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Abstract. We consider constraint optimization problems where costs
(or preferences) are all given, but some are tagged as possibly unstable,
and provided with a range of alternative values. We also allow for some
uncontrollable variables, whose value cannot be decided by the agent
in charge of taking the decisions, but will be decided by Nature or by
some other agent. These two forms of uncertainty are often found in
many scheduling and planning scenarios. For such problems, we define
several notions of desirable solutions. Such notions take into account not
only the optimality of the solutions, but also their degree of robustness
(of the optimality status, or of the cost) w.r.t. the uncertainty present
in the problem. We provide an algorithm to find solutions accordingly
to the considered notions of optimality, and we study the properties of
these algorithms. For the uncontrollable variables, we propose to adopt
a variant of classical variable elimination, where we act pessimistically
rather than optimistically.

1 Introduction

Constraint programming [2,11] is successfully applied to many application do-
mains. Constraint satisfaction problems are defined by decision variables, do-
mains, and constraints that have to be satisfied. Optimization problems have an
objective function, or they associate costs, or preferences, with partial variable
instantiations, in order to discriminate among the possibly many solutions of the
problem.

Soft constraints [1] are a general formal modelling framework for constraint
optimization problems, where it is possible to express several different optimiza-
tion criteria. For example, both fuzzy constraints and weighted constraints, as
well as MaxCSPs, can naturally be modelled in this formalism.

The specification of a complex constraint optimization problem is a difficult
modelling task, that tries to capture the current knowledge about the constraints
and the costs of the problem. Even when the specification is complete, only some
parts of the problem’s parameters may be certain. Others may be viewed as
unstable due to possible future changes.
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Unstable costs are present in many real-life problems. A typical example is
the budget estimate for next year in a company. Typically, such an estimate is
based on data which is not known or not certain, and most of the times such
uncertainty is represented by using last year’s value (which can be seen as the
default value), plus some range of possible other values around the default value.
For example, one may not have the cost of fuel for next year, but he may know
that last year it was 2 dollars, and usually the new value is never more than
30% higher. As another example, one may have to base some calculation on the
number of pieces that will be produced in the year: a reasonable estimate could
be last year’s number assuming that the new number is within 5% from the old
value. In the first example, the default value is at the lower end of the range,
while in the second example it is in the middle of the range.

Other types of problems where unstable values may occur are when we want
to numerically represent linguistic concepts, such as ”more or less”, ”around”,
”at least”, or ”at most”. In all these cases, the natural formulation is to have a
value and a range around (or above, or below) such a value.

In all these settings, it is often possible to express the instability by a bounding
range of values. As another example, we may have a default cost of 10 for each
piece of a material, with a range from 5 to 15 containing all possible foreseen
alternatives costs.

Even though costs are unstable, we would still like to reason and perform
inference on the given ”default” optimization problem. This is possible in some
cases, as we will see in this paper.

Given constraint optimization problems where some of the costs are tagged
as unstable, we define several notions of desirable solutions, that take into ac-
count not only cost-optimality, but also a form of robustness (of the optimality
status, or of the cost) with respect to the uncertainty present in the problem.
For example, we could desire solutions that are cost-optimal and that remain
optimal even if the unstable costs change. In other scenarios, it could instead
be important to find solutions that are cost-optimal and whose cost does not
increase if the unstable costs change.

Some of the considered notions will yield sets of solutions that can possibly
be empty, while others (usually the least attractive) will always have at least a
single element. For each of the notions of optimality, we provide an algorithm to
find solutions according to that criterion, and we study their properties.

In addition to the notion of instability, we also accomodate the dichotomy
of having some uncontrollable variables, whose value cannot be decided by the
agent, but will be decided by Nature or by some other agent. This yields an
orthogonal form of uncertainty often found in scheduling or temporal problems
[12], where the occurrence of certain events can be decided only by others. For
example, in scheduling the activities of a satellite taking pictures of Earth, we
may have to schedule in advance the best times for taking some pictures of an
area without knowing the local weather conditions (that heavily impacts on the
quality of the pictures), which is decided by Nature.
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To handle the uncontrollable variables, we adopt a variant of classical variable
elimination, where we act pessimistically. This allows processing the uncontrol-
lable variables first, and then working on the controllable part ensuring that the
resulting inferences are safe with respect to the uncontrollable part.

Interestingly, no matter what notion of optimality we use, the complexity of
reasoning with the unstable and uncontrollable problems considered in this paper
do not increase the overall worst case complexity (for complete algorithms). In
particular, if the default problem belongs to a tractable class, even its unstable
and/or uncontrollable version is tractable.

Issues related to those considered in this paper have been studied also in
open CSPs [6] and interactive CSPs [9]. However, in such frameworks the un-
certainty is in the form of missing domain values, and not unstable costs. Also,
in dynamic CSPs [3], variables, domains, and constraints may change over time.
However, no preference range is given, and there are no uncontrollable variables.
Preference ranges are considered in [14], however no default value is given in the
various preference ranges. In [7] only uncontrollable variables are considered, but
no imprecise ranges are given. In [8] some preferences are missing (thus there
are no default value nor preference ranges) and the focus is on preference elicita-
tion to obtain the so-called necessarily optimal solutions (called O-ROB in this
paper). A similar setting can be found in [13] for hard CSPs.

2 Background: Soft Constraints for Optimization
Problems

A soft constraint [1] is just a classical constraint [2] where each instantiation of
its variables has an associated value from a (totally or partially ordered) set.
This set has two operations, which makes it similar to a semiring, and is called
a c-semiring.

More precisely, a c-semiring is a tuple 〈A, +,×,0,1〉 containing a set of pref-
erences A, a combination operation ×, that is useful to combine preferences, and
an additive operator + that induces a partial order ≤ over A. Such an ordering
gives us a way to compare (some of the) tuples of values and constraints. In
fact, when we have a ≤S b, we will say that b is better than a. Thus, 0 is the
worst value and 1 is the best one. The combination operator is intensive, that
is, ∀a, b ∈ A, a × b ≤S a, b.

A c-semiring 〈A, +,×,0,1〉 is said to be strictly monotonic iff the combination
operator × is strictly monotonic, i.e., for every a, b ∈ A, if a < b then, for every
c ∈ A, a × c < b × c.

Given a set of variables V with finite domain D, and a c-semiring 〈A,+,×,0, 1〉,
a soft constraint is a pair 〈def, con〉 where con ⊆ V is the scope of the constraint
and def : D|con| −→ A is the preference function of the constraint associating
to each tuple of assignments to the variables in con either a preference value
ranging between 0 and 1. A soft constraint problem (SCSP) is a triple 〈C, V, D〉,
where C is a set of soft constraints over the variables in V with domain D.
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Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their com-
bination c1 ⊗ c2 is the constraint 〈def, con〉 defined by con = con1 ∪ con2 and
def(t) = def1(t ↓con

con1
) ×def2(t ↓con

con2
)1. In words, combining two constraints

means building a new constraint which involves all the variables of the original
ones and which associates to each tuple of domain values for its variables a spe-
cific semiring element. Such an element is obtained by multiplying the elements
associated by the original constraints to the appropriate subtuples.

It may be useful to eliminate some variables from a constraint, using a no-
tion of projection. Given a subset of variables I ⊆ V , and a soft constraint
c = 〈def, con〉, the projection of c over I, written c ⇓I , is a new soft constraint
〈def ′, con′〉, where con′ = con ∩ I and def(t′) =

∑
{t|t↓con′=t′} def(t). In partic-

ular, the scope, con′, of the projection constraint contains the variables that con
and I have in common, and thus con′ ⊆ con. Moreover, the preference associated
to each assignment to the variables in con′, denoted with t′, is the highest (

∑

is the additive operator of the c-semiring) among the preferences associated by
def to any completion of t′, t, to an assignment to con.

Many known classes of satisfaction or optimization problems can be cast in
this formalism. For example, a classical CSP is just an SCSP where the chosen
c-semiring is: SCSP = 〈{false, true}, ∨,∧, false, true〉. In fact, constraints can
only be either satisfied (true) or violated (false), the logical and models the fact
that we want all the constraints to be satisfied, and the logical or models the
fact that we prefer true to false.

Fuzzy CSPs can be modeled in the SCSP framework by choosing the c-
semiring: SFCSP = 〈[0, 1], max, min, 0, 1〉. This means that preferences are
values between 0 and 1. The max operator shows that we prefer higher values to
lower ones. The min operator says that, when we combine preferences of several
constraints, we take the lowest value. Thus in fuzzy CSPs we want to maximize
the minimum preference. This is a pessimistic approach to preference handling,
that works well in application domains where one needs to be very cautious,
such as medical or space applications.

For weighted CSPs, the semiring is SWCSP = 〈�+, min, +, +∞, 0〉. Here
preferences are interpreted as costs from 0 to +∞, which are combined with the
sum and compared with min. Thus the optimization criterion is to minimize the
sum of the costs.

Given an assignment s to all the variables of an SCSP P = 〈C, V, D〉, we de-
note by pref(s, P ) the preference of s in P , defined as pref(s, P )=

∏
<def,con>∈C

def(s↓con). In words, it is obtained by taking the combination of the preferences
associated to the sub-tuples corresponding to the solution in the constraints. A
complete assignment of values to all the variables is an optimal solution if its pref-
erence is the best one w.r.t. the ordering induced by the additive operator. Thus,
if we are working with fuzzy CSPs, its preference value must be the highest one,
and if we are working with weighted CSPs, its cost must be the lowest. Given an
SCSP P , we denote with Opt(P ) the set of all the optimal solutions of P .

1 By t ↓XY we mean the subtuple obtained by projecting the tuple t (defined over the
set of variables X) over the set of variables Y ⊆ X.
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Semiring-based soft constraints model optimization problems by using pref-
erences in the constraints and combining them via the semiring combination
operator. This induces an ordering over the solutions of the problem, which can
be seen as an objective function. Thus soft constraints can model all objective
functions that are decomposable over the topology of the problem.

Techniques used to find optimal solutions of constraint optimization problems
can be divided into search-based schemes and inference-based schemes [2]. The
most common search-based algorithm for constraint optimization is Branch and
Bound (BB) [2,11]. On the other hand, a very general inference-based algorithm
is Bucket elimination (BE) [5], which may be seen as an extension of adaptive
consistency [2] to optimization problems. Given a linear order over the variables,
in the bucket processing phase, each variable is considered, in one direction of
the order, and it is removed by projecting the combination of the constraints
involving it over all the other variables in such constraints. After all the vari-
ables (but one) have been eliminated, in the forward phase, the variables can be
assigned, following the other direction of the order, and an optimal solution can
be found in polynomial time.

Both techniques have an exponential worst time case complexity. BE, in con-
trast with BB, also needs possibly exponential space, but it can exploit the graph
structure of the problem. For some structures, such as problems with tree-shaped
constraint graphs, optimal solutions can be found in polynomial time [2]. Re-
cent extension of Branch and Bound strategies that explore the AND/OR search
space of a graphical model were shown to allow similar complexity bounds to
inference-based schemes [4,10].

3 Unstable Optimization Problems

We define unstable SCSPs as SCSPs where there may be some unstable pref-
erences. Such preferences are specified by a default value d plus an an interval
[l, u], that contains all possible values that can replace the default value d.

Definition 1 (unstable soft constraint). Given a set of variables V with
finite domain D, and a c-semiring S = 〈A, +,×, 0, 1〉, an unstable soft constraint
is a pair 〈f, con〉 where con ⊆ V is the scope of the constraint and the preference
function of the constraint is f : D|con| −→ A × I, s.t. t �→ (d, [l, u]), where I is
a set of all the intervals of values in A and l ≤S d ≤S u. All tuples mapped into
(d, [l, u]) where l <S u (resp., l = u) are called unstable (resp., stable) tuples and
their preference d is called an unstable (resp., stable) preference.

In what follows, when there is a stable preference, instead of writing (d, [d, d])
we will simply write d. Also, when it is clear from the context, we will omit the
semiring name and we will write ≤ instead of ≤S . Notice that ≤S is not always
the usual ≤ over naturals or reals. In fact, if we are dealing with costs, where
higher means worst in the semiring, we have that c1 ≤S c2 when c2 ≤ c1.

As an example of an unstable constraint using the fuzzy c-semiring 〈[0, 1], max,
min, 0, 1〉, consider V = {X, Y }, D = {a, b}, con = V , and preference function
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f(X = a, Y = a) = 0.1, f(X = a, Y = b) = (0.5, [0.3, 0.6]), f(X = b, Y = a) =
0.6, f(X = b, Y = b) = (0.7, [0.5, 1]).

Instead, as an example of an unstable constraint using the weighted c-semiring
〈�+, min, +, +∞, 0〉, we can consider a constraint with con = V and cost func-
tion g(X = a, Y = a) = 100, g(X = a, Y = b) = (50, [60, 20]), g(X = b, Y =
a) = 80, g(X = b, Y = b) = (30, [50, 10]). Notice that according to the ordering
induced by the weighted c-semiring, we have, for example, 50 < 10, since 10 is
better than 50 in the weighted semiring.

Definition 2 (unstable SCSP). An unstable SCSP (USCSP) is a tuple 〈S, V,
D, C〉, where V is a set of variables with domain D and C is a set of unstable
soft constraints over the variables in V over the c-semiring S.

An USCSP where all the preferences are stable corresponds to an SCSP.

Definition 3 (solution). A solution of an USCSP is an assignment to all its
variables.

We now introduce our running example. Consider the problem related to building
a piece of furniture with some iron. Assume that for iron we may have high,
medium, or bad quality, with costs 50, 30, and 20. We also assume that the
processing time for the piece of furniture is 2 or 3 days, and that the processing
cost depends on the quality of the iron and on how many work days are needed.
This problem can be modelled by an USCSP over the weighted c-semiring with:

– two variables Qi and T representing the quality of the iron and the processing
time, with domains D(Qi) = {b, m, h} and D(T ) = {2, 3};

– an unstable soft constraint on Qi with cost function fi defined by fi(b) = 20,
fi(m) = 30, and fi(h) = 50;

– an unstable soft constraint on Qi and T , with cost function f defined by
f(h, 2) = 10, f(h, 3) = 20, f(m, 2) = (30, [60, 5]), f(m, 3) = (35, [100, 20]),
f(b, 2) = 80, f(b, 3) = 100. Thus, for example, if the iron is of bad quality,
the processing cost is 80 if the work is done in 2 days, and 100 is it is done
in 3 days. Also, if the quality is medium, and the work is done in 2 days,
we expect the processing cost to be 30. However, this value may change
in the range [60, 5]. Similarly, if the work is done in 3 days, we expect the
processing cost to be 35, but it can change in the range [100, 20]. A solution
is, for example, (Qi = h, T = 3): high quality iron is used and three days of
work are needed.

Clearly, not all solutions are equally desirable. In order to discriminate among
them, we will define some optimality notions for USCSPs, as well as algorithms
to handle them. To do this, we start by giving some basic notions which will be
useful in what follows.

Given an USCSP P , a scenario of P is an SCSP obtained from P by replacing
every unstable preference with a value in its range. SC(P ) denotes the set of all
possible scenarios of P .
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In terms of defining the notions of optimality, a special role will be played by
the default scenario, denoted by Pd, where only default values are considered.
Such a scenario represents the problem given by the user when instability is
ignored. Moreover, it will be useful to consider the worst scenario, denoted by Pl,
where only the worst elements in the ranges are considered, and the best scenario,
denoted by Pu, where only the best elements in the ranges are considered. We
will also denote the preference value of the optimal solutions of Pd, Pl, and Pu,
by, respectively, prefd, prefl, and prefu.

In the running example, we have that prefd = 60, obtained by solutions
(Qi = m, T = 2) and (Qi = h, T = 2). Also, prefu = 35, obtained by solution
(Qi = m, T = 2). Finally, prefl = 60, obtained by (Qi = h, T = 2).

4 Optimal and Optimality-Robust Solutions (O-ROB)

The first kind of solutions that we consider are optimal solutions that are robust
w.r.t. optimality. This means that their status of being optimal does not change,
regardless of any variation of the unstable preference values within their ranges.

Such a notion of optimality is useful when it is necessary to adopt a safe
attitude: we want our decision to be optimal no matter what happens to the
unstable parts of the problem.

Definition 4 (O-ROB). Given an USCSP P , a solution is in O-ROB(P )) iff

– it is optimal in Pd, and
– it is optimal in all other P ′ ∈ SC(P ).

Note that these solutions were called necessarily optimal in [8], that considers
problems where every interval is the largest one, and there were no default values.
While considering any range adds expressiveness, the presence of default values
is not important for this notion of optimality. In fact, the above definition could
easily be replaced by an equivalent one (more compact but less easy to relate to
the problem definition) where we only require s to be optimal in all P ′ ∈ SC(P ).
In fact, Pd is just one of the problems in SC(P ).

Proposition 1. Given an USCSP P , the set O-ROB(P ) may be empty.

In fact, in the running example, the optimal solutions of Pd are (Qi = m, T = 2),
and (Qi = h, T = 2). However, (Qi = m, T = 2) is not optimal in Pl, and
(Qi = h, T = 2) is not optimal in Pu. Thus O-ROB(P) is empty.

Algorithm 1 shows a procedure to find solutions in O-ROB(P ).
Find-OROB takes in input an USCSP P and returns either a solution in

O-ROB(P ), or nil. To do this, it computes an optimal solution sl of Pl and
an optimal solution su of Pu, with preferences prefl and prefu. This can be
done via any of the solving techniques for SCSPs (denoted with Solve in the
pseudocode). Then, if prefl = prefu, Find-OROB returns the optimal solution
of Pl, otherwise it returns nil. It is possible to show that Algorithm Find-OROB
is sound, but not complete. Thus, if it returns a solution, it is in O-ROB(P). If
instead it returns nil, this does not necessarily mean that O-ROB(P) is empty.
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Algorithm 1. Find-OROB
Input: an USCSP P ; Output: a solution or nil
(sl, prefl)← Solve(Pl); (su, prefu)← Solve(Pu)
if prefl = prefu then

return sl

else
return nil

Theorem 1. Given an USCSP P, if Find-OROB(P )= sl, then sl∈O-ROB(P ).

Proof. Assume Find-OROB(P ) = sl. Due to the monotonicity of the combi-
nation operator off the semiring, the preference of sl in any scenario can only
be higher than, or equal to, its value prefl in Pl. Since prefl = prefu, this
means that whatever preference values are assigned to unstable tuples within
their ranges, the preference of sl is always prefl and the preference of any other
solution is never greater than prefl. Thus sl is optimal in every scenario, and
therefore it is in O-ROB(P ). Q.E.D.

If Find-OROB(P ) = nil, consider a very simple USCSP P with one variable
X with domain {a, b, c} and with a unary unstable constraint over X with cost
function f(a) = (10, [20, 5]), f(b) = f(c) = 30. It is easy to see that prefu = 5,
prefl = 20, but (X = a) is in O-ROB(P ). Thus Find-OROB(P ) = nil but
O-ROB(P ) is not empty.

Notice that, if prefl = prefu, not every solution of Pu is in O-ROB(P ), since
there might be ways to set the unstable preferences that make that solution not
optimal in some scenarios. This is why we can only take the solutions in Pl.

Algorithm Find-OROB is therefore sound and not complete. However, finding
a solution in O-ROB(P) with algorithm Find-OROB requires just solving two op-
timization problems. In [8] it is shown that this approach is both sound and com-
plete when we restrict the preference ranges to be all equal to the [0,1] interval,
where 0 and 1 are the worst and the best preference values, and prefl > 0.

5 Optimal and Preference-Robust Solutions (P-ROB)

Another kind of optimal solutions that we consider are those that are robust
w.r.t. their preferences. That is, solutions that are optimal in the default scenario,
and that do not require additional cost if the scenario changes. However, they
could loose their optimality status if the scenario changes.

This notion is useful when we act under severe cost restrictions: we would like
our decisions to be optimal at least in the default scenario, and be sure that no
additional cost is needed if the unstable costs turn out to be different from the
default ones.

Definition 5 (P-ROB). Given an USCSP P , a solution s is in P-ROB(P ) iff

– it is optimal in Pd and
– ∀P ′ ∈ SC(P ), pref(s, P ′) ≥ pref(s, Pd) = prefd.
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In words, a solution is in P-ROB(P ) iff it is optimal in Pd and its preference
(prefd) may only improve if the scenario changes. Such solutions are interesting
whenever the optimal cost of the default problem is attractive, and we want to
make sure that in all other scenarios no additional cost will be required.

In the running example, among the optimal solutions of Pd, only (Qi = h, T =
2) is in P-ROB(P ).

Proposition 2. Given an USCSP P , P-ROB(P ) may be empty.

In fact, if we consider the USCSP R obtained from the USCSP defined in the
running example by changing the stable preference of (Qi = h, T = 2) from 10
to 20, the only optimal solution of Rd is (Qi = m, T = 2), but its preference
worsens in Rl. Thus P-ROB(R) is empty.

Algorithm 2 shows a method which, given in input a USCSP P , returns a
solution in P-ROB(P ) if there is any.

Algorithm 2. Find-PROB
Input: an USCSP P ; Output: a solution, or nil
(sl, prefl)← Solve(Pl); (sd, prefd)← Solve(Pd)
if prefd = prefl then

return sl

else
return nil

We will now prove that Algorithm Find-PROB is sound and complete.

Theorem 2. Given an USCSP P , if Find-PROB(P )=s then s ∈ P-ROB(P )
and if Find-PROB(P )=nil then P-ROB(P )=∅.
Proof. Assume Find-PROB(P ) returns a solution s. This happens if and only
if s is optimal in Pl. Since prefd = prefl, and due to monotonicity of the mul-
tiplicative operator of the c-semiring, s is optimal also in Pd. Again due to
monotonicity, ∀P ′ ∈ SC(P ), pref(s, Pd) = pref(s, Pl) ≤ pref(s, P ′). Thus, by
definition, s ∈ P-ROB(P ).

If Find-PROB(P ) returns nil then prefd > prefl, that is, for any optimal so-
lution s of Pd, pref(s, Pd) > pref(s, Pl). This means that P-ROB(P )=∅. Q.E.D.

To find a solution in P-ROB(P) with algorithm Find-PROB, it is enough to solve
two optimization problems. This was true also for Find-OROB, but Find-PROB
is both sound and complete.

6 Optimality-Robust and Preference-Robust Solutions
(OP-ROB)

A solution is robust w.r.t. to both optimality and preferences if it is optimal in
the default scenario, and both its optimality status and its cost do not worsen
if the scenario changes. This is the strongest and most desirable notion.



Robust Solutions in Unstable Optimization Problems 125

This notion of optimality is useful when we have both cost restrictions and
stringent user requirements: the user wants a solutions which is optimal no mat-
ter what, and the company wants to make sure that there is no additional costs
if a scenario different from the default one occurs.

Definition 6 (OP-ROB). Given a USCSP P , a solution s ∈ OP-ROB(P ) iff

– it is optimal in Pd,
– it is optimal in all other P ′ ∈ SC(P ), and
– ∀P ′ ∈ SC(P ), pref(P ′, s) ≥ pref(Pd, s).

It is easy to see that a solution is in OP-ROB(P ) iff it is in O-ROB(P ) ∩
P-ROB(P ). In the running example, since we have shown in Section 4 that
OROB(P ) is empty, also OP-ROB(P ) is empty.

Proposition 3. Given an USCSP P , the set OP-ROB(P ) may be empty.

This follows immediately from the fact that O-ROB(P ) ∩ P-ROB(P ) = OP-
ROB(P ) and that both O-ROB(P ) and P-ROB(P ) may be empty.

To find such solutions, we combine the two procedures Find-OROB and Find-
PROB as shown in Algorithm 3.

Algorithm 3. Find-OPROB
Input: an USCSP P ; Output: a solution s, or nil
(sd, prefd)← Solve(Pd); (sl, prefl)← Solve(Pl); (su, prefu)← Solve(Pu)
if prefd = prefl = prefu then

return sl

else
return nil

Algorithm Find-OPROB, given in input an USCSP P checks if prefd =
prefu = prefl. If this is so, it returns an optimal solution of Pl, otherwise it
returns nil. This method is sound but not complete, as shown in the following
theorem.

Theorem 3. Given an USCSP P , if Find-OPROB(P ) = s, then s ∈ OP-
ROB(P ). If Find-OROB(P )=nil, then OP-ROB(P ) might be not empty.

Proof. If Find-OPROB(P )=s, prefd = prefu = prefl. By Theorem 1, s ∈
O-ROB(P ). Also, by Theorem 2, s ∈ P-ROB(P ). Thus s ∈ O-ROB(P ) ∩ P-
ROB(P ) = OP-ROB(P ).

In order to show that, when Find-OROB(P )=nil, OP-ROB(P ) might be not
empty, let us consider an USCSP P with one variable X with domain {a, b, c} and
with a unary unstable constraint over X with cost function f(a) = (20, [20, 5]),
f(b) = f(c) = 30. It is easy to see that prefu = 5, prefl = prefd = 20, but
(X = a) is in OP-ROB(P ). Thus Find-OROB(P )=nil but OP-ROB(P ) is not
empty. Q.E.D.

Finding a solution in OP-ROB(P) using algorithm Find-OPROB amounts to
solving three SCSPs.



126 M.S. Pini et al.

7 The Best Preference-Robust Solutions (Best-ROB)

Solutions in P-ROB(P) are optimal in the default scenario and their cost never
increases if the scenario changes. If the main focus is avoiding additional costs
when the scenarios changes, rather than the optimality in the default scenario,
we can relax the first requirement. The set of solutions of this kind will be
denoted by Best-ROB(P ). A solution s is in Best-ROB(P ) if its cost in Pd can
only decrease by changing the scenario. Also, among the solutions with such a
property, it is the one with lowest cost in Pd.

Thus, a solution in Best-ROB(P ) could be non-optimal in the default scenario.
However, there is no better solution in Best-ROB(P ) whose cost does not increase
in some other scenarios.

Solutions of this kind are useful, for example, when budget limitations guide
the operations of a company more than solutions quality. In fact, such solutions
assure that no additional cost is needed, although they may sacrifice solution
optimality to achieve this.

Definition 7 (Best-ROB). Given an USCSP P , a solution s ∈ Best-ROB(P )
iff

– s ∈ F = {s| pref(s, Pd) > 0 and ∀P ′ ∈ SC(P ), pref(s, P ′) ≥ pref(s, Pd)}
and

– ∀s′ ∈ F , pref(s, Pd) ≥ pref(s′, Pd).

Notice that, in general, if P-ROB(P) �= ∅, then Best-ROB(P) = P-ROB(P).
This is the case of our running example, where both sets contain only solution
(Qi = h, T = 2).

Proposition 4. Given an USCSP P , the set Best-ROB(P ) may be empty.

To see this, let us consider the USCSP P with one variable X with domain
{a, b, c} and with a unary unstable constraint over X with cost function f(a) =
f(b) = f(c) = (10, [20, 5]). In such a case, all solutions have a cost in Pl which
is strictly higher than that in Pd. Thus Best-ROB(P )=∅.

Algorithm 4 shows the procedure for the strictly monotonic case which uses
an SCSP denoted with Pfix. Pfix is obtained from the USCSP P in input by just
fixing the unstable preferences as follows: for each unstable preference (d, [l, u])
in P , we put in Pfix, 0 if l < d, and d otherwise. The intuition behind the
construction of Pfix is to forbid those tuples associated to preferences that may
worsen w.r.t. their default values when the scenario changes.

Find-BestROBm checks if SCSP Pfix has a solution with preference strictly
better than 0. If so, it returns an optimal solution of Pfix, otherwise it returns
nil. This algorithm to find solutions in Best-ROB(P ) is both sound and complete.

Theorem 4. Given an USCSP P over a strictly monotonic c-semiring, if Find-
BestROBm(P ) = s, s ∈ Best-ROB(P ). Find-BestROBm(P )=nil iff Best-
ROB(P )=∅.
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Algorithm 4. Find-BestROBm
Input: an USCSP P with a strictly monotonic c-semiring; Output: a solution
s, or nil
(s, p)← Solve(Pfix)
if p > 0 then

return s

else
return nil

Proof. Find-BestROBm(P ) = s iff p > 0. We need to show that Opt(Pfix) ⊆
Best-ROB(P ). By construction of Pfix, and due to the strict monotonicity of the
combination operator, we have that, ∀s′ ∈ Opt(Pfix), if pref(s′, Pfix) > 0, then
pref(s′, Pfix) = pref(s′, Pd) and, ∀P ′ ∈ SC(P ), pref(s′, P ′) ≥ pref(s′, Pd).
Thus, since s ∈ Opt(Pfix), it satisfies this property and there is no solution with
a higher preference in Pd satisfying it. This means that s ∈Best-ROB(P ).

Find-BestROBm(P ) = nil iff p = 0, that is, iff all solutions of Pfix have pref-
erence 0. Thus, for all s such that pref(s, Pd) > 0, s �∈ Best-ROB(P). The other
solutions, that have preference 0 in Pd, are not in Best-ROB(P) by definition.
Thus Best-ROB(P) = ∅. Q.E.D.

This theorem shows that algorithm Find-BestROBm is both sound and com-
plete. Finding solutions in Best-ROB(P) using this algorithm (that is, when
the combination operator is strictly monotonic) amounts at solving one SCSP.
However, this algorithm works only when the combination operator is strictly
monotonic. It is possible to define a sound but not complete approach that works
for any c-semiring.

Consider applying BE to scenarios Pd and Pl using the same variable ordering.
At the end of the bucket processing phase [2] in both scenarios, we obtain two
new SCSPs, say P ′

d and P ′
l , where there are additional constraints and possibly

lower preferences in the old constraints. The first variable in the linear order,
say x, has each value, say a, in its domain associated with the highest preference
(or lowest cost) of a solution of the corresponding scenario where x = a.

We then check if there are values for x that have the same preference in
both P ′

l and P ′
d. If this is not the case, we are not able to say anything about

set Best-ROB(P). Otherwise, we pick among such values one, say a, with the
highest preference, say p. Using the forward step of BE applied to x = a in P ′

l ,
assignment x = a can be extended to a solution of P ′

l (and thus of Pl) with
preference p. Due to the monotonicity of the combination operator and to the
fact that x = a has the same preference in P ′

l and P ′
d, such a solution has the

same preference p also in P ′
d (and thus in Pd). Moreover, there is no solution with

this property and a higher preference in Pd. This means that such a solution is
in Best-ROB(P).

This algorithm can always be used, but it is possibly not complete. It requires
to solve two SCSPs with BE to find a solution in Best-ROB(P).
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8 The Most Preference-Robust Optimal Solutions
(ROB-OPT)

Another way to be more tolerant with the conditions of P-ROB(P) is to relax
the second requirement, that is, to maintain optimality in the default scenario
but to allow for a decrease in the preference if the scenario changes. However,
such a decrease should be the smallest possible in the worst scenario. This set
of solution is called ROB-OPT(P).

Definition 8 (ROB-OPT). Given an USCSP P , a solution s ∈ ROB-OPT(P )
iff

– it is optimal in Pd, and,
– for every other optimal solution of Pd, say s′, pref(s, Pl) ≥ pref(s′, Pl).

In words, a solution is in ROB-OPT(P ) if it is optimal in the default scenario
and, among the solutions that are optimal in such a scenario, its preference value
decreases the least in the worst scenario.

Contrarily to all the previous notions of optimality, this set always contains at
least a solution. In general, if P-ROB(P) �= ∅, P-ROB(P) = ROB-OPT(P). This
is the case of our running example, where ROB-OPT(P) = {(Qi = h, T = 2)}.
Proposition 5. Given an USCSP P , ROB-OPT(P) is never empty.

It follows immediately from the fact that the set of optimal solutions of Pd is
never empty.

To find solutions in ROB-OPT(P), we propose a procedure based on defining
a new SCSP. Given an USCSP P , defined over the c-semiring S = 〈A, +,×, 0, 1〉,
we consider the SCSP Pdl with the same variables and constraint topology as
P , and defined over the c-semiring S′ = 〈A×A, lex(+, +), (×,×), (0,0), (1,1)〉.
In such a c-semiring, preferences are pairs which are combined by applying the
combination operator to the corresponding components and which are ordered
lexicographically with the first component being the most important one. In Pdl,
each tuple associated with preference (d, [l, u]) in P is instead associated with
preference (d, l). The intuition behind the definition of Pdl is that, by solving
it, we find solutions which in the first place maximize the combination of the
default preferences, and secondly maximize the combination of the lower bounds
of the ranges of the unstable preferences.

Theorem 5. Given an USCSP P and a solution s = Find-ROBOPT(P ), s ∈
ROB-OPT(P ).

Algorithm 5. Find-ROBOPT
Input: an USCSP P ; Output: a solution s
(s, p)← Solve(Pdl)
return s
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Proof. Since Find-ROBOPT(P ) always returns an optimal solution of Pdl, it is
sufficient to prove that Opt(Pdl) = ROB-OPT(P ). We first show that Opt(Pdl) ⊆
ROB-OPT(P ). Notice that, by construction of Pdl, if a solution s has preference
(d, l) in Pdl, then in Pd it has preference d and l in Pl. Given a solution s ∈
Opt(Pdl) with preference (d, l), for every other solution s′ of Pdl with preference
(d′, l′), it must be that d ≥ d′. Thus, s ∈ Opt(Pd). Moreover, for every other
solution s′′ with preference (d, l′′), it must be that l ≥ l′′. Thus s ∈ ROB-
OPT(P ).

Next we show that ROB-OPT(P ) ⊆ Opt(Pdl). If s ∈ ROB-OPT(P ), it is
optimal in Pd and thus, in Pdl, it is among the solutions with a maximal first
component. Moreover, among the optimal solutions of Pd, s is one of the solutions
with the highest preference in Pl. This means that among those with the maximal
first component in Pdl, it has the highest second component. This corresponds
to being undominated w.r.t. the ordering induced by lex(+, +). Q.E.D.

9 USCSPS with Uncontrollable Variables

In unstable SCSPs all the variables are decided by the deciding agent. The only
form of uncertainty is the presence of the preference ranges around the default
values. However, in many real-life settings, there are also variables which are
uncontrollable, that is, their value cannot be chosen by the deciding agent. Such
a value will be decided by some other agent or by Nature. Typical examples are
times of events related to weather changes. For example, we don’t know when
the clouds will disappear.

We will now consider the presence of some of this kind of variables in an
unstable SCSP. In this generalized setting, the variables V of the problem will
be partitioned in two sets, namely Vc and Vu, containing, respectively, the con-
trollable and the uncontrollable variables. In this paper we assume to have no
information on the uncontrollable variables besides their domain values. For ex-
ample, we don’t have a probability, and not even a possibility, distribution over
such a domain.

There are many ways to reason with uncontrollable variables, which depend on
the attitude to risk of the agent. Examples are the notions of strong, weak, and
dynamic controllability in temporal reasoning [12]. Here we adopt a pessimistic
approach (which follows the same principle as for strong controllability), where
we want to make sure that the cost of the decision we take over the control-
lable part of the problem is guaranteed not to increase when the uncontrollable
variables are instantiated.

To achieve this, we first eliminate the uncontrollable variables one at a time in
a linear order. For each variable v in Vu, we consider all constraints c1, . . . , cn con-
necting v to other variables, say v1, . . . , vm, and we build a new constraint c con-
necting v1, . . . , vm, whose preference function f is defined as follows:
f(d1, . . . , dm) = Πd∈D(v)Π

n
i=1li(ti, d), where di is the subtuple of (d1, . . . , dm)

involving only values for the variables in con(ci), and li(ti, d) is the lower element
of the range associated to tuple (ti, d) by the preference function of constraint
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ci. In words, we associate to tuple (d1, . . . , dm) the greatest lower bound of the
preferences that can be obtained by extending this tuple to any value in the
domain of v.

Notice that this procedure can be seen as a variant of BE where we take the
worst case rather than the best one (as is done in the projection step).

Uncontrollable variables are eliminated one at a time, until only controllable
variables are left. Given an USCSP P with uncontrollable variables, we denote
by cont(P ) the resulting USCSP obtained by applying this procedure to P .

Theorem 6. Consider an USCSP P with controllable variables Vc and uncon-
trollable variables Vu. For any assignment s to the variables in Vc, and any
assignment s′ to the variables in Vu, pref(s, cont(P )) ≤S pref((s, s′), P ), where
S is the c-semiring over which P is defined.

Proof. It follows by monotonicity and intensivity of the × operator of the semir-
ing. Q.E.D.

We can therefore reason on an unstable SCSP P with uncontrollable variables
by first eliminating all uncontrollable variables, thus obtaining cont(P ), and
then by reasoning on cont(P ) according to any one of the optimality/robustness
criteria defined in the previous sections. No matter what solution we end up
with, we are sure that no additional cost will be needed when the values of
the uncontrollable variables will be known. For example, if we choose to use O-
ROB, we find a solution of the controllable part which is optimal for the default
scenario and remains optimal even if the unstable preferences change, and whose
preference level cannot decrease because of how Nature decides to instantiate the
uncontrollable variables.

10 Final Considerations and Future Work

For most of the notions of optimality considered in this paper, for which we
give sound and complete algorithms, finding an optimal solution for an unstable
SCSP P requires solving at most three SCSPs. This means that, to handle the
kind of uncertainty modelled by preference ranges and default values, we don’t
change the complexity class. In particular, for example, if the default problem
belongs to a tractable SCSP class, this is also true for any unstable SCSP with
the same topology.

We did not consider probability distributions over the ranges of the possible
values for the unstable costs. We believe there are several application domains
where probabilistic reasoning is not suitable, and one would rather prefer to
reason with exact, although unstable, information. However, we also envision
domains where it makes sense to consider the expected utility of a solution or
a scenario, and to take decisions based on such concepts. We plan to study this
adaptation of our work.

We also plan to implement the algorithms to obtain the several notions of
optimal solutions defined in this paper, and also to test experimentally how
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many times those notions that may return an empty set actually do this. While
these notions seems to be less appealing because there may be none of them,
it may be that in certain application domains, or in classes of problems with a
certain structure, there are always some of them.
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