph is a pair G=<V,E >, where V =
{X1,..., X} is a set of nodes and € = {(X;, X;)|X;, X; € V} is the set of edges. Given
(Xi, Xj) € €, X; is called a parent of X;, and X; is called a child of X;. The set of
Xi’s parents is denoted pa(X;), or pa;, while the set of X;’s children is denoted ch(X;),
or ch;. The family of X; includes X; and its parents. The moral graph of a directed
graph G is the undirected graph obtained by connecting the parents of all the nodes in G and
removing the arrows. A cycle-cutset of an undirected graph is a subset of nodes that, when
removed, yields a graph without cycles. A loop in a directed graph G is a subgraph of G
whose underlying graph is a cycle. A directed graph is acyclic if it has no directed loops. A
directed graph is singly-connected (also called a poly-tree), if its underlying undirected
graph has no cycles. Otherwise, it is called multiply-connected.

DEFINITION 2.2 (loop-cutset) A wvertex v is a sink with respect to a loop L if the two
edges adjacent to v in L are directed into v. A wvertex that is not a sink with respect to a
loop L is called an allowed wvertex with respect to L. A loop-cutset of a directed graph G
1 a set of vertices that contains at least one allowed vertex with respect to each loop in G.

DEFINITION 2.3 (Bayesian network) Let X = {X,...,X,,} be a set of random variables
over multi-valued domains D(X1),...,D(X,,). A belief network B (Pearl, 1988) is a pair
<G, P> where G is a directed acyclic graph whose nodes are the variables X and P =
{P(Xi|pa;) | i =1,...,n} is the set of conditional probability tables (CPTs) associated with
each X;. B represents a joint probability distribution having the product form:

n

P(z1, ., zy) = H P(x|pa(X;))
i=1

An evidence e is an instantiated subset of variables E C X.

The structure of the directed acyclic graph G reflects the dependencies between the
variables using d-separation criterion. The parents of a variable X; together with its children
and parents of its children form a Markov boundary of node X;, i.e., its minimal Markov
blanket, as defined in (Pearl, 1988).

The most common query over belief networks is belief updating which is the task of
computing the posterior distribution P(X;|e) given evidence e and a query variable X; €
X. Reasoning in Bayesian networks is NP-hard (Cooper, 1990). Finding approximate
posterior marginals with a fixed accuracy is also NP-hard (Dagum & Luby, 1993; Abdelbar
& Hedetniemi, 1998). When the network is a poly-tree, belief updating and other inference
tasks can be accomplished in time linear in size of the input. In general, exact inference is
exponential in the induced width of the network’s moral graph.
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DEFINITION 2.4 (w-cutset) A w-cutset of a Bayesian network B is a subset of variables
C such that, when removed from the moral graph of the network, its induced width is < w.

Throughout the paper, we will consider a Bayesian network over a set of variables X,
evidence variables £ C X and evidence E = e, and a cutset C = {C4,...,C,} C X\E.
Lower-case ¢ = {ci,...,cp} will denote an arbitrary instantiation of cutset C, and M =
ID(C)| = [l¢,ec IDP(Ci)| will denote the number of different cutset tuples.

2.2 Bounded Conditioning

Bounded conditioning (BC) is an any-time scheme for computing posterior bounds in
Bayesian networks proposed by Horvitz et al. (1989). It is derived from the loop-cutset
conditioning method (see Eq. (3)). Given a node X € X and a domain value x € D(X),
they derive bounds from the following formula:

h M
ZPw|c e)P(c'le) = P(z|d,e)P(c'le) + Y Plxld',e)P(c'le)  (4)
=1 i=h+1

The hard-to-compute P(c’|e) is replaced for i < h with a normalization formula:

iy P(z|d, e)P(c! i
P(xle) = z|c e) e 5)
) S P + = >+,§1 S ere ®)

BC computes exactly P(c!,e) and P(z|c’, e) for the h cutset tuples with the highest prior
weight P(c') and bounds the rest.

The lower bound is obtained from Eq. (5) by replacing Zf\i ni1 P(c'e) in the denomi-
nator on the first summand with the sum of priors Zf\i hil P(c") and simply dropping the
sum on the right:

Yisy P, cye)
M .
Zz 1 P(cte) + Zi=h+1 P(c)
The upper bound is obtained from Eq. (5) by replacing S 11 P(c' e) in the denom-

inator with a zero, replacing P(x|c!,e) for i > h with its upper bound of 1, and replacing
P(cle) for i > h with a derived upper bound (not provided here):

Pfo(xle) £ (6)

i M i
PBUC(x’e) A Z?:l P(ZL‘, c ,6) Zi:h—H P(C )
S P(che) ¥ PE(clle) +1 = i, PU(clle)
Applying definitions for PZ(c'|e) = Dlee) and PY(c'le) = 2D fom

21}';1 P(Cl:€)+2£\ih+1 P(ch) i=1 P(cte)

Horvitz et al. (1989), we get:
N Z?:l P(m,ci,e) n (Zﬁh-&-l P(Ci))(Z?ﬂ P(ci,e) + Zﬁh-s—l P(Ci))
Z?:l P(Civ e) E?:l P(Ci? e)

The bounds expressed in Eq. (6) and (7) converge to the exact posterior marginals as
h — M. However:

Ppo(ale) (7)
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THEOREM 2.1 (bounded conditioning bounds interval) The interval between lower and
upper bounds computed by bounded conditioning is lower bounded by the probability mass of
prior distribution P(C) of the unexplored cutset tuples:

M

Vh, Pho(xle) — Pho(ale) > Y P(c)
i=h+1

PROOF. See Appendix A. [

3. Architecture for Any-Time Bounds

In this section, we describe our Any-Time Bounds (ATB) framework. It builds on the
same principles as bounded conditioning. Namely, given a cutset C' and some method for
generating h cutset tuples, the probabilities of the h tuples are evaluated exactly and the
rest are upper and lower bounded. However, AT B bounds can be improved by using a
different plug-in for bounding participating joint probabilities and computes tighter bounds
than BC even when using priors to bound P(c,e).

For the rest of the section, ci.q = {c1,...,¢q} with ¢ < |C| denotes a generic partial
instantiation of the first ¢ variables in C, while ¢}, o indicates a particular partial assignment.

Given h cutset tuples, 0 < h < M, that we assume without loss of generality to be the
first h tuples according to some enumeration order, a variable X € X\ E and x € D(X), we
can rewrite Eq. (3) as:

o sz\il P(ZIJ,Ci,G) o Z'};:l P(x7ci7e)+2ij\ih+l P<xvcive>
> iz Plctse) Yo Plete) + 2, Pcse)

The probabilities P(x, ¢, e) and P(c’,e), 1 <1i < h, can be computed in polynomial time if
(' is a loop-cutset and in time and space exponential in w if C' is a w-cutset. The question
is how to compute or bound Zf\ihﬂ P(x,c,e) and Zij\ihﬂ P(c,e) in an efficient manner.

Our approach first replaces the sums over the tuples ¢"*1,....c™ with a sum over a
polynomial number (in h) of partially-instantiated tuples. From that, we develop new
expressions for lower and upper bounds on posterior marginals as a function of the lower
and upper bounds on the joint probabilities P(z, c1.q,€) and P(ci.q,e). We assume in our
derivation that there is an algorithm A that can compute those bounds, and refer to them
as P4(z, c1.q, €) (resp. Pk(ciq.€)) and PY(z, c1.q, €) (vesp. P{(c1.q.€)), respectively. In our
experiments, algorithm A will be the bounded propagation algorithm (Leisink & Kappen,
2003).

P(xle)

(8)

3.1 Bounding the Number of Processed Tuples

Consider a fully-expanded search tree of depth |C| over the cutset search space expanded
in the order C1i,...,Cp. A path from the root to the leaf at depth |C| corresponds to a full
cutset tuple. If we mark all the tree edges on paths that correspond to the first h generated
cutset tuples, then the unexpanded tuples ¢!, i > h, correspond to unmarked leaves. We
can obtain the truncated search tree by trimming all the unmarked branches.
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Figure 1: A search tree for cutset C' = {C1, ..., C4}.

DEFINITION 3.1 (truncated search tree) Given a search tree T' covering the search space
H over variables Y = {Y1,...,Yn} C X, a truncated search tree relative to a subset
S={yl,....y'} CDY1) % ... x D(Yy,) of full assignments, is obtained by marking the edges
on all the paths appearing in S and removing all unmarked edges and nodes except those
emanating from marked nodes.

Let S = {c!,...,c"}. Clearly, the leaves at depth ¢ < |C| in the truncated tree relative
to S correspond to the partially instantiated cutset tuples c1., which are not extended to
full cutset assignments.

ExXAMPLE 3.1 Consider a Bayesian network B with cutset variables C={C1,...,Cy}, do-
main values D(C1)=D(C3)=D(C4)={0, 1}, D(C2)={0,1,2}, and four fully-instantiated tu-
ples {0,1,0,0}, {0,1,0,1}, {0,2,1,0}, {0,2,1,1}. Figure 1 shows its truncated search tree,
where the remaining partially instantiated tuples are {0,0}, {0,1,1}, {0,2,0}, and {1}.

PROPOSITION 3.1 Let C be a cutset, d be the maximum domain size, and h be the number
of generated cutset tuples, then the number of partially-instantiated cutset tuples in the
truncated search tree is bounded by O(h - (d —1) - |C]).

PROOF. Since every node in the path from the root C; to a leaf C,, can have no more than
(d — 1) emanating leaves, the theorem clearly holds. [

Let M’ be the number of truncated tuples. We can enumerate the partially instantiated
tuples, denoting the j-th tuple as c{:qj, 1 < j < M’', where g; is the tuple’s length. Clearly,

the probability mass over the cutset tuples ¢"*1, ..., ¢M can be captured by a sum over the

truncated tuples. Namely:
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PROPOSITION 3.2

M ‘ M’ )

> P(die) = > P(cd,,.e) (9)
i=h+1 j=1

M .
> Pla,die) = ZP gy (10)
i=h+1

Therefore, we can bound the sums over the tuples A + 1 through M in Eq. (8) by bounding
a polynomial number of partially-instantiated tuples as follows,

S P,cle) + M Pa,d., )

P(xle) = 7
(vle) S Pt e) + 30 Plel,,e)

(11)

3.2 Bounding the Probability over the Truncated Tuples

In the following, we develop lower and upper bound expressions used by AT B.

3.2.1 LoOwER BOUNDS

First, we decompose P(c7 e), 0 < j < M, as follows. Given a variable X € X and a

l:g;>
distinguished value x € D(X):
P(C{:qj7e) - Z P(x,7ciij7e) lq € + Z P (12)
z’'eD(X) ' #x

Replacing P(c{ a0 e) in Eq. (11) with the right-hand side of Eq. (12), we get:

Sy P, e>+z§V’AP<az gy ©)

P(xle) = ; .
( ’) Z?ZIP(CZ )+ZM P(xcjlq’ ) Z Z’;ém ( ’CJ: »76)

(13)

We will use the following two lemmas:

LEmMMA 3.1 Given positive numbers a >0, b >0, § >0, if a <b, then: 3 < fg O

LEMMA 3.2 Given positive numbers a, b, §, 6%, 6V, if a < b and 6 < § < 6Y, then:

a+6" a+6 a+6Y
b+d6L — b+~ b+ 6V
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The proof of both lemmas is straight forward.

Lemma 3.2 says that if the sums in numerator and denominator have some component
§ in common, then replacing § with a larger value 6V in both the numerator and the
denominator yields a larger fraction. Replacing  with a smaller value 6 in both places
yields a smaller fraction.

Observe now that in Eq. (13) the sums in both the numerator and the denominator
contain P(z, c{ ” ,e). Hence, we can apply Lemma 3.2. We will obtain a lower bound by
replacing P(z, c7 e), 1 <j < M’ in Eq. (13) with corresponding lower bounds in both
numerator and denominator, yielding:

1q’

h
Z xc ,€) ZPA
i=1

P(xle) > - (14)

2P Ce+ZPA )+ 3 3 Pl el e

i=1 j=1a'#x

Subsequently, we replace each ), 22 P (2, ¢1.4, €) with its upper bound in Eq. 14 (increasing
denominator), yielding:

Zche—l—ZPA 1q7

Plale) > — 2 Plele)  (15)

Z ce—i—ZPA gy +ZUBZP 1q,]

=1 j=1 ' F#x

where upper bound UB can be obtained as follows:

. Z /£ 1}4](:(;/70{ -76)
P(x ;»€)] = min r7r 5 16

The value » ./, PY (2, c{:qj, e), and it

provides a good upper bound for variables with domain size two since ., ., P(2/, c{ a0 e) =

e) is, obviously, an upper bound of Zx,;m P! c{ "y

Pz, ¢, ;0€) < P(d, .q;»€)- The value PY(d], .q;» €) 18 also an upper bound since 3, P(z' ,c{:qj,e) <
P (c{ a7 e) < PY A (c{ 4 e), and it may provide a better bound for variables with larger domain
sizes.

Please note that the expression in the Eq. (15) above also provides an any-time lower
bound on the joint probability P(z,e) and can be used to compute a lower bound on the
probability of evidence. In general, a lower bound denoted P%(e) is obtained by:

h M’
> P(de)+ Y Pl e) £ Pile) (17)
i=1 j=1
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3.2.2 UrpPER BOUND

The upper bound expression can be obtained in a similar manner. Since both numerator
and denominator in Eq. (13) contain addends P(z, c{ ;7 e), using Lemma 3.2 we replace

each P(x, c{q, e) with an upper bound PY(z, c{q, e) yielding:
h
)+ 3 el
P(zle) < =l (18)
ZPC€+ZPA Clg, € +ZZP Clg, €
' #x j=1

Subsequently, replacing each P(x, c{ ¢

tor), we obtain a new upper bound expression on P(zle):

e), x # ', with a lower bound (reducing denomina-

h

Z xce—i—ZPA 1q,

1=1
h
> P ZPA )+ Y. 3 PR g0
i=1

=1 a'#x

P(ale) < £ Pi(ale)  (19)

Similar to the lower bound, the numerator in the upper bound expression P%(x\e) pro-
vides an any-time upper bound on the joint probability P(x, ¢, e) which can be generalized
to upper bound the probability of evidence:

h
SZ 06+ZPA PA() (20)
=1

The derived bounds P%(z|e) and PY(z|e) are never worse than those obtained by bounded
conditioning, as we will show in Section 3.4.

3.3 Algorithmic Description

Figure 2 summarizes the any-time bounding scheme ATB. In steps 1 and 2, we generate h
fully-instantiated cutset tuples and compute exactly the probabilities P(c’, e) and P(X, ¢, e)
fori < h, VX € X\(CUFE), using the bucket-elimination algorithm. In step 3, we compute
bounds on the partially instantiated tuples using algorithm A. In step 4, we compute
the lower and upper bounds on the posterior marginals using expressions (15) and (19),
respectively.

ExaMpPLE 3.2 Consider again the Bayesian network B described in FExample 3.1. Recall
that B has a cutset C = {CY, ...,Cs} with domains D(C1) = D(C3) = D(Cs) = {0,1} and
D(Cy) ={0,1,2}. The total number of cutset tuples is M = 24. Let X ¢ C be a variable in
B with domain D(X) = {x,2'}. We will compute bounds on P(z|e). Assume we generated

10
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Any-Time Bounds Architecture
Input: A belief network (B), variables X, evidence E C X, cutset C C X\ E, constant h,
algorithm A for computing lower and upper bounds on joint probabilities.
Output: lower bounds P”, upper bounds PY.
1. Generate h cutset tuples.
2. Compute:
S P(ce)
S, — Yt P(x,é,e), YreD(X), VX eX\(CUE)
3. Traverse partially-instantiated tuples:
3.1 Generate the truncated tree associated with the h tuples and let c%:ql, e c{qu/M, be
the M’ partial assignments.
32Vr e D(X), VX € X\(CUE), compute:

LBa(x) — Y50, Pk(x,cl., )
UB(z) — Y30 UB[Y. 0, Pala’ .y s €)]
UBa(x) « Y0, P{(x,c]., .e)

4. Compute bounds:

L _ Sz +LBa(x)
Pizle) = smrpi@rvrm

U o Sz +UBA(x)
Pi(zle) = szopamiioa

Figure 2: Any-Time Bounds Architecture

the same four cutset tuples (h =4) as before:

¢! ={C1=0,C,=1,C3=0,C1 =0} = {0,1,0,0}

A ={C1=0,0,=1,03=0,Cy =1} ={0,1,0,1}

* ={C1=0,C,=2,C5=1,C4, =0} = {0,2,1,0}

t={C1=0,0,=2,C3=1,Cy =1} ={0,2,1,1}
The corresponding truncated search tree is shown in Figure 1. For the tuple {0,1,0,0},
we compute exactly the probabilities P(x,Cy = 0,C2 = 1,03 = 0,C4 = 0,¢e) and P(Cy =
0,Cy = 1,03 = 0,Cy = 0). Similarly, we obtain exact probabilities P(x,C; = 0,Cy =
1,03 =0,C4y = 1) and P(Cy; = 0,Cy = 1,03 = 0,Cy = 1) for the second cutset instance
{0,1,0,1}. Since h =4, Z?Zl P(z',c' e) and Z?:1 P(ce) are:

4
ZP(:L‘, ce) = P(x,cl,e)+ P(x,? )+ Pz, 3 e) + Pz, ct,e)
i=1
4 .
Z P(ct,e) = P(ct,e)+ P(?e)+ P(3,e)+ P(cte)
i=1

The remaining partial tuples are: ci.o = {0,0}, ¢35 = {0,1,1}, ¢}.5 = {0,2,0}, and ¢}, =
{1}. Since these 4 tuples are not full cutsets, we compute bounds on their joint probabilities.

11
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Using the same notation as in Figure 2, the sums over the partially instantiated tuples will
have the form:

UBu(z) £ P{(z,cl.9.€) + PY(z,cl3, )"‘PA(”U 3, )+PA(«T cli.e)

LBA(z) & P(,c1p,¢) + Pi(a,¢l3,¢) + Ph(, clg,¢) + P(2, ¢y, e)
From Eq. (19) we get:

Z;’L 1P(uv,ci,e) + UB(x)
ZZ L P(¢,e) + UBA(z) + LB 4(x')

Py (xle) =

From Eq. (15) we get:

S P(x,ée) + LB(x)
S P(ci,e) + LBa(z) + UB4(a)

The total number of tuples processed is M' =4 +4 = 8 < 24.

PX(xle) =

3.4 ATB Framework’s Properties

In this section we analyze the time complexity of the AT B framework, evaluate its worst-
case lower and upper bounds, and the monotonicity properties of its bounds interval (as a
function of h).

THEOREM 3.1 (complexity) Given an algorithm A that computes lower and upper bounds
on joint probabilities P(c1.q;, €) and P(x, c1.q,, €) in time O(T), and a loop-cutset C, P%(zle)
and PY (z|e) are computed in time O(h- N +T -h-(d—1)-|C|) where d is the mazimum
domain size and N 1is the problem input size.

PROOF. Since C is a loop-cutset, the exact probabilities P(c’,e) and P(z,c’,e) can be
computed in time O(N). From Proposition 3.1, there are O(h - (d — 1) - |C|) partially-
instantiated tuples. Since algorithm A computes upper and lower bounds on P(c]. ¢ e) and

P(z,d.

lig;» e) in time O(T'), the bounds on partially-instantiated tuples can be computed in
time O(T-h-(d—1)-|C|)). O

Let the plug-in algorithm A be a brute-force algorithm, denoted BF, that trivially

instgntiates PL(x, c{q e) =0, PY(x,d, €)= P(c{:qj), and UB[Y_ ., P(z', = )] =
P(cf,)- Then, from Eq. (15):
h i h i
P ! - P !
Pép(.%“e) Zz 1 (.7} c 6) _ Zz:l (.CI}, c ,6) (21)

Tl P+ P(el,) S P e)+ XM, Po)

while from Eq. (19):

J

o Sl Pla,ce) + 5000 P, _ X Pla.ce) + 3550, P()
Zi:l P(ce) + Zj:l P( 1:qj) Z?:l P(ce) + ijvihﬂ P(c)

(22)

PBF(:E‘ )
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Assuming that algorithm A computes bounds at least as good as those computed by
BF, PL,.(z|e) and Py (z|e) are the worst-case bounds computed by AT B.
Now, we are ready to compute an upper bound on the AT'B bounds interval:

THEOREM 3.2 (ATB bounds interval upper bound) ATB bounds interval length is
upper bounded by a monotonic non-increasing function of h:

Zj]\ifH»l P(Cj) A

P (xle) — Pk(xle) < : — 21
Z?:l P(cte)+ ijvih-i-l P(cl)

PROOF. See Appendix C. [

Next we show that AT B lower and upper bounds are as good or better as the bounds
computed by BC, as stated in the following two theorems.

THEOREM 3.3 (tighter lower bound) P%(z|e) > Pj.(zle).

PROOF. PL;.(x|e) is the worst-case lower bound computed by ATB. Since PL.(zle) =
PL.(zle), and Pk(z|e) > PLy(zle), then P(zle) > Ph (zle). O

THEOREM 3.4 (tighter upper bound) PY(zle) < PY.(zle).

PROOF. PY,(z|e) is the worst-case upper bound computed by ATB. Since PY(zle) <
P (z]e) due to lemma 3.1, it follows that PY(z|e) < P, (zle). O

4. Experimental Evaluation

The purpose of the experiments is to evaluate the performance of our AT B framework on
the probabilitic tasks of single-variable posterior marginals and probability of evidence. The
experiments on the first task were conducted on 1.8Ghz CPU with 512 MB RAM, while
the experiments on the second task were conducted on 2.66GHz CPU with 2Gb RAM.

Recall that AT B has a control parameter h that fixes the number of cutset tuples for
which the algorithm computes its exact joint probability. Given a fixed h, the quality of
the bounds will presumably depend on the ability to select h high probability cutset tuples.
In our implementation, we use an optimized version of Gibbs sampling, that during the
sampling process maintains a list of the h tuples having the highest joint probability. As
noted, other schemes should be considered for this subtask as part of the future work. We
obtain the loop-cutset using mga algorithm (Becker & Geiger, 1996).

In the following, we describe Bound Propagation and its variants, which we use as a
plug-in algorithm A and also as a stand-alone bounding scheme, and report the experimental
results for each task.

13
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4.1 Bound Propagation

Bound Propagation (BdP) (Leisink & Kappen, 2003) is an iterative algorithm that bounds
the posterior marginals of a variable. BdP formulates a linear optimization problem for
each variable X € X. The minimum and maximum of the objective function correspond to
the lower and upper bound on the posterior marginal P(xz|e), z € D(X). The size of the
linear optimization problems grows exponentially with the size of the Markov boundary of
each variable.

We cannot plug-in directly BdP into AT B to bound P(c1.4,€) because it only bounds
conditional probabilities. Thus, we factorize P(c1.q,€) as follows:

P(Cl;q, 6) = H P(6j|61, e ,6]',1, Cl:q)P(Clzq)
EjGE

where c1.4 is a subset of the first ¢ cutset nodes in topological order. Each factor P(ej lel, ..., €j—1, clzq)
can be bounded by BdP, while P(c;.4) can be computed exactly since the relevant subnet-

work over cy.q is singly connected. Let Pédp and Pg 4p denote the lower and upper bounds
computed by BdP on some marginal. The bounds BdP computes on the joint probability

are,

1 Phartesler, .. ej-1,c19)Plery) < Plerge) < T[] PBar(eslers - ejo1,c1q) Plery)
e; €k e;€F

Note that BdP has to bound a large number of tuples when plugged-in into AT B, and
therefore, solve a large number of linear optimization problems. Our preliminary tests
showed that plugging BdP into AT B became timewise infeasible. Instead, we developed
and used an improved version of BdP called ABdP+ (Bidyuk & Dechter, 2006b) as a
plug-in algorithm 4, which was more cost-effective in terms of accuracy and time overhead.

ABdP+ is build upon another version of BdP, called BdP+ proposed in (Bidyuk &
Dechter, 2006b). Since in our experiments we consider BdP+ as a stand-alone algorithm
to bound marginals, we first describe BdP+ and then ABdP+.

BdP+ exploits the structure of the network to restrict the computation of P(z|e) to the
relevant subnetwork of variable X instead of using the whole Markov boundary. Moreover,
BdP+ controls the overhead using a parameter k which specifies the maximum subnetwork
size used in the linear optimization problems. For variables whose subsetwork size exceeds
k, their lower and upper bound values remain 0 and 1, respectively. Our initial evaluation
showed that the overhead of AT'B using BdP+ as plug-in algorithm A was still high.

ABdP+ includes the same enhancements as BdP+, but solves the linear optimization
problem for each variable using an approximation algorithm. This implies that we obtain
bounds faster, but they are not as accurate. Roughly, the relaxed linear optimization
problem can be described as a fractional packing and covering with multiple knapsacks,
and solved by a fast greedy algorithm (see (Bidyuk & Dechter, 2006b) for more details).
Note that since ABdP+ is parameterized by k, AT B using ABdP+ as plug-in algorithm
A has two control parameters: h and k.
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[ metwork [ N [ w* [ [LC[ [ [DLC)] [ [E[ | Time(BE) | Time(LC) |
Alarm 37 4 5 108 1-4 0.01 sec 0.05 sec
Barley 48 7 12 >2E+6 4-8 50 sec >22 hrs!
cpesb4 54 15 15 32768 2-8 1 sec 22 sec
cpesl79 179 8 8 49152 | 12-24 2 sec 37 sec
cpcs360b 360 | 21 26 2261 11-23 20 min > 8 hrs!
cpcs422b 422 | 22 47 247 4-10 50 min | > 2 x 10Y hrs!
Munin3 1044 7 30 > 230 257 8 sec > 1700 hrs’
Munin4 1041 8 49 > 2%9 235 70 sec | > 1 x 10% hrsT

Table 1: Complexity characteristics of the benchmarks from the UAI repository: N-number
of nodes, w*-induced width, |LC|-number of nodes in a loop-cutset, |D(LC)|-
loop-cutset state space size, Time(BE) is the exact computation time via bucket
elimination, Time(LC) is the exact computation time via loop-cutset conditioning.
The results are averaged over a set of network instances with different evidence.
Evidence nodes and their values are selected at random.

4.2 Bounding Single-Variable Marginals
4.2.1 ALGORITHMS AND BENCHMARKS

We compare the performance of the following four algorithms: AT'B and BdP+4, as de-
scribed in the previous section; BC' using the brute force 0 lower bounds and prior P(c)
upper bounds; and, a combination of AT' B and BdP+, denoted as BBdP-+, where we use
the bounds computed by AT B as initial bounds for BdP+. Note that, given fixed values
of h and k, BBdP+ will always compute tighter bounds than either AT'B and BdP+. Our
goal is to analyze its trade-off between the increase of the bounds’ accuracy and the com-
putation time overhead. We also compare with Approximate Decomposition (AD) (Larkin,
2003) whenever it is feasible and relevant. In (Bidyuk, 2006), we provide additional com-
parison with various refinements described earlier in (Bidyuk & Dechter, 2006b).

We tested our framework on four different benchmarks: Alarm, Barley, CPCS, and
Munin. Alarm network is a model for monitoring patients undergoing surgery in an op-
erating room (OR) for emergencies that would be handled by the OR anesthesiologist
(Beinlich, Suermondt, Chavez, & Cooper, 1989). Barley network is a part of the decision-
support system for growing malting barley (Kristensen & Rasmussen, 2002). CPCS net-
works are derived from the Computer-Based Patient Care Simulation system and based
on INTERNIST-1 and Quick Medical Reference Expert systems (Pradhan, Provan, Mid-
dleton, & Henrion, 1994). We experiment with cpcsb4, cpesl79, cpes360b, and cpesd22b
networks. Munin networks is a part of the expert system for computer-aided electromyo-
graphy (Andreassen, Jensen, Andersen, Falck, Kjaerulff, Woldbye, Srensen, Rosenfalck, &
Jensen, 1990). We experiment with Munin3 and Munin4 networks. For each network, we
generated 20 different sets of evidence variables picked at random. For Barley network, we
select evidence variables as defined by (Kristensen & Rasmussen, 2002).

Table 1 summarizes the characteristic of each network. For each one, the table specifies
the number of variables N, the induced width w*, the size of loop cutset |LC|, the number of
loop-cutset tuples |D(LC)|, and the time needed to compute the exact posterior marginals

1. Times are extrapolated.

15



BiDYUK & DECHTER & ROLLON

by bucket-tree elimination (exponential in the induced width w*), and by cutset conditioning
(exponential in the size of loop-cutset).

Computing the posterior marginals exactly is easy in Alarm network, cpcsb4, and
cpesl79 using either bucket elimination or cutset conditioning since they have small in-
duced width and a small loop-cutset. We include those benchmarks as a proof of concept
only. Several other networks, Barley, Munin3, and Munin4, also have small induced width
and, hence, their exact posterior marginals can be obtained by bucket elimination. How-
ever, since AT B is linear in space, it should be compared against linear-space schemes such
as cutset-conditioning. From this perspective, Barley, Munin3, and Munin4 are hard. For
example, Barley network has only 48 variables, its induced width is w* = 7, and exact infer-
ence by bucket elimination takes only 30 seconds. Its loop-cutset contains only 12 variables,
but the number of loop-cutset tuples exceeds 2 million because some variables have large
domain sizes (up to 67 values). Enumerating and computing all cutset tuples, at a rate of
about 1000 tuples per second, would take over 22 hours. Similar considerations apply in
case of Munin3 and Munin4 networks.

4.2.2 MEASURES OF PERFORMANCE

We measure the quality of the bounds via the average length of the interval between lower

and upper bound:
Y xex Laen(x)(PY(zle) — PH(zle))

2 xex |P(X)]

We approximate posterior marginal as the midpoint between lower and upper bound in
order to show whether the bounds are well-centered around the posterior marginal P(z|e).
Namely:

I=

PY(zle) + Pk(zle)
2
and then measure the average absolute error A with respect to that approximation:

_ Doxex erp(x) |P(zle) — P(fU|€)\

> xex [PX)]
: iy Place)
Finally, we report %P(e) = HW x 100% that was covered by the explored cutset
tuples. Notably, in some benchmarks, a few thousand cutset tuples is enough to cover

> 90% of P(e).

P(zle) =

A

4.2.3 RESULTS

We summarize the results for each benchmark in a tabular format and charts. We highlight
in bold face the first AT B data point where the average bounds interval is as good or better
than BdP+. The charts show the convergence of the bounds interval length as a function
of h and time.

For ATB and BBdP+ the maximum Markov CPT size was fixed at k = 2!°. For
BdP+, we vary the maximum length & from k = 2! to k = 2'9. In the tables, we report
the best result obtained BdP+ and its computation time so that it appears as constant
with respect to h. However, when we plot accuracy against time, we include BdP+ bounds
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Alarm, N=37, w*=5, |LC|=8, |D1c|=108, |E|=1-4
BdP+ ATB BBdP-+
h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
25 86 0.61 | 0.21 4.8 0.41 | 0.12 0.038 0.35 | 0.10 8.4
34 93 0.61 | 0.21 4.8 0.31 | 0.09 0.039 0.27 | 0.08 2.8
40 96 0.61 | 0.21 4.3 0.25 | 0.07 0.044 0.22 | 0.06 2.1
48 97 0.61 | 0.21 4.8 0.24 | 0.05 0.051 0.15 | 0.04 1.5
50 98 0.61 | 0.21 4.3 0.16 | 0.04 0.052 0.12 | 0.03 1.2
54 99 0.61 | 0.21 4.8 0.13 | 0.03 0.059 0.09 | 0.02 0.86
Alarm, N=37, w*=5, |LC|=8, |E|=1-4 ——ATB
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Figure 3: Results for Alarm network. The table reports the average bounds interval I,
average error A, computation time (in seconds), and percent of probability of
evidence P(e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first AT B data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of A and time.

obtained using smaller parameer k. Note that BdP+ only depends on k, not on h. The
computation time of BBdP~+ includes the AT B plus the BdP+ time.

For all benchmarks, the computed bounds interval length using BC remained close to
0.75 for Munin benchmarks and 0.95 for the others; hence, those results are omitted in the
remainder of the section.

Alarm network. Figure 3 reports the results. As expected, the average bounds inter-
val generated by AT B and BBdP+ decreases as the number of cutset tuples h increases,
demonstrating the any-time property of AT B with respect to h. Given a fixed h, BBdP+
has a very significant overhead in time with respect to AT'B (two orders of magnitude for
values of h smaller than 54). However, the improvement in its accuracy is very moderate
increasing with h. AT B outperforms BdP+, computing more accurate bounds starting
with the first data point of h = 25. Observe that at that point, the mean interval I 475 is
0.41, while the computation time is 0.038 seconds, an order of magnitude less than BdP+.
The extreme efficiency of AT B in terms of time is clearly shown in the right chart, where
only the line corresponding to AT B appears. Finally, note that the enumeration of less
than the 25% of the total number of cutset tuples covers a percentage of 99% of the P(e).
This fact suggests that schemes based on cutset conditioning should be very suitable for
this benchmark. However, recall that BC' was only able to obtain a bound interval of 0.95,
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Barley, N=48, w*=7, |[LC|=12, |[Drc| > 2 x 105, |[E|=4-8
BdP+ ATB BBdP+
h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
562 1 0.23 | 0.07 1.7 0.279 | 0.097 9 0.167 | 0.047 10
1394 3 0.23 | 0.07 1.7 0.263 | 0.090 23 0.162 | 0.045 25
2722 6 0.23 | 0.07 1.7 0.247 | 0.084 48 0.154 | 0.042 45
4429 14 0.23 | 0.07 1.7 0.235 | 0.079 65 0.147 | 0.040 67
6016 22 0.23 | 0.07 1.7 || 0.230 | 0.078 86 0.145 | 0.040 88
7950 33 0.23 | 0.07 1.7 0.228 | 0.077 99 0.145 | 0.040 101
9297 40 0.23 | 0.07 1.7 0.224 | 0.075 111 0.143 | 0.039 113
12478 52 0.23 | 0.07 1.7 0.219 | 0.073 139 0.142 | 0.038 141
Barley, N=48, w*=7, |LC|=12, |E|=4-8 s ATB Barley, N=48, w*=7, |LC|=12, |E|=4-8 —— ATB
—=—BdP+ —=— BdP+
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Figure 4: Results for Barley network. The table reports the average bounds interval I,
average error A, computation time (in seconds), and percent of probability of
evidence P(e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first AT B data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of A and time.

which demonstrates the value of correctly bounding the partially-instantiated cutset tuples.

Barley network. Figure 4 reports the results. AT B and BBdP+ improve as h increases.
However, the improvement is quite moderate while very time consuming due to more uni-
form shape of the distribution P(Ce) as reflected by the very small % of P(e) covered by
explored tuples (only 1% for 562 tuples and only 52% for 12478 tuples). For example, the
average AT B (resp. BBdP+) bounds interval decreases from 0.279 (resp. 0.167), obtained
in 9 (resp. 10) seconds, to 0.219 (resp. 0.142) obtained in 139 (resp. 141) seconds. Given a
fixed h, BBdP+ substantially improves AT B bounds with little time overhead (2 seconds
in general). Namely, in this benchmark, BBdP+ computation time is dominated by AT B
computation time. Note that the computation time of the stand-alone BdP+ algorithm
is less than 2 seconds. Within that time, BdP+ yields an average interval length of 0.23,
while AT B and BBdP+ spend 86 and 10 seconds, respectively, to obtain the same quality
bounds. However, the any-time behaviour of the latter algorithms allows them to improve
with time, a very desirable characteristic when computing bounds.

Moreover, note that its overhead in time with respect to AT B is completely negligible.
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cpeshd, N=54, |LC|=15, w*=15, |Dpc|=32678, |E|=2-8
BdP+ ATB BBdP+
h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
513 10 0.35 | 0.02 24 0.51 | 0.027 0.9 0.34 | 0.011 3.1
1114 19 0.35 | 0.02 24 0.45 | 0.023 1.5 0.32 | 0.010 3.1
1581 29 0.35 | 0.02 24 0.42 | 0.021 1.9 0.31 | 0.009 3.4
1933 34 0.35 | 0.02 24 0.40 | 0.020 2.2 0.30 | 0.009 3.6
2290 40 0.35 | 0.02 24 0.38 | 0.019 2.4 0.30 | 0.008 3.9
2609 46 0.35 | 0.02 24 0.37 | 0.018 2.7 0.29 | 0.007 4.0
3219 53 0.35 | 0.02 24 0.34 | 0.016 3.2 0.27 | 0.007 4.5
3926 59 0.35 | 0.02 24 0.31 | 0.014 3.8 0.25 | 0.006 5.2
6199 63 0.35 | 0.02 24 0.23 | 0.010 5.9 0.20 | 0.006 6.6
7274 68 0.35 | 0.02 24 0.20 | 0.008 6.9 0.17 | 0.006 7.3
cpes54, N=54, |LC|=15, w*=15, |[E|=2-8 | —+—ATB cpos54, N=54, |LC|=15, w*=15, [E|=2-8 o T3
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Figure 5: Results for cpcs54 network. The table reports the average bounds interval I,
average error A, computation time (in seconds), and percent of probability of
evidence P(e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first AT B data point where the average bounds
interval is as good or better than BdP~+. The charts show the convergence of the
bounds interval length as a function of A and time.

CPCS networks. Figure 5 to Figure 7 show the results for cpcsb4, cpesl79, cpes360b and
cpesd22h, respectively. The behaviour of the algorithms in all networks is very similar. As in
the previous benchmarks, AT B and BBdP+ bounds interval decreases as h increases. Given
a fixed h, BBdP+ computes slightly better bounds intervals than AT B in all networks but
cpcsl79, where the improvement is very notorious. For all networks, BBdP+ has overhead
in time with respect to AT B. This overhead is constant for all values of h and for all
networks except for cpesb4, for which the overhead decreases as h increases. ATB and
BBdP+ outperform BdP+. Both algorithms compute the same bound interval length as
BdP+, improving the computation time in one order of magnitude. Consider for example
cpcesd22b, a challenging instance for any inference scheme as it has relatively large indcued
width and loop-cutset size. AT B outperforms BdP+ after 50 seconds starting with A =
1181, and BBdP+ outperforms BdP+ in 37 seconds starting with h = 253. (BdP+
convergence is shown in the plot, but only the best result is reported in the table).

(Larkin, 2003) reported bounds on cpes360b and cpes422b using AD algorithm. For the
first network, AD achieved bounds interval length of 0.03 in 10 seconds. Within the same
time, AT B computes an average bounds interval of ~ 0.005. For cpcsd422b, AD achieved
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cpeslT9, N=179, w*=8, |LC|=8, |Dc|=49152, |E|=12-24
BdP+ ATB BBdP+

h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
242 70 0.15 | 0.05 20 0.22 0.067 4 0.092 | 0.029 11
334 75 0.15 | 0.05 20 0.12 | 0.033 6 0.054 | 0.016 13
406 78 0.15 | 0.05 20 0.09 0.024 7 0.037 | 0.010 13
574 82 0.15 | 0.05 20 0.07 0.018 9 0.029 | 0.008 15
801 85 0.15 | 0.05 20 0.05 0.014 10 0.022 | 0.006 17
996 87 0.15 | 0.05 20 0.04 0.010 12 0.017 | 0.005 18
1285 88 0.15 | 0.05 20 0.03 0.006 13 0.012 | 0.003 20
1669 90 0.15 | 0.05 20 0.02 0.003 16 0.007 | 0.002 22

cpcs179, N=179, |LC|=8, w*=8, [E|=12-24 —A—ATB cpcsl79, N=179, |LC|=8, w*=8, |[E|=12-24 ——ATB
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Figure 6: Results for cpcs179 network. The table reports the average bounds interval I,
average error A, computation time (in seconds), and percent of probability of
evidence P(e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first AT B data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the
bounds interval length as a function of A and time.

bounds interval of 0.15, obtained in 30 seconds. Within the same time, AT B and BBdP+
obtain comparable results computing average bounds interval of 0.24 and 0.15, respectively.
It is important to note that the comparison is not on the same instances since the evidence
nodes are not the same. Larkin’s code was not available for further experiments.

Munin networks. Figure 9 reports the results for both Munin networks. Let us first
consider Munin3 network. Given a fixed h, AT B and BBdP+ compute almost identical
bound intervals with BBdP+ having a noticiable time overhead. Note that the two curves
in the chart showing convergence as a function of h are very close and hard to distinguish,
while the points of BBdP+ in the chart showing convergence as a function of time are
shifted to the right with respect to the ones of AT B. ATB is clearly superior to BdP+
both in accuracy and time. BdP+ computes bounds interval of 0.24 within 12 seconds,
while AT B computes bounds interval of 0.050 in 8 seconds. In Munind, given a fixed
h, BBdP+ computes tighter bounds than AT'B with some time overhead. However, the
improvement decreases as h increases as shown by the convergence of both curves either
as a function of h and time. Since the loop-cutset size is large, the convergence of AT B
is relatively slow. BdP+ computes bounds interval of 0.23 within 15 seconds, while AT B
and BBdP+ computes bounds of the same quality within 54 and 21 seconds, respectively.
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cpcs360b, N=360, w* = 21, [LC| = 26, |Drc|=22%, |E|=11-23
BdP+ ATB BBdP+
h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
121 83 || 0.027 | 0.009 55 0.0486 | 1.6E-2 5 || 0.0274 | 1.0E-2 7
282 92 || 0.027 | 0.009 55 || 0.0046 | 9.0E-4 10 || 0.0032 | 8.5E-4 12
501 96 || 0.027 | 0.009 55 0.0020 | 3.6E-4 15 || 0.0014 | 3.5E-4 17
722 97 || 0.027 | 0.009 55 0.0012 | 2.4E-4 19 || 0.0009 | 2.3E-4 21
938 98 || 0.027 | 0.009 55 0.0006 | 8.4E-5 25 || 0.0004 | 7.8E-5 27
1168 98 || 0.027 | 0.009 55 0.0005 | 7.5E-5 29 || 0.0004 | 6.9E-5 31
1388 99 || 0.027 | 0.009 55 0.0004 | 5.9E-5 35 || 0.0003 | 5.4E-5 37
1582 99 || 0.027 | 0.009 55 0.0003 | 5.3E-5 39 || 0.0002 | 4.8E-5 41
1757 99 || 0.027 | 0.009 55 0.0003 | 4.7TE-5 43 || 0.0002 | 4.4E-5 46
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Figure 7: Results for cpcs360b. The table reports the average bounds interval I, average
error A, computation time (in seconds), and percent of probability of evidence
P(e) covered by the fully-instantiated cutset tuples as a function of h. We high-
light in bold face the first AT B data point where the average bounds interval is
as good or better than BdP+. The charts show the convergence of the bounds
interval length as a function of A and time.

4.3 Bounding the Probability of Evidence
4.3.1 ALGORITHMS AND BENCHMARKS

We compare the performance of the following three algorithms that can bound P(e): AT B,
Mini-bucket Elimination (MBE) (Dechter & Rish, 2003), and Variable Elimination and
Conditioning (VEC). For AT B, we test different configurations of the control parameters
(h, k). Note that when h = 0, AT B is equivalent to its plug-in algorithm .4, which in our
case is ABdP+.

MBE is a general bounding algorithm for graphical model problems. In particular, given
a Bayesian network, MBE computes lower and upper bound on the probability of evidence.
MBE has a control parameter z, that allows trading time and space for accuracy. As the
value of the control parameter z increases, the algorithm computes tighter bounds using
more time and space, which is exponential in z.

VEC is an algorithm that combines conditioning and variable elimination. It is based on
the w-cutset conditioning scheme. Namely, the algorithm conditions or instantiates enough
variables so that the remaining problem conditioned on the instantiated variables can be
solved exactly using Bucket Elimination (Dechter, 1999). The exact probability of evi-
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cpesd22b, N=422, w* = 22, |LC| = 47, |Drc|=2*", |E|=4-10
BdP+ ATB BBdP+
h %P (e) I A | time(sec) I A | time(sec) T A | time(sec)
64 1.7 0.19 | 0.06 120 0.28 | 0.100 21 0.19 | 0.056 23
256 2.0 0.19 | 0.06 120 0.24 | 0.090 26 0.15 | 0.050 35
379 2.6 0.19 | 0.06 120 0.22 | 0.078 32 0.14 | 0.049 41
561 2.9 0.19 | 0.06 120 0.20 | 0.073 36 0.13 | 0.046 46
861 3.4 0.19 | 0.06 120 0.19 | 0.068 43 0.12 | 0.044 54
1181 4.5 0.19 | 0.06 120 0.18 | 0.064 50 0.12 | 0.041 60
1501 5.4 0.19 | 0.06 120 0.17 | 0.062 56 0.12 | 0.041 65
2427 8.0 0.19 | 0.06 120 0.16 | 0.058 73 0.12 | 0.039 82
3062 9.5 0.19 | 0.06 120 0.16 | 0.057 83 0.12 | 0.038 92
4598 12.2 0.19 | 0.06 120 0.16 | 0.053 110 0.11 | 0.036 120
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Figure 8: Results for cpcs422b. The table reports the average bounds interval I, average
error A, computation time (in seconds), and percent of probability of evidence
P(e) covered by the fully-instantiated cutset tuples as a function of h. We high-
light in bold face the first AT'B data point where the average bounds interval is
as good or better than BdP+. The charts show the convergence of the bounds
interval length as a function of h and time.

dence can be computed by summing over the exact solution output by bucket elimination
for all possible instantiations of the w-cutset. When VEC is terminated before comple-
tion, it outputs a partial sum yielding a lower bound on the probability of evidence. The
implementation of VEC is publicly available!.

We tested AT'B for bounding P(e) on three different benchmarks: Two-layer Noisy-Or,
grids and coding networks. All instances are included in the UAIO8 evaluation?.

In two-layer noisy-or networks, variables are organized in two layers where the ones in
the second layer have 10 parents. Each probability table represents a noisy OR-function.
Each parent variable y; has a value P; € [0..P,se]. The CPT for each variable in the
second layer is then defined as, P(x = Ol|y1,...,yp) = Hyjzl Pj and P(z = 1ly1,...,yp) =
1—P(z =0|y1,...,yp). We experiment with a class of problems called dn2o instances in
the UAIOS.

1. http://graphmod.ics.uci.edu/group/Software
2. http://graphmod.ics.uci.edu/uai08/Evaluation/Report
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[ network I N | w* [ [LC| [ [D@C)] [ [E] | Time(BE) | Time(LC) |

bn20-15-30-15 45 22 24 221 15 14.51 17.4 hrs

bn20-15-30-20 50 25 26 226 20 174.28 93.2 hrs

bn20-15-30-25 55 24 25 225 25 66.23 75.76 hrs

Grids 10 | 16 x 16 22 116 | 2116 1 27.59 | > 2 x 1093 hrs!
Grids 10 | 20 x 20 29 185 | 2185 1 out | > 2 x 10°6 hrs!
Grids 26 x 26 40 325 2325 1 out | > 2 x 10396 hrst

Grids 42 x 42 70 863 2863 1 out | > 2 x 10844 hrs!

coding 512 54-61 | 59-64 259961 1 956 out

Table 2: Complexity characteristics of the benchmarks from the UAI repository: N-number
of nodes, w*-induced width, |LC|-number of nodes in a loop-cutset, |D(LC)|-
loop-cutset state space size, Time(BE) is the exact computation time via bucket
elimination, Time(LC) is the exact computation time via loop-cutset conditioning.
The results are averaged over the set of network instances of each benchmark.

In grid networks, variables are organized as an M x M grid. We experiment with grids2
instances, as they were called in UAIO8, which are characterized by two parameters (M, D),
where D is the percentage of determinism (i.e., the percentage of values in all CPTs assigned
to either 0 or 1). For each parameter configuration, there are samples of size 10 generated
by randomly assigning value 1 to one leaf node. In UAIO8 competition, these instances were
named D-M-I, where I is the instance number.

Coding networks can be represented as a four layer Bayesian network having M nodes in
each layer. The second and third layer correspond to input information bits and parity check
bits respectively. Each parity check bit represents an XOR function of input bits. Input
and parity check nodes are binary while the output nodes are real-valued. We consider
the BN _126 to BN _134 instances in the UAIO8 evaluation. Each one has M = 128, 4
parents for each node and channel noise variance (o = 0.40). These networks are very hard.
Actually, exact results are not available.

Table 2 summarizes the characteristics of each network. For each one, the table specifies
the number of variables N, the induced width w*, the size of loop cutset |LC|, the number of
loop-cutset tuples |[D(LC)|, and the time needed to compute the exact posterior marginals
by bucket-tree elimination (exponential in the induced width w*), and by cutset conditioning
(exponential in the size of loop-cutset). An ‘out’ indicates that bucket-tree elimination is
unfeasible in terms of memory demands. Note that the characteristics of grid networks only
depend on its size, but not on the percentage of determinism; and the characteristics of all
coding networks are the same.

For our purposes, we consider VEC as another exact algorithm to compute the exact
P(e) in the first and second benchmarks, and as a lower bounding technique for the third
benchmark. We fix the control parameter z of MBE and the w-cutset of VEC so that the
algorithms require less than 1.5GB of space.

1. Times are extrapolated.
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4.3.2 RESuULTS

We summarize the results for each benchmark in a tabular format. The tables report
the bounds and computation time (in seconds) for each compared algorithm. For AT B,
we report results by varying the values of the control parameters (h, k). In particular, we
consider values of h in the range 4 to 200, and values of k in the set {20, 2!2, 214}, By doing
so, we analyze the impact of each control parameter in the performance of the algorithm.
Grey areas in the tables correspond to (h, k) configurations that cannot be compared due
to computation time.
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MUNIN3
Munin3, N=1044, w*=7, |LC|=30, |F|=257
BdP+ ATB BBdP+
h %P (e) 1 A | time(sec) 1 A | time(sec) I A | time(sec)
196 64 0.24 | 0.1 12 || 0.050 | 0.020 8 0.048 | 0.020 16
441 72 0.24 | 0.1 12 0.030 | 0.011 12 || 0.029 | 0.012 20
882 78 0.24 | 0.1 12 0.025 | 0.009 18 || 0.025 | 0.009 26
1813 79 0.24 | 0.1 12 0.020 | 0.007 32 || 0.019 | 0.007 40
2695 80 0.24 | 0.1 12 0.018 | 0.006 46 0.017 | 0.007 54
2891 81 0.24 | 0.1 12 0.017 | 0.006 49 || 0.016 | 0.006 57
3185 82 0.24 | 0.1 12 0.014 | 0.005 54 0.014 | 0.005 62
3577 82 0.24 | 0.1 12 0.013 | 0.004 68 || 0.012 | 0.004 76
4312 83 0.24 | 0.1 12 0.011 | 0.004 80 || 0.010 | 0.004 88
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Munind, N=1041, w* =8, |LC|=49, |E]=235
BdP+ ATB BBdP+
h %P (e) I A | time(sec) I A | time I A | time(sec)
245 1 0.23 | 0.1 15 0.39 | 0.16 14 0.24 | 0.102 21
441 7 0.23 | 0.1 15 0.32 | 0.13 17 0.22 | 0.095 24
1029 11 0.23 | 0.1 15 0.28 | 0.12 34 0.21 0.089 44
2058 17 0.23 | 0.1 15 || 0.25 | 0.11 54 0.19 | 0.082 65
3087 20 0.23 | 0.1 15 0.22 | 0.11 83 || 0.18 | 0.077 91
5194 24 0.23 | 0.1 15 0.21 | 0.09 134 0.17 | 0.072 145
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Figure 9: Results for munin3 and munin4. The tables report the average bounds interval
1, average error A, computation time (in seconds), and percent of probability of
evidence P(e) covered by the fully-instantiated cutset tuples as a function of h.
We highlight in bold face the first AT B data point where the average bounds
interval is as good or better than BdP+. The charts show the convergence of the

bounds interval length as a function of A and time.
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bn2o, |E| = 15,20

Inst. P(e) h %P (e) ATB(h, k = 210) ATB(h, k = 212) ATB(h, k = 217) MBE(z=18)
LB [ UB Time LB [ UB [ Time LB [ UB [ Time LB UB [ Time

[ bn20-30-15-150 |
4 [ 3.93E-04 [ 5.73E-10 | 5.32E-01 1.981 [ 5.86E-10 | 4.81E-01 8.206 | 6.03E-10 | 4.36E-01 | 38.157

la | 5.85E-05 50 0.1 | 1.23E-07 | 1.10E-01 31.948 | 1.24E-07 | 9.42E-02 | 128.74 9.14E-06 | 4.80E-04 2.5
200 0.25 | 3.48E-07 | 5.70E-02 | 103.397
4 | 6.55E-03 | 3.06E-04 | 9.26E-01 2.013 | 4.28E-04 | 9.26E-01 8.314 | 4.95E-04 | 9.26E-01 | 38.313

1b | 0.565652 50 0.12 | 4.14E-03 | 8.64E-01 30.857 | 4.87E-03 | 8.63E-01 | 124.05 0.172774 1.42 2.46
200 0.46 | 1.54E-02 | 8.26E-01 | 101.759
4 | 2.62E-03 | 2.00E-11 | 1.25E-01 2.012 | 2.01E-11 | 1.07E-01 8.3 | 2.05E-11 | 8.51E-02 | 38.205

2a | 4.02E-07 | 50 0.02 | 1.50E-10 | 1.00E-02 28.766 | 1.52E-10 | 8.85E-03 | 115.14 8.42E-10 | 2.11E-05 2.44
200 0.32 | 1.73E-09 | 4.04E-03 88.81
4 | 8.06E-03 | 6.96E-03 | 7.99E-01 2.012 | 8.56E-03 | 7.98E-01 8.346 | 9.17E-03 | 7.98E-01 | 38.251

2b | 0.541111 50 0.21 | 5.46E-02 | 7.75E-01 29.296 | 6.08E-02 | 7.74E-01 | 114.73 0.0264676 1.83916 2.46
200 1.11 | 1.12E-01 | 7.51E-01 89.935
4 | 2.16E-01 | 2.90E-07 | 1.68E-01 1.981 | 2.90E-07 | 1.46E-01 8.268 | 2.90E-07 | 1.38E-01 | 38.235

3a, 1.18E-04 | 50 1.04 | 1.66E-06 | 4.57E-02 26.457 | 1.65E-06 | 4.19E-02 | 103.35 4.35E-07 | 1.46E-03 2.60
200 3.58 | 5.29E-06 | 2.67E-02 73.772
4 | 7.56E-02 | 1.10E-03 | 7.70E-01 1.997 | 1.14E-03 | 7.69E-01 8.299 | 1.20E-03 | 7.69E-01 | 38.204

3b | 0.188686 50 0.47 | 6.78E-03 | 6.27E-01 24.71 | 7.10E-03 | 6.26E-01 94.98 0.0308901 | 0.813878 2.45
200 1.44 | 2.13E-02 | 5.36E-01 69.358

| bn20-30-20-200 |
4 [ 3.53E-03 [ 5.40E-12 | 1.59E-02 3.416 | 5.40E-12 | 1.563E-02 | 15.756 | 5.40E-12 | 1.42E-02 | 67.158

1la 1.36E-07 | 50 0.05 | 9.12E-11 | 1.82E-03 | 61.916 | 9.12E-11 | 1.58E-03 | 263.58 2.36E-15 | 3.32E-04 | 3.46
200 1.88 | 2.80E-09 | 5.70E-04 | 195.454
4 | 1.20E-02 | 1.07E-04 | 7.32E-01 3.354 | 1.09E-04 | 7.32E-01 | 15.662 | 1.09E-04 | 7.32E-01 | 67.659

1b | 0.156537 | 50 0.14 | 3.33E-03 | 6.72E-01 63.617 | 3.55E-03 | 6.68E-01 | 279.05 9.84E-04 1.99457 | 3.48
200 0.43 | 1.14E-02 | 5.99E-01 | 218.183
4 | 1.26E-02 | 3.78E-11 | 1.59E-02 3.447 | 3.79E-11 | 1.56E-02 | 15.709 | 3.80E-11 | 1.51E-02 | 70.497

2a | 2.24E-07 | 50 0.41 | 1.35E-09 | 3.27E-03 | 51.605 | 1.34E-09 | 3.11E-03 | 210.78 4.42E-15 | 8.03E-05 | 3.46
200 1.41 | 4.53E-09 | 2.42E-03 | 169.027
4 | 2.00E-02 | 6.39E-03 | 8.33E-01 3.417 | 7.32E-03 | 8.32E-01 | 15.709 | 7.98E-03 | 8.32E-01 | 68.484

2b | 0.276951 50 0.43 | 3.03E-02 | 7.69E-01 50.669 | 3.26E-02 | 7.66E-01 | 197.48 2.31E-05 2.99178 | 3.48
200 1.62 | 5.85E-02 | 6.91E-01 | 145.346
4 | 1.79E-03 | 8.29E-14 | 1.79E-03 3.416 | 8.30E-14 | 1.79E-03 | 15.756 | 8.30E-14 | 1.79E-03 | 68.235

3a | 2.37E-09 50 0.06 | 2.22E-12 | 1.07E-04 | 57.876 | 2.21E-12 | 1.06E-04 | 236.48 5.18E-13 | 1.74E-06 | 3.48
200 0.09 | 3.56E-12 | 3.29E-05 | 198.183
4 | 2.17E-04 | 4.47TE-05 | 9.72E-01 3.417 | 5.08E-05 | 9.72E-01 | 15.693 | 6.16E-05 | 9.72E-01 | 67.985

3b | 0.480395 50 0.11 | 5.41E-02 | 9.29E-01 64.476 | 5.86E-02 | 9.28E-01 | 276.59 5.26E-03 1.89902 | 3.48
200 0.66 | 1.13E-01 | 8.81E-01 | 194.252

Table 3: Results on bn2o networks. The table shows the LB and UB computed by AT B varying the number of cutset tuples h
and the maximum length £ of the conditional probability tables over the Markov boundary.
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bn2o, |E| =25

nst. | P(o) b | %P(e) ATB(h, k = 210) ATB(h, k = 2'2) ATB(h, k = 2'%) MBE(z=18)
LB | UB | Time LB | UB | Time LB | UB | Time LB | UB | Time
| bn20-30-25-250
4 3.69E-04 1.30E-14 6.60E-02 5.788 1.30E-14 6.46E-02 22.153 1.30E-14 4.84E-02 98.828
la 2.96E-09 50 0.01 3.74E-13 | 3.28E-03 118.717 | 3.73E-13 | 2.79E-03 | 428.61 1.73E-16 | 3.11E-06 4.15
200 0.06 | 2.04E-12 1.10E-03 395.51
4 1.61E-02 4.26E-04 8.11E-01 5.834 5.69E-04 8.10E-01 22.245 6.16E-04 8.10E-01 99.575
1b 0.151829 50 0.22 | 4.65E-03 | 7.18E-01 120.494 | 6.66E-03 | 7.15E-01 436.99 1.42E-03 1.39152 4.52
200 1.07 | 1.31E-02 | 6.48E-01 380.799
4 3.58E-04 1.77E-12 1.98E-01 5.804 1.77E-12 1.92E-01 22.23 1.77E-12 1.69E-01 99.138
2a 2.44E-07 50 1.24E-03 | 5.70E-12 | 4.54E-02 111.712 | 5.70E-12 | 3.96E-02 | 398.23 1.77E-12 1.22E-05 4.20
200 0.07 1.84E-10 2.17E-02 401.594
4 1.78E-02 | 5.28E-04 | 7.63E-01 5.787 | 5.94E-04 | 7.63E-01 22.199 | 6.34E-04 | 7.63E-01 99.201
2b 0.308949 50 0.19 | 5.41E-03 | 7.36E-01 106.782 | 6.13E-03 | 7.36E-01 373.59 7.16E-03 1.75661 4.16
200 0.65 1.43E-02 | 7.07E-01 367.179
4 6.02E-05 1.66E-16 1.14E-01 5.819 1.66E-16 1.13E-01 22.215 1.66E-16 8.09E-02 98.717
3a 2.76E-10 50 0.01 | 4.27E-14 1.94E-02 119.434 | 4.26E-14 1.62E-02 | 427.33 1.27E-15 | 4.99E-07 4.06
200 0.20 | 5.52E-13 | 7.10E-03 409.05
4 | 6.53E-03 1.00E-03 | 7.96E-01 5.85 1.15E-03 | 7.95E-01 22.23 1.25E-03 | 7.95E-01 97.983
3b 0.468007 50 0.45 | 4.18E-02 | 7.73E-01 106.033 | 4.78E-02 | 7.71E-01 351.56 3.49E-03 2.75533 4.07
200 1.52 | 8.47E-02 | 7.47E-01 336.556

Table 4: Results on bn20 networks. The table shows the LB and UB computed by AT B varying the number of cutset tuples h

and the maximum length £ of the conditional probability tables over the Markov boundary.
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Two-layer noisy-or networks. Tables 3 and 4 show the results. As expected, the quality
of the bounds produced by AT B increase when the value of the control parameters (h, k)
increases. We observe that the best bounds are obtained when fixing h to the highest value
(i.e., 200) and k to the smallest value (i.e., 21). However, the increase in the value of
h leads to higher computation times than when increasing the value of k. When taking
time into account, comparing configurations with similar time (see (h = 50,k = 2!9) and
(h = 4,k =2, and (h = 200,k = 2'9) and (h = 50,k = 2'2), respectively), we observe
that the configuration with the highest value of h and the smallest value of k outperforms
the other ones.

When compared with MBE, there is no clear superior approach. The accuracy of the
algorithms depends on whether we look at upper or lower bounds. When considering up-
per bounds, AT B outperforms MBE for all instances 1b, 2b and 3b. Note that for those
instances, MBE computes worse upper bounds than the trivial one (i.e., greater than 1).
However, for instances la, 2a and 3a, MBE computes tighter upper bounds than ATB. For
lower bounds, in general AT B outperforms MBE for instances with 20 and 25 evidence
variables, while MBE is more accurate for instances having 15 evidence variables. Regard-
ing computation time, ATB is definitely slower than MBE.

Grid networks. Table 5 reports the results. The first thing to observe is that MBE com-
putes completely uninformative bounds. In this case, the any-time behaviour of AT B is
not effective either. The increase of the value of its control parameters (h, k) does not affect
its accuracy. Since the Markov boundary in grid networks is relatively small, the smallest
tested value of k is higher than its Markov boundary size which explains the independence
on k. Another reason for its ineffectiveness may be the high percentage of determinism
in these networks. It is known that sampling methods are inefficient in the presence of
determinism. As a consequence, the percentage of probability mass accumulated in the h
sampled tuples is not significant, which cancels the benefits of computing exact probability
of evidence for that subset of tuples. Therefore, in such cases a more sophisticated sam-
pling scheme should be used, as for example (Gogate & Dechter, 2007). Consequently, for
these deterministic grids, AT B’s performance is controlled totally by its bound propagation
plugged-in algorithm.
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Grids2, |E| =1

(M, D) | P(e) h %P (e) ATB(k = 210 h) ATB(k = 212 h) ATB(k = 24 h) MBE
LB UB Time LB UB Time LB UB Time | LB UB Time

4 [ 157E-14 | 0.312738 | 0.828553 1.36 | 0.312738 | 0.828553 1.36 | 0.312738 | 0.828553 | 1.36

(16,50) | 0.61724 | 100 | 3.50E-11 | 0.312738 | 0.828553 56.77 | 0.312738 | 0.828553 | 56.80 0 513 | 16.24
200 | 4.22E-11 | 0.312738 | 0.828552 | 110.75
4 [ 1.07E-24 | 0.176514 | 0.493885 184 | 0.176514 | 0.493885 482 | 0.176514 | 0.493885 | 4.82

(20,50) | 0.4441 | 100 | 1.57E-21 | 0.176514 | 0.493885 | 207.86 | 0.176514 | 0.493885 | 203.27 0 | 12411.60 | 38.86
200 | 1.13E-20 | 0.176514 | 0.493885 | 411.82
4 [ 1.25E-09 | 0.210608 | 0.745416 2.60 | 0.210608 | 0.745416 2.59 | 0.210608 | 0.745416 | 2.61

(20,75) | 0.4843 | 100 | 2.40E-09 | 0.210608 | 0.745416 80.66 | 0.210608 | 0.745416 | 80.12 0 | 114654.95 | 38.80
200 | 2.89E-09 | 0.210608 | 0.745416 | 156.13
4 [ 3.88E-19 | 0.0505681 | 0.933801 6.27 | 0.0505681 | 0.933801 6.27 | 0.0505681 | 0.933801 | 6.27

(26,75) | 0.6579 | 100 | 7.32E-19 | 0.0505681 | 0.933801 | 268.494 | 0.0505681 | 0.933801 | 270.15 0| >1E+10 | 84.00
200 | 1.55E-18 | 0.0505681 | 0.933801 | 534.46
4 [ 347E-08 | 0.185838 | 0.894316 2.29 | 0.185838 | 0.894316 2.20 | 0.185838 | 0.894316 | 2.29

(26,90) | 0.8206 | 100 | 3.41E-06 | 0.185839 | 0.894316 84.90 | 0.185839 | 0.894316 | 84.00 0| >1E+10 | 87.01
200 | 8.38E-06 | 0.185839 | 0.894316 | 163.53
4 [ 8.65E-29 | 0.0048445 | 0.917501 10.13 | 0.0048445 | 0.917501 | 10.13 | 0.0048445 | 0.917501 | 10.13

(42,90) | 0.4933 | 100 | 2.32E-25 | 0.0048445 | 0.917501 | 436.10 | 0.0048445 | 0.917501 | 438.50 0| >1E+10 | 110.18
200 | 3.48E-25 | 0.0048445 | 0.917501 | 865.64

Table 5: Results on grid networks. The table shows the LB and UB computed by AT B varying the number of cutset tuples h

and the maximum length & of the conditional probability tables over the Markov boundary.
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coding, |E| = 256
Inst. h ATB(k = 210 h) ATB(k = 2% h) MBE(z=22) VEC
LB UB Time LB UB Time LB UB Time LB Time
4 | 1.931E-76 | 1.520E-41 50.14 | 1.931E-76 | 1.520E-41 | 348.74
BN_126 50 | 1.872E-69 | 2.543E-42 631.52 1.44E-139 | 1.45E-044 | 142.80 | 9.18 E-102 1900
150 | 1.892E-58 | 1.256E-42 | 1441.75
4 | 5.304E-60 | 2.277E-43 54.85 | 5.304E-60 | 2.277E-43 | 398.66
BN_127 50 | 1.217E-58 | 2.25TE-44 426.26 1.62E-134 | 1.04E-045 | 164.44 5.30E-115 1900
150 | 1.597E-58 | 1.901E-44 946.33
4 | 7.231E-54 | 1.635E-42 85.71 | 7.231E-54 | 1.635E-42 | 582.84
BN_128 50 | 4.859E-48 | 7.190E-43 637.23 1.19E-144 | 5.10E-043 | 124.64 1.98E-112 1900
150 | 4.859E-48 | 1.446E-43 | 1225.00
4 | 1.464E-72 | 8.155E-45 50.48 | 1.464E-72 | 8.155E-45 | 362.34
BN_129 50 | 1.504E-64 | 2.114E-45 585.19 2.83E-139 | 4.76E-043 | 144.44 1.47E-115 1900
150 | 8.490E-64 | 5.432E-46 | 1400.44
4 | 4.738E-65 | 2.870E-44 47.22 | 4.738E-65 | 2.870E-44 | 324.95
BN_130 50 | 6.312E-63 | 2.966E-45 619.17 1.12E-132 | 1.99E-045 | 112.78 1.33E-96 1900
150 | 3.665E-58 | 2.280E-45 | 1299.18
4 | 1.949E-60 | 1.250E-44 52.81 | 1.949E-60 | 1.250E-44 | 366.88
BN_131 50 | 2.269E-54 | 3.684E-45 484.84 2.25E-141 | 3.21E-045 | 119.46 3.16E-102 1900
150 | 2.269E-54 | 1.009E-45 | 1276.21
4 | 2.283E-79 | 6.326E-44 50.84 | 2.283E-79 | 6.326E-44 | 362.80
BN_132 50 | 3.562E-67 | 1.032E-44 689.28 2.82E-134 | 2.28E-048 | 108.72 8.85E-111 1900
150 | 1.462E-66 | 8.094E-45 | 1627.15
4 | 1.625E-56 | 2.748E-42 53.20 | 1.625E-56 | 2.748E-42 | 398.27
BN_133 50 | 1.115E-54 | 2.372E-43 671.80 1.83E-136 | 4.08E-045 | 147.34 1.89E-109 1900
150 | 2.319E-54 | 9.505E-44 | 1846.83
4 | 8.956E-63 | 1.803E-43 47.69 | 8.956E-63 | 1.803E-43 | 355.68
BN_134 50 | 1.181E-62 | 8.625FE-45 606.47 1.93E-148 | 3.99E-045 | 162.98 4.19E-111 1900
150 | 6.060E-57 | 4.828E-45 | 1412.53

Table 6: Results on coding networks. The table shows the LB and UB computed by AT B varying the number of cutset tuples h

and the maximum length £ of the conditional probability tables over the Markov boundary.
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AN ANYTIME SCHEME FOR BOUNDING POSTERIOR BELIEFS

Coding networks. Table 6 shows the results. We do not report the percentage of P(e)
covered by the fully-instantiated cutset tuples because the exact P(e) is not available. We
set the time limit of VEC to 1900 seconds (i.e., the maximum computation time required
by running ATB in these instances). We only report the results for & = 2!9 and k£ = 2!
because the increase in the value of k£ was not effective and did not result in increased ac-
curacy. In this case, the accuracy of AT B increases as the value of h increases. Comparing
AT B with the other algorithms we have to distinguish between lower and upper bounds.
Regarding lower bounds, AT B clearly outperforms MBE and VEC in all instances. Indeed,
the lower bound computed by MBE and VEC is very loose. Regarding upper bounds,
ATB(h = 150,k = 2'0) outperforms MBE in three instances (i.e., BN_128, BN _129 and
BN _131). When taking time into account AT'B only outperforms MBE in instance BN _129.

5. Related Work

There are three earlier approaches based on the same principle as AT B: Poole’s algorithm
(Poole, 1996), Bounded Conditioning (BC) (Horvitz et al., 1989) which we described before,
and bounded recursive decomposition (Monti & Cooper, 1996). In all cases the computation
of the bounds is divided into an exact inference over a subset of tuples and a bounding
scheme over the sum of probabilities over the rest of tuples. Similar to AT B, Poole’s
scheme is based on a tree structure which is partially explored. However, his search tree
corresponds to the state space of the whole network and hence, it is exponential in the
network size. The tree structure used by our approach corresponds to the state space of
the loop-cutset variables and hence, it is exponential only in the loop-cutset size. Also,
Poole updates the bounding function when a tuple with probability 0 (i.e., a conflict) is
discovered. As discussed in Section 2.2, BC' is also based in the loop-cutset condition
principle, but there are two main differences with respect to AT'B: (i) the probability mass
of the missing tuples is bounded via prior probabilities; and (ii) the upper bound expression
is looser, which we proved. Bounded recursive decomposition (Monti & Cooper, 1996) uses
Markov simulation (Pearl, 1988) to generate highly probable instantiations of the network
nodes, similar to AT B, and bounds the missing elements with 0 and prior values in which
it resembles Poole’s algoarithm and bounded conditiong. Unlike AT B, bounded recursive
decomposition requires instantiation of all variables in the network and relies on priors to
guide the simulation. Our algorithm uses Gibbs sampling on a cutset which is likely to be
more accurate at selecting high probability tuples in presence of evidence. AT B subsumes
all three algorithms offering a unifying approach to bounding posteriors with any-time
properties, able to improve its bounds by investing more time and exploring more cutset
tuples.

There are a number of alternative approaches for computing bounds on marginals.
(Poole, 1998) proposed context-specific bounds obtained from simplifying the conditional
probability tables. The method performs a variant of bucket elimination where intermedi-
ate tables are collapsed by grouping some probability values together. However, since the
method was validated only on a small car diagnosis network with 10 variables, it is hard
to draw any conclusions. (Larkin, 2003) also obtains bounds by simplifying intermediate
probability tables in the variable elimination order. He solves an optimization problem
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to find a table decomposition that minimizes the error. (Kearns & Saul, 1999, 1998) pro-
posed a specialized large deviation bounds approach for layered networks, while (Mannino &
Mookerjee, 2002) suggested an elaborate bounding scheme with non-linear objective func-
tions. (Jaakkola & Jordan, 1999) proposed a variational method for computing lower and
upper bounds on posterior marginals in Noisy-Or networks and evaluated its performance
in the case of diagnostic QMR-DT network. More recent approaches include (Tatikonda,
2003; Taga & Mase, 2006; Ihler, 2007; Mooij & Kappen, 2008), aiming to bound the error
of Belief Propagation marginals. The first two approaches are exponential in the size of
the Markov boundary. The third approach is linear in the size of the network, but it is
only formulated for pairwise interactions. Finally, the fourth algorithm is exponential in
the number of domain values. Comparing and relating to these approaches is a subject for
future work.

It is important to note that our approach offers an any-time framework for computing
bounds where any of the above bounding algorithms can be used to bound joint probabilities
for partially-instantiated tuples within AT'B and will therefore improve the performance of
any bounding scheme.

6. Summary and Conclusions

The task of bounding the likelihood of conditional or joint probability distribution is known
to be very hard. While individual, single-principle methods start to emerge, it is clear that
methods that pool together a variety of principles so that they all cooperate in this hard
task, are needed. The current paper provides a framework that facilitates the collaboration
principle.

It defines an any-time bounding scheme (AT B) that exploits the cutset-conditioning
scheme to control the trade-off between time and accuracy. Given a cutset C (a subset
of network variables X'\ F), it generates a subset of cutset tuples, computing exactly their
probabilities, and then uses an off the shelve bounding scheme to bound the tails of the
distribution P(c, e) over the unexplored cutset tuples. We proved that our scheme is superior
to the earlier approach of bounded conditioning (Horvitz et al., 1989).

We evaluated AT B empirically using a variant of bound propagation (Leisink & Kappen,
2003) called ABdP+, evaluated in (Bidyuk & Dechter, 2006b), as a plug-in algorithm.
We demonstrated on a set of benchmarks that AT B’s bounds converge as the number of
computed cutset tuples increases, and that AT B always outperforms the BdP+ variant of
BdP (Bidyuk & Dechter, 2006b) given enough explored cutset tuples. Moreover, in many
cases, AT B computed more accurate bounds faster than BdP+. We demonstrated the
power of our scheme for both computing posterior marginals as well as for the probability
of evidence.

We also showed that the bounds computed by AT B can further boost the performance of
bound propagation algorithm by using them as initial bounds yielding algorithm BBdP+.
The experiments demonstrated that BBdP+ sometimes explore the time-accuracy trade-
off more effectively than AT B alone. However, the outcome depends on both the network
properties and the shape of the distribution P(Cle). In particular, when the distribution
P(C|e) contains a small number of high probability tuples, as in the case of cpcesb4, cpesl79,
and cpcs360 networks, AT B is a clear winner as it converges very fast.
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There are many options for improving the performance of AT B. We have looked at one
possible instantiation of the plug-in algorithm 4. Other approximation algorithms can be
tried offering different time/accuracy trade-offs. In particular, we plan to investigate the
effectiveness of AT B using M BE as plug-in algorithm.

Appendix A. Analysis of Bounded Conditioning

THEOREM 2.1 The interval between lower and upper bounds computed by bounded
conditioning is lower bounded by the probability mass of prior distribution P(C') of the
unexplored cutset tuples: Vh, PY.(z|e) — P5.(z|e) > EZ a1 P(ch).

PRrROOF.

Yl P P(c'e) + 320, ) P(c))
iy P(cie)
Z?:l P(a,ce) _ Z?:l P(z,ce)
Y P(dhe) Y P(che) + ik, P(d)
S PE) (T, P(ce) + 3, 44 P())

Ppo(xle) — Pgo(ale) =

> 1
Zizl P(Cl’ e)
M M i\ 2 M
i, iz () ;
= P(c') + : > P(c)
i:;rl E?:l P(Cla 6) i=h+1

Appendix B. Bounding posteriors of cutset nodes

So far, we only considered computation of posterior marginals for variable X € X\ (C' U
E). Now we focus on computing bounds for a cutset node Cj, € C. Let ¢}, € D(C) be some
value in domain of C%. Then, we can compute exact posterior marginal P(cg|e) using Bayes

formula:
/ _ P(C;cae) _ ZM 6(Ck7 )P(Ci’e)
P(cile) = Ple) 21:1 Ple.e) (23)

where (¢}, ¢') is a Dirac delta-function so that 6(c},c’) = 1 iff ¢} = ¢, and §(c},c") = 0
otherwise. To simplify notation, let Z = C\Z. Let M} denote the number of tuples in
state-space of Z. Then we can re-write the numerator as:

M . . Mk .
Z §(cy, c)P(c'ye) = Z P(c, 2" e)
i=1 i=1

and the denominator can be decomposed as:

M ‘ My, ‘
D P(e= >, > Pld.#e)
i=1

ck€D(Cy) i=1
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Then, we can re-write the expression for P(c}|e) as follows:

Y P, A e)
M .
Do ereD(Cy) 2aimi Plek, 7€)

Let he, be the number of full cutset tuples where c}; = ¢;. Then, we can decompose the
numerator in Eq. (24) as follows:

(24)

M, hey M,
ZP(Cg,zz,e) = ZP(C;C,Zz,B) + Z P(c,, 2" e)
=1 =1 i=h_ +1

Similarly, we can decompose the sums in the denominator:

Z ZP ck,z e) Z ZPck,z e) Z Z ck,z e)

c,€D(Ck) =1 c,€D(Ck) =1 ck€D(Ck) i= hck+1
After decomposition, the Eq. (24) takes on the form:
Zz klP(Ck’Z €)+Zz h,+1P(C§cazive)

P(chle) = e . — @)
chED(Ck) ZiZI P(Ck, ZZ? 6) + chED(Ck) Z’i:hck—‘rl P(Ck7 ZZ7 6)

Now, for conciseness, we can group together all fully instantiated tuples in the denominator:

he,

h
Z ZP cr, 2y €) ZP(C e)
i=1

ck€D(Ck) 1=

Then, Eq. (25) transforms into:

h .
Z‘:k P(ckVZ 6) +Zz h/—l—l P(C;C’ZZ7€)

c 26
Pl = S P(che) + i e, +1 2o, €D(Cr) P(cy, 2% e) (26)

M, .

Now, we can replace each sum ) 7% 41 over unexplored cutset tuples with a sum over
c
k

the partially-instantiated cutset tuples. Denoting as M, = My — he, + 1 the number of
partially instantiated cutset tuples for C} = ¢, we obtain:

h,c/ . M;/ 1
Zi:kl P(C;g’ ZZ 6) + Z ':f P(C;m Z{:qj ? 6)
5 .
Zi:l P(CZ ) + Z ZCkED(Ck) P(Ck’ Zi(]j ) 6)

In order to obtain lower and upper bounds formulation, we will separate the sum of joint
probabilities P(cy, 2], €) where Cj, = ¢, from the rest:

P(ctle) = (27)

h s . M/, .
i Pic .00+ 5,0 Pty o

M, .
h ; ¢
Zi:l P(c',e) + Zj:f P(C;wz{:q ,€e) + Z ch;éc’ P(Ckvzlq .€)

P(c,le) = (28)
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In the expression above, probabilities P(cy, 2%, e) and P(c!,e) are computed exactly since
they correspond to full cutset instantiations. Probabilities P(cg, zi:qi, e), however, will be
bounded since only partial cutset is observed. Observing that both numerator and denom-
inator have component P(cj, zi:qi, e) and replacing it with an upper bound PU(C;W zi:qi, e)
in both numerator and denominator, we will obtain an upper bound on P(c}|e) due to
Lemma 3.2:

’

hc’ . o i
£ P 0 + 04 PG

Zz 1P(C e)+z kPU(C;g’Z{;qﬂ )—I_Z ch;éc/ P(Ck?721q7 )

P(cyle) < (29)

Finally, replacing P(cx, z{ g e), ¢, # ¢}, with a lower bound (also increasing fraction value),
we obtain:

ZPc,zeJr Pc,zj,
Pl < Sk Pl #0) + 3 hch ) .

Z?:l P(Cive) —’—Zj:{C PA(ckVZl:q ’ )+ Z ch;éc’ P_A(Ck?'zlq ’ )

(30)
The lower bound derivation is similar. We start with Eq. (28) and replace P(c},, }. g0 €) 0
numerator and denominator with a lower bound. Lemma 3.2 guarantees that the resulting
fraction will be a lower bound on P(c} |e):

ZZkIP(Cle 6)"‘2 PA(CkﬁZlq? )

h .
>z P(ce) +Z PA(Ck’Zlq ) )+Z Zc,ﬂéc’ P(Ck’zlq .€)

P(cye) > (31)

Finally, replacing ch 4, P(ck,z{:qj,e) in Eq. (31) with an upper bound, we obtain the
lower bound PF:

h_s .
K P(c 2t e) + kPL(C/,Z], e)
P(C§€|6) > Z k Z k> ~1:q; _ PCL

Z? 1 ( ) + Z k PL(CZ;VZ{:q 9 ) + Z Ck UBI:ZCIC#C;C P(Ck,Z{:qj,e)]

where

. /PUC,Zj..,e
UMZH%%M:m{%ﬂA“L%)

J
ex#e, PA (leqj7 6)

The lower bounds PCL are respective cutset equivalents of the lower bound P obtained in
Eq. (15).

With respect to computing bounds on P(c}, 1.4, €) in Eq. (30) and (32) in practice, we
distinguish two cases. We demonstrate them on the example of upper bound.

In the first case, each partially instantiated tuple c;., that includes node Cj, namely
k < q, can be decomposed as c1.q = 214 U cﬁc so that:

PU(C;C, Z1:q,€) = PU(clzq, e)
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The second case concerns the partially instantiated tuples ci.4 that do not include node
Ck, namely k > ¢. In that case, we compute upper bound by decomposing;:

PU(C;leiqve) - PU(Cklcllq)PU(cliqve)

Appendix C. ATB Properties

THEOREM 3.2 AT B bounds interval length is upper bounded by a monotonic non-
increasing function of h:

M :
= A ; M N
i Plete) + 3 P(d)

PROOF. The upper bound on the bounds interval follows from the fact that, PY(z|e) —
Pk(zle) < PYp(zle) — Php(z|e) and from the definitions of brute force lower and up-

per bounds given by Eq. (21) and (22). We only need to prove that the upper bound is
monotonously non-increasing as a function of h.

Zj]\ih P() _ P(c") + Zj]\/thrl P(c)
S P(che) + S0 P(ed) S P e) + P(ch) + S0, L P(ed)

Since P(c") > P(c", e), then replacing P(c") with P(c", e) and applying Lemma 3.1, yields:

Py (zle) — P(xle) I

Ip_1=

. P €) + 33 P() _ P+ P(E)
C X PEQ+ P+ T PO) XL P e) + Y PE)
Zj]\ih—&—l P(Cj)

: __,
Yoy P(ce) + Zj]\/thrl P(d)

Thus, Ih—l Z Ih- ]
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