
Finding All Solutions

if You can Find One

Rina Dechter�

Information and Computer Science

University of California, Irvine

dechter@ics.uci.edu

Alon Itai

Computer Science Department

Technion, Haifa, Israel

and

AT&T Bell Laboratories

itai@research.att.com

Septemeber, 1992

Abstract

We address the problem of enumerating (producing) all models of a given theory.
We show that the enumeration task can be performed in time proportional to the
product of the number of models and the e�ort needed to generate each model in iso-
lation. In other words, the requirement of generating a new solution in each iteration
does not in itself introduce substantial complexity. Consequently, it is possible to
decide whether any tractably satis�able formula has more than K solutions in time
polynomial in the size of the formula and in K. In the special cases of Horn formulas
and 2-CNFs, although counting is #P-complete, to decide whether the count exceeds
K, is polynomial in K.

�This work was partially supported by NSF grant IRI-9157636 and by the Air Force O�ce of Scienti�c

Research, AFOSR 900136.

0

1 Introduction

Finding all satisfying models for a formula in conjunctive normal form (CNF), or even
deciding whether a satisfying model exists (the satis�ability task), is known to be NP-
hard. There are, however, special cases, such as 2-CNFs and Horn formulas, for which
satis�ability is tractable, and a natural question is whether the task of �nding all models
is tractable as well.

Counting is important for several reasons. First, counting is often the most natural way
of verifying equivalence between two theories. Second, it can provide degree of closeness
between a theory and its approximation [10, 1]. Third, counting can provide heuristics for
guiding planning and search, where we wish to estimate the probability that a given search
avenue would lead to a goal. The number of solutions found in a simpli�ed version of the
problem description can then serve as an estimate of this probability [3].

In this paper we will explicate the relationship between the complexity of �nding one
model and �nding all models. We will show that the time required for computing all
models is proportional to the product of three factors: the number of models, the time to
�nd one model, and the number of literals in the given theory. This result is then extended
to constraint satisfaction problems, where theories are stated as conjunctions of relations
on multivalued variables.

From the result above, we can immediately conclude that counting the number of models
(or solutions) can also be accomplished in time proportional to the number of models. This
result somewhat mitigates the negative �nding of [8] stating that in many cases (e.g., Horn
theories and 2-CNFs) counting is #P-complete. Whereas this negative result suggests that
counting cannot be accomplished without enumeration, our result shows that enumeration
itself is no harder then listing its output.

2 Preliminaries

We denote propositional symbols, also called variables, by uppercase lettersP;Q;R;X; Y; Z; :::,
propositional literals (i.e., P;:P) by lowercase letters p; q; r; x; y; z; :::; and disjunctions of
literals, or clauses, by �; �; :::. The complement operator � over literals is de�ned as usual:
If p = :Q, then � p = Q; If p = Q, then � p = :Q. Alternatively, we will allow the
notation P = 1 (same as P) or P = 0 (same as :P). A formula in CNF is a set of
clauses ' = f�1; :::; �tg, and it denotes their conjunction (�1^; :::;^�t). The models of a
formula ', M('), (also called solutions) is the set of all satisfying truth assignments to
all its symbols. A Horn formula is a CNF formula in which each clause has at most one
positive literal. A k-CNF formula is a CNF formula in which clauses are all of length k or
less.

A constraint network [11, 4], to be de�ned below, is a generalization of CNF formulas.

1

First, each variable Xi, instead of being either 0 or 1, may take a value from a �nite domain
Di. Next, a relation over the variables Xi1 ; . . . ;Xij is a subset of the Cartesian product
Di1 � . . .�Dij . (Each element of the relation is called a tuple.)

A constraint network is a set fR1; . . . ; Rmg of such relations, and its models or solutions
are all tuples (a1; . . . ; an) 2 D1 � . . .�Dn such that for every j, if Rj is over the variables
Xj1 ; . . . ;Xjr , then (aj1 ; . . . ; ajr) 2 Rj . We say that the network represents the unique
relation rel(N) over X, which is all its consistent assignments, (called solutions).

A constraint network can be associated with a constraint graph in which each node
represents a variable and variables appearing in the same constraint are connected.

Each CNF formula is a constraint network with each Di = f0; 1g, and each clause is
the relation consisting of all the tuples for which at least one literal of the clause received
the value 1. The solutions of the formula is the set of all satisfying truth assignments.

3 The Complexity of Finding All Solutions

Let ' = '(x1; :::; xn) be a CNF formula. We will show an algorithm, �nd-all-solutions ('),
for enumerating the set of all ''s models. The running time Tall(') of �nd-all-solutions(')
is proportional to the number of models jM(')j, to the time for �nding one model T1('),
and to the number of literals n. Find-all-solutions (') computes all models of ' using a
procedure for �nding one model, solve('), as its basic subroutine. If ' is satis�able, then
solve(') returns a satisfying truth assignment; otherwise, it returns false. The notation
solve('; l1; :::; li) is a shorthand for solve(' [fl1; :::; lig).

The algorithm �nd-all-solutions('), described below, uses a procedure, �nd-next-sol(',
l1; ::; ln), that enumerates the solutions in a dynamic lexicographic (DL) ordering. Ac-
cording to this ordering, the �rst solution is chosen arbitrarily, and the solution generated
following li = (l1; :::; ln) has the largest common pre�x with li relative to all the remaining
solutions. In formal terms;

De�nition 1: (common-pre�x)
Let s = (s1; :::; sn) and t = (t1; :::; tn) be two n-tuples of values from a common domain.
We say that common-pre�x(s; t) = p i� si = ti ;8 1 � i � p, and sp+1 6= tp+1.

De�nition 2: (DL ordering)
Given a relation � on n variables, a DL ordering of the tuples in � is constructed as follows:

1. Select the �rst tuple t1 arbitrarily.

2. Given that t1; t2; :::; ti�1 were already selected, choose ti such that

common-prefix(ti�1; ti) = max
j2��ft1;:::;ti�1g

(common-prefix(ti�1; tj)):

2

�nd-all-solutions (')

1. for i=1 to n marki = 0. (Initialize marking)

2. old-solution (= true

3. until old-solution 6= nil do

� new-solution (= �nd-next-sol(' , old-solution)

� print new-solution

� old-solution (= new-solution

�nd-next-sol(', l1; :::; ln)

1. for i = n to 1 do

� if marki = 0 do

� if solve(' , l1; :::; li�1;� li) 6= false then

� marki (= 1 and 8 j > i markj (= 0. (Update marking), and

� return solve(' , l1; ::; li�1;� li)

� else, i = i� 1

2. end.

3. return nil (no next solution)

Figure 1: Algorithm �nd-all-solutions(') and algorithm �nd-next-sol('; l1; :::; ln)

3

In order to ensure that each solution is produced only once, the algorithm uses a global
marking vector of length n whose entries are 0,1. When a marking of entry i, marki, is
0, it indicates that for the current solution l1; l2; :::; ln, the set of models beginning with
l1; l2; :::; li�1 � li has not yet been generated, and 1, otherwise. We can view the vector
mark as an n-bit binary counter, forcing the solutions to be produced in lexicogrpahical
order. To prove that the algorithm �nd-all-solutions(') in Figure 1 is correct, we need two
more de�nitions.

De�nition 3: (literal-closure)
Let ' be a CNF formula, and let l1; :::; lt be a subset of literals in its language. The literal-
closure of ' relative to l1; :::; lt, denoted lc('; l1; :::; lt), is a CNF formula '0, obtained by
repeatedly applying the following two operations to ', for each literal li and for each clause
� 2 ':

1. If li 2 �, delete � from ' (the clause is already satis�ed).

2. If � li 2 �, then eliminate � li from � (� li cannot satisfy �).

Lemma 1: Let '0 = lc('; l1; :::; lt). Then,

1. The models of '0 coincide with the models of ' [fl1; :::ltg after projecting out the
propositional symbols in fl1; :::; ltg.

2. The formula '0 is shorter than '.

3. lc('; l1; :::; lt) can be constructed in linear time.

Proof: Clear. 2

De�nition 4: (literal-closed)
A class of CNF formulas, �, is literal-closed i� 8' 2 � and 8fl1; :::; lrg in the language of
', the formula lc('; l1; :::; lr) 2 �.

Theorem 1: Let ' be a CNF formula in � that is literal-closed, and let solve(') be
a procedure for answering satis�ability of any formula in �. Then, algorithm �nd-all-
solutions (') enumerates all the models of '.

Proof: The procedure solve('; l1; :::; li) can be executed by �rst constructing the formula
'0 = lc('; l1; :::; lt) and then applying solve('0). Since � is literal-closed, solve('0) 2 � is
well de�ned. Since the algorithm generates the models in a DL ordering, it is guaranteed
not to miss any model. 2

4

Theorem 2: Let � be a class of literal-closed CNF's whose satis�ability can be determined
in O(T (j'j)), when j'j is the size of '. Then, the complexity of �nding all models of any
member ' of � is O(jM(')j � T (j'j) � n).

Proof: There are at most n failures between consecutive solution generations (see step
2 of �nd-next-sol). Each such trial is a satis�ability task of the formula ' [fl1; :::; lig. This
can be accomplished by �rst constructing '0 = lc('; l1; :::; li) and then solving '0. Since
'0 2 � is shorter than ', this step takes O(T (j'j) + j'j). But, since satis�ability is linear
at best, it amounts to O(T (j'j)). Consequently, the total time for �nding all solutions is
O(jM(')j � T (j'j) � n). 2

We can now apply Theorem 2 to classes of tractable formulas such as Horn formulas
and 2-CNFs.

Corollary 1: Let ' be either a Horn formula or a 2-CNF formula de�ned on n variables.
Then, enumerating the models of ' takes O(j'j � jM(')j � n).

Proof: Since Horn formulas and 2-CNFs are literal-closed, it follows from Theorem 2
and from the fact that satis�ability is linear for Horn formulas [7] and 2-CNFs [5], that
the claim holds. 2

We next generalize these results to constraint networks while avoiding some of the
details. We will use n to denote the number of variables, k to bound the domain sizes, and
c as the number of constraints.

De�nition 5: (instantiation-closed)
A class of constraint networks C is instantiation-closed i�, 8 N 2 C and for every partial
instantiation x = f(X1 = x1); :::; (Xi = xi)g, the network N 0 = N [f(Xj = xj)j(Xj =
xj) 2 xg can be transformed in linear time to a shorter equivalent network N 00 that is also
in C.

Theorem 3: Let C be a class of constraint networks, such that for all N 2 C, the
consistency of N can be determined in time T (jN j). If C is instantiation-closed, then the
complexity of �nding all solutions of any N 2 C is bounded by O(jrel(N)j�T (jN j)�n(k�1)).

Proof: The DL ordering can be generalized for the multi-valued case by imposing
an ordering on the domain of each variable. Then, algorithm �nd-all-solutions can be
modi�ed to generate all the solutions in this DL ordering. In this case the entries of the
marking vector will contain viable candidate values that still need to be tried for each
variable, relative to its past. The marking updating is essentially the same, except that
if relation Ri is over the domain Di, then marki assumes the values 0::jDij � 1, and
instead of a binary counter we use a counter of mixed radix. The algorithm's complexity
is O(jrel(N)j � T (jN j) � n(k � 1)). 2

5

Corollary 2: Let C be a class of instantiation-closed constraint networks, and K be a
constant. If the consistency of N 2 C can be decided in polynomial time, then deciding
whether N has at least K solutions is polynomial as well. 2

Some classes of tractable constraint networks have tighter bounds for counting then
those suggested by Theorem 3. For example, it is known that constraint networks whose
constraint graphs have an r-vertex cycle-cutset1 can decide consistency in O(nkr+2) steps,
while their solutions can be enumerated in O(jrel(N)jjN j + nkr+2). Similarly, constraint
networks having an induced width2 that is bounded by r can decide consistency inO(nkr+1)
steps, while their solutions can be enumerated in O(jrel(N)jjN j + nkr+1) [2, 4]. Theorem
3, however, yields bounds that are much higher. For instance, for networks having a cycle-
cutset of size less or equal to r, Theorem 3 bounds the enumeration task by O(n � kr+2 �
jrel(N)j � n(k � 1)). Likewise, the complexity of enumerating all solutions for constraint
networks N having a bounded induced width r is O(n � kr+1 � jrel(N)j � n(k � 1)).

4 Conclusion

The main result of this paper is a method of enumerating all models of a given theory in
time proportional to the product of the number of models and the e�ort needed to generate
each model in isolation. This yields a polynomial time procedure to decide whether any
tractably satis�able formula has more then K solutions. Thus, in the special cases of Horn
formulas and 2-CNFs, although counting is #P-complete, to decide whether the count
exceeds K, is polynomial.

The signi�cance of this result shows up in theory formation applications where it is
required to �nd a Horn expression that approximates a stream of observations [1]. In this
application counting enables us to ascertain whether the approximate theory describes the
observations precisely.

1A cycle-cutset of a graph is a set of nodes that break all the graph's cycles.
2The width of a chordal graph is the size of its maximal clique. The induced width of an arbitrary

graph is the minimal width among all the chordal graphs within which the input graph can be embedded.

6

References

[1] Dechter R. and Pearl J., \Structure identi�cation in relational data". In The Canadian
Arti�cial Intelligence Conference, May 1992, Vancouver, British Columbia

[2] Dechter R., \Enhancement schemes for constraint processing: Backjumping, learning
and cutset decomposition". In Arti�cial Intelligence, 41(3), 1990, 273-312.

[3] Dechter R., \Network-Based heuristics for constraint satisfaction problems" Arti�cial
Intelligence 34(1), 1987, 1-38.

[4] Dechter R., \Constraint Networks" In Encyclopedia of Arti�cial Intelligence, (2nd Ed.),
1992, Wiley and Sons, pp. 276-285.

[5] Even S., Itai A., and Shamir A., \On the Complexity of Timetable and Multi-
Commodity Flow". SIAM J. on Computing, 5, 691-703, (1976).

[6] Garey M. R., and Johnson D. S., Computers and Intractability { A guide to the theory
of NP-completeness, W.H. Freeman, 1978.

[7] Itai A., and Makowsky J. A., \Uni�cation as a Complexity Measure for Logic Program-
ming". J. of Computational Logic 4(2), 105-117, (1987).

[8] Valiant L. G., \The complexity of enumeration and reliability problems", SIAM J.
Comput, 8(3), 1979, 410-421.

[9] Valiant L. G., \The complexity of computing the permanent", Theoretical computer
science, 8, 1979, 181-201.

[10] Sellman B. and Kautz H., \Knowledge compilation using Horn approximation". In
Proceedings of AAAI-91, Anaheim, CA, 1991.

[11] Maier D., The Theory of Relational Databases, Rockville, MD: Computer Science
Press, 1983.

7

