
Approximate Solution Sampling (and Counting) on

AND/OR spaces

Vibhav Gogate and Rina Dechter

Donald Bren School of Computer Science

University of California, Irvine, CA 92697, USA

{vgogate,dechter}@ics.uci.edu

Abstract. In this paper, we describe a new algorithm for sampling solutions from

a uniform distribution over the solutions of a constraint network. Our new algo-

rithm improves upon the Sampling/Importance Resampling (SIR) component of

our previous scheme of SampleSearch-SIR by taking advantage of the decompo-

sition implied by the network’s AND/OR search space. We also describe how our

new scheme can approximately count and lower bound the number of solutions

of a constraint network. We demonstrate both theoretically and empirically that

our new algorithm yields far better performance than competing approaches.

1 Introduction

In this paper, we present a new Sampling/Importance Resampling (SIR) algorithm that

exploits AND/OR search spaces for graphical models [1]. Although, our algorithm is

quite general, in this paper, we focus on using it for sampling solutions from a con-

straint network. Our main contributions are: (a) We show that SIR can be understood

as a method that learns a probability distribution on an OR tree. (b) We generalize

SIR to AND/OR spaces yielding AO-SIR which learns a probability distribution on an

AND/OR tree (or graph). (c) We show theoretically and by an experimental evaluation

on satisfiability benchmarks that AO-SIR is far more accurate than SIR. (d) We derive

a new unbiased estimator from the distribution learnt over the AND/OR tree which can

be used to approximately count and lower bound the number of solutions, improving

over our previous solution counter presented in [4].

2 Preliminaries and Previous Work

Definition 1 (constraint network, counting and sampling). A constraint network (CN)

is defined by a 3-tuple, R = 〈X,D,C〉, where X = {X1, . . . ,Xn} is a set of variables as-

sociated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and C = {C1, . . . ,Cr}
is a set of constraints. Each constraint Ci is a relation RSi

defined on a subset of vari-

ables Si ⊆ X. The relation denotes all compatible tuples of the cartesian product of

the domains of Si. A solution is an assignment of values to all variables x = (X1 =
x1, . . . ,Xn = xn), xi ∈ Di, such that x belongs to the natural join of all constraints i.e.

x ∈ RS1
⊲⊳ . . . ⊲⊳ RSr

. The solution counting problem #csp is the problem of count-

ing the number of solutions. The solution sampling problem §csp is the problem of

sampling solutions from a uniform distribution over the solutions.

C

B

D

A

≠

≠

≠

{1,2,3}

{1,2,3}

{1,2,3}

{1,2,3}

(a)

C

B D

A

(b)

0 2

B

2 0 1

2 1 0

D

0 2

D

0 1

D

0 1

B

1 2

D D

2

1

A

0

A

0 2

A

0 1 0 1

A

21 1

A

0 1

A

10

A

1 2

A

1 2

A

0 2

A

0 2

2

A

1

B

0

D

2

A

2

C
1/3

1/3
1/3

0.50.5 0.50.5 0.50.5

0.5

.5

.5 .5 .5.5 .5 .5.5

.5

.5 .5.5

.5.5 .5.5.5.5.5.5.5.5.5.5.5

.5

.5.5.5 .5 .5 .5 .5.5.5

20 0 2 0 1 0 1 21 1 0 1 10 1 2 1 2 0 2 0 22

(c)

2

B D

0 101

C

0 1

B D B D

1 2 1 202 0 2

2 0 1 1

A

1 2

A

0 2

A

0

A

1

A

2

A

0

1/3
1/3

1/3

.5 .5 .5 .5 .5
.5

.5 .5
.5

.5
.5

.5

.5
.5 .5

.5 .5 .5
.5

.5 .5 .5 .5 .5

(d)

Fig. 1. (a) A 3-coloring problem, (b) Pseudo-tree (c) OR tree (d) AND/OR tree

2.1 AND/OR search spaces for graphical models

Given a constraint network, its AND/OR search space is guided by the pseudo-tree

defined below (for more information see [1]).

Definition 2 (Pseudo Tree). Given a constraint graph G = (V,E), a pseudo-tree T =
(V,E ′) is a directed rooted tree in which any arc not included in E ′ is a back-arc.

Definition 3 (AND/OR tree). Given a constraint network R = 〈X,D,C〉 and a pseudo

tree T , the AND/OR search tree SAOT , has alternating levels of AND and OR nodes. The

root of SAOT is an OR node labeled by the root of T . The children of an OR node Xi are

AND nodes labeled with assignment Xi = xi that are consistent with the assignment

(X1 = x1, . . . ,Xi−1 = xi−1) along the path from the root. The children of an AND node

Xi = xi are OR nodes labeled with the children of variable Xi in T . A solution subtree

of SAOT contains the root node. For every OR node it contains one of its children and

for each of its AND nodes it contains all its children. An OR tree is an AND/OR tree

whose pseudo-tree is a chain.

Example 1. Figure 1(c) and 1(d) show a complete OR tree and an AND/OR tree (guided

by the pseudo-tree in Figure 1(b)) respectively for the 3-coloring problem in Figure 1(a).

2.2 Exact Solution to the §csp problem

Dechter et al. [2] proposed the following scheme to exactly solve the §csp problem.

We first express the uniform distribution P(x) in a product factored form: P(x =
(x1, . . . ,xn)) = ∏

n
i=1 Pi(xi|x1, . . . ,xi−1). The probability Pi(Xi = xi|x1, . . . ,xi−1) is equal

to the ratio between the number of solutions that (x1, . . . ,xi) participates in and the

number of solutions that (x1, . . . ,xi−1) participates in. Second, we generate multiple

samples by repeating the following process: for i= 1 to n, given a partial assignment

(x1, . . . ,xi−1) to the previous i−1 variables, we assign a value to variable Xi by sampling

it from Pi(Xi|x1, . . . ,xi−1). All algorithms described in this paper are devoted to finding

an approximation to Pi(Xi|x1, . . . ,xi−1) at each branch of the search tree.

Example 2. The labeled OR and AND/OR tree of Figure 1(c) and 1(d) respectively

depict the uniform distribution over the solutions expressed in a product factored form.

2.3 Sampling Importance Resampling to solve the §csp problem Approximately

Because constructing P(x) can be quite hard [2], in [6] we proposed to use Sampling

Importance Resampling (SIR) [8] in conjunction with the SampleSearch scheme [3]

to approximate it. This scheme operates as follows. First, given a proposal distribu-

tion Q, it uses SampleSearch to draw random solution samples A = (x1, . . . ,xN) from

the backtrack-free distribution QF of Q. Second, a possibly smaller number of sam-

ples B = (y1, . . . ,yM) are drawn from A with sample probabilities, proportional to the

weights w(xi) = 1/Q(xi) (this step is referred to as the re-sampling step). For N = 1,

the distribution of solutions is same as QF . For a finite N, the distribution of solutions

is somewhere between QF and P improving as N increases and equals P as N → ∞.

3 Sampling Importance Resampling on AND/OR search spaces

We first describe the main intuition involved in defining a new SIR scheme called AO-

SIR which operates on the AND/OR search space in the following example.

Example 3. The bold edges and nodes in Figure 1 (c) and (d) show four solution sam-

ples arranged on an OR and AND/OR tree respectively. Note that SIR and AO-SIR

operate on the OR and AND/OR tree respectively. One can verify that the 4 solution

samples correspond to 8 solution samples (solution sub-trees) on the AND/OR tree.

Thus, the AND/OR representation yields a larger set of virtual samples. It includes for

example the assignment (C = 0,B = 2,D = 1,A = 0) which is not represented in the OR

tree. From SIR theory [8], we know that the accuracy of SIR increases with the number

of samples and therefore we expect AO-SIR to be more accurate than SIR.

In AO-SIR, the first step of using SampleSearch to generate solution samples remains

the same. What changes is the way in which we (a) store samples and (b) define the

distribution over the initial set of samples for resampling. We explain each of these

modifications below. We first define the notion of an AND/OR sample tree (or graph)

which can be used to store the initial set of samples.

Definition 4 (Arc Labeled AND/OR sample tree and graph). Given (1) a constraint

network R = 〈X,D,C〉, (2) a pseudo-tree T (V,E) , (3) the backtrack-free distribution

QF = ∏
n
i=1 QF(Xi|Anc(Xi)) such that Anc(Xi) is a subset of all ancestors of Xi in T , (4)

a sequence of samples S (assignments) generated from QF , an arc-labeled AND/OR

sample tree SAOT is a complete AND/OR tree (see definition 3) from which all assign-

ments not in S are removed.The arc-label from an OR node Xi to an AND node Xi = xi

in SAOT is a pair 〈w,#〉 where: (a) w = 1
QF (Xi=xi|anc(Xi))

is called the weight of the arc.

anc(Xi) is the assignment of values to all variables in Anc(Xi) and (b) #: the frequency

of the arc is the number of times (Xi = xi,anc(Xi)) is seen in S .

As noted earlier, all approximate algorithms for solving the §csp problem can be thought

of as approximating the probability labels on the arc of an AND/OR tree. Because, the

probability labels are just ratios of solution counts, we define the notion of value of a

node which can be semantically understood as providing an unbiased estimate of the

solution counts of the subtree rooted at the node.

Algorithm 1 AO−SIR(R,QF ,N,M)

1: Generate N i.i.d. samples A = {x1, . . . ,xN} from QF using SampleSearch.

2: Store the N solution samples on an AND/OR sample tree SAOT or a graph and label it using definition 4.

3: FOR all leaf nodes i of SAOT do

4: IF And-node v(i)= 1 ELSE v(i)=0

5: FOR every node n from leaves to the root do

6: Let C(n) denote the child nodes of node n

7: IF n = 〈X ,x〉 is a AND node, then v(n) = ∏n′∈C(n) v(n′)

8: ELSE if n = X is a OR node then v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′)
.

9: Update the weights by updating the arc labels as: p(n,n′) =
v(n′)w(n,n′)#(n,n′)

∑n′′∈C(n)(#(n,n′′)w(n,n′′)v(n′′))

10: Return M solution samples generated at random from SAOT

Definition 5 (Value of a node). The value of a node in a arc-labeled AND/OR sample

tree (see Definition 4) is defined recursively as follows. The value of leaf AND nodes is

”1” and the value of leaf OR nodes is ”0”. Let C(n) denote the child nodes of n and

v(n) denotes the value of node n. If n is an AND node then: v(n) = ∏n′∈C(n) v(n′) and if

n is a OR node then v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′) .

Lemma 1. The value of a node n is an unbiased estimate of the number of solutions of

the subtree rooted at n.

We now have the required definitions to formally present algorithm AO-SIR (see

Algorithm 1). Here, we first generate samples in the usual way from QF . We then store

these samples on an arc labeled AND/OR sample tree and compute the value of each

node (Steps 3-8). The AND/OR sample tree is then converted to an AND/OR sample

probability tree by normalizing the values at each OR node (Step 9). Finally, the re-

quired M solution samples are generated from the AND/OR sample probability tree.

We can prove that:

Theorem 1. As N → ∞, the solutions generated by AO-SIR will consist of independent

draws from the uniform distribution over the solutions.

Finally, we summarize the relationship between AO-SIR and SIR in Theorem 2:

Theorem 2. When the pseudo-tree is a chain, the solution samples output by AO-SIR

will have the same distribution as those output by SIR. Asymptotically, if the pseudo-tree

is not a chain then AO-SIR has lower sampling error than SIR.

3.1 Approximate Counting on AND/OR search spaces

From Lemma 1, it is easy to see that:

Proposition 1. The value of the root node of the AND/OR sample tree is an unbiased

estimate of the number of solutions.

We can utilize this unbiased estimate obtained from the AND/OR sample tree to obtain

a lower bound on the solution counts [7, 4] in a straight forward way. The main virtue of

of using the AND/OR space estimator over our previous scheme [4] is that the former

may have lower variance (and therefore likely to have better accuracy) than the latter

(for more details, see [5]).

Table 1. Results for Solution Sampling

Problem #Var #Cl SampleSearch SampleSearch-SIR AO-SIR SampleSat

KL KL KL KL

Pebbling

grid-pbl-25 650 1226 0.13 0.027 0.00600 0.138

grid-pbl-30 930 1771 0.15 0.040 0.00170 0.154

Circuit

2bitcomp 5 125 310 0.03 0.003 0.00100 0.033

2bitmax 6 252 766 0.11 0.006 0.00100 0.039

Coloring

Flat-100 300 1117 0.08 0.001 0.00190 0.020

Flat-200 600 2237 0.11 0.016 0.00800 0.030

4 Experimental Results

For lack of space, we present only a part of our empirical results for solution sampling.

Detailed experimental results for both solution sampling and counting are presented in

the extended version of this paper [5]. For solution sampling, we experimented with the

following schemes (a) SampleSearch [3] (b) SampleSearch-SIR [6] (c) SampleSat [9]

and (d) AO-SIR. Table 1 summarizes the results of running each algorithm for exactly

1 hr on various benchmarks. The second and the third column report the number of

variables and clauses respectively. The remaining columns report the KL distance be-

tween the exact and the approximate distribution for various competing schemes. Note

that lower the KL distance the more accurate the sampling algorithm is. We can see

that AO-SIR is more accurate than SampleSearch-SIR on most benchmarks. Also the

SIR-type methods are more accurate than pure SampleSearch and SampleSat.

Acknowledgements This work was supported in part by the NSF under award numbers

IIS-0331707, IIS-0412854 and IIS-0713118 and the NIH grant R01-HG004175-02.

References

1. R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intel-

ligence, 171(2-3):73–106, 2007.

2. Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for con-

straint satisfaction problems. In AAAI, pages 15–21, 2002.

3. Vibhav Gogate and Rina Dechter. A new algorithm for sampling csp solutions uniformly at

random. CP, 2006.

4. Vibhav Gogate and Rina Dechter. Approximate counting by sampling the backtrack-free

search space. In AAAI, pages 198–203, 2007.

5. Vibhav Gogate and Rina Dechter. Approximate solution sampling (and counting) on and/or

spaces. Technical Report, University of California, Irvine, 2008.

6. Vibhav Gogate and Rina Dechter. Studies in solution sampling. AAAI, 2008.

7. Carla Gomes, Jeorg Hoffmann, Ashish Sabharwal, and Bart Selman. From sampling to

model counting. IJCAI, 2007.

8. Donald B. Rubin. The calculation of posterior distributions by data augmentation. Jornal of

the American Statistical Association, 82, 1987.

9. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random

walk strategies. In AAAI, 2004.

