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Abstract

Symmetric networks designed for energy minimization such as Boltz-
man machines and Hop�eld nets are used frequently for optimization,
constraint satisfaction and approximation of NP-hard problems. Nev-
ertheless, �nding a global solution (i.e., a global minimum for the en-
ergy function) is not guaranteed and even a local solution may take an
exponential number of steps. We propose an improvement to the stan-
dard local activation function used for such networks. The improved
algorithm guarantees that a global minimum is found in linear time
for tree-like subnetworks. The algorithm is uniform and does not as-
sume that the network is tree-like. It can identify tree-like subnetworks
even in cyclic topologies (arbitrary networks) and avoid local minima
along these trees. For acyclic networks, the algorithm is guaranteed to
converge to a global minimum from any initial state of the system (self-
stabilization) and remains correct under various types of schedulers.
For general (cyclic) topologies, we show how our tree-like algorithm can
be extended using the cycle-cutset idea. The general algorithm opti-
mizes tree-like subnetworks and has some performance guarantees that
are related to the size of the network's cycle-cutset. In any case, the
algorithm performs no worse than the standard algorithms. On the neg-
ative side, we show that in the presence of cycles, no uniform algorithm
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exists that guarantees optimality even under a sequential synchronous
scheduler. In addition, no uniform algorithm exists to optimize even
acyclic networks when the scheduler is asynchronous.
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1 Introduction

Symmetric networks such as Hop�eld networks, Boltzmann machines, mean-
�eld and Harmony networks are frequently used for optimization, constraint
satisfaction and approximation of NP-hard problems [Hop�eld 82], [Hop�eld 84],
[Hinton, Sejnowski 86], [Peterson, Hartman 89], [Smolensky 86], [Brandt et al. 88].
These models are characterized by a symmetricmatrix of weights and a quadratic
energy function that should be minimized. Usually, each unit computes the
gradient of the energy function and updates its own activation value so that
the free energy decreases gradually. Convergence to a local minimum is guar-
anteed although in the worst case it is exponential in the number of units
[Kasif et al. 89], [Papadimitriou et al. 90].

In many cases the problem at hand is formulated as a minimization problem
and the best solutions (sometimes the only solutions) are the global minima
[Hop�eld, Tank 85],[Ballard et al. 86], [Pinkas 90b]. The desired algorithm is
therefore one that manages to reduce the impact of shallow local minima and
improve the chances of �nding a global minimum. Some models such as Boltz-
mann machines and Harmony nets, use simulated annealing to escape from
local minima. These models asymptotically converge to a global minimum,
meaning that if the annealing schedule is slow enough, a global minimum is
found. Nevertheless, such a schedule is hard to �nd and therefore, in practice,
these networks are not guaranteed to �nd a global minimum even in exponen-
tial time.

In this paper we look at the topology of symmetric neural networks. We
present an algorithm that �nds a global minimum for acyclic networks and
optimizes a tree-like subnetwork in linear time. We then extend it to general
topologies by dividing the network into �ctitious tree-like subnetworks.

Partially, the algorithm is based on a dynamic programming algorithm that
belongs to the family of nonserial dynamic programmingmethods [Bertel�e, Brioschi 72].
This dynamic programming method was adapted also in [Dechter et al 90] for
constraint optimization.

Our adaptation is connectionist in style; i.e., the algorithm can be stated as
a simple, uniform activation function [Rumelhart et al. 86], [Feldman, Ballard 82]
and it can be executed in parallel architectures using synchronous or asyn-
chronous scheduling policies. It does not assume the desired topology (acyclic)
and performs no worse than the standard local algorithms for all topologies.
In fact, it may be integrated with many of the standard algorithms in such a
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way that the new algorithm out-performs the standard algorithms by avoiding
local minima along the identi�ed tree-like subnetworks.

Our algorithm is also applicable to a recent class of greedy algorithms
called local repair algorithms, that are applied to optimization and constraint
satisfaction problems. Usually (in local repair techniques), the problem at
hand is formulated as a minimization of a distance function that measures
the distance between the current state and the goal state (the solution). The
algorithm picks a setting for the variables and then repeatedly changes the
variable that causes the maximal decrease in the distance function. For exam-
ple, a commonly used distance function for constraint satisfaction problems
is a function that counts the number of violated constraints. A local repair
algorithm may be viewed as an energy minimization network: the problem
variables are the nodes, whereas, a node is connected to variables whose val-
ues are needed to determine the e�ect of changing the node's value on the
distance function. The distance function plays the role of the energy func-
tion. Local repair algorithms, are sequential though, and they use a greedy
scheduling policy whereby the next node to be activated is the one leading to
the largest change in the distance (i.e., energy). Recently, such local repair
algorithms were successfully used on various large-scale hard problems such
as 3-SAT, n-queen, scheduling and constraint satisfaction [Minton et al 90],
[Selman et al. 92].

Since local repair algorithms may be viewed as sequential variations on
the energy paradigm, it is reasonable to assume that improvement to energy
minimization will also be applicable to local-repair algorithms.

Our negative results on energy minimization involve conditions on the par-
allel model of execution and are applicable only to the parallel versions of local
repair (where each problem variable is allocated a processing unit). This paper
is a revised version and an extension of [Pinkas, Dechter 92].

The paper is organized as follows: Section 2 discusses connectionist en-
ergy minimization. Section 3 presents the new algorithm and gives an exam-
ple where it out-performs the standard local algorithms. Section 4 discusses
negative results, convergence under various schedulers and self-stabilization.
Section 5 extends the approach to general topologies and suggests future re-
search. Section 6 discusses applications that produce networks that are mostly
cycle-free. Section 7 summarizes.
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2 Connectionist energy minimization

Given a quadratic energy function of the form:

E(X1; :::;Xn) = �
nX
i<j

wi;jXiXj �
nX
i

+�iXi:

Each of the variables Xi may have a value of zero or one called the activation
value, and the task is to �nd a zero/one assignment to the variables X1; :::Xn

that minimizes the energy function. To avoid confusion with signs, we will
consider the equivalent problem of maximizing the goodness function:

G(X1; :::;Xn) = �E(X1; :::;Xn) =
X
i<j

wi;jXiXj +
X
i

�iXi (1)

In connectionist approaches, we look at the network that is generated by
assigning a node (i) for every variable (Xi) in the function, and by creating
a weighted arc (with weight wi;j) between node i and node j, for every term
wi;jXiXj. Similarly, a bias �i is given to unit i, if the term �iXi is in the
function. For example, �gure 2-a shows the network that corresponds to the
goodness function E(X1; :::;X5) = 3X2X3�X1X3+2X3X4� 2X4X5� 3X3�
X2 + 2X1. Each of the nodes is assigned a processing unit and the network
collectively searches for an assignment that maximizes the goodness. The
algorithm that is repeatedly executed in each unit/node is called the activation
function. An algorithm is uniform if it is executed by all the units.

We give examples for two of the most popular activation functions for
connectionist energy minimization: the discrete Hop�eld network [Hop�eld 82]
and the Boltzmann machine [Hinton, Sejnowski 86].

In the discrete Hop�eld model, each unit computes its activation value
using the formula:

Xi =

(
1 i�

P
j wi;jXj � ��i

0 otherwise

In Boltzmannmachines the determination of the activation value is stochas-
tic and the probability to set the activation value of a unit to one is:

P (Xi = 1) = 1=(1 + e�(
P

j
wi;jXj+�i)=T ), where T is the annealing temperature.

Both approaches may be integrated with our topology-based algorithm;
i.e., nodes that cannot be identi�ed as parts of a tree-like topology use one of
the standard local algorithms.
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3 The algorithm

3.1 Key idea

We assume that the model of communication between neighboring nodes is
a shared memory, multi-reader, single-writer model. We also assume that
scheduling is done with a central scheduler (synchronous) and that execution
is fair. In a shared memory, multi-reader single-writer each unit has a shared
register called the activation register. A unit may read the content of the
registers of all its neighbors but write only its own. Central scheduler means
that the units are activated one at a time in an arbitrary order.1 An execution
is said to be fair if every unit is activated in�nitely often. We do not require
self-stabilization initially. Namely, algorithms may have an initialization step
and can rely on initial values. Later we will examine the conditions under
which the algorithm is also self-stabilized.

The algorithm identi�es parts of the network that have no cycles (tree-like
subnetworks), and optimizes the free energy on these subnetworks. Once a
tree is identi�ed, it is optimized using a dynamic programming method that
propagates values from leaves to a root and back.

Let us assume �rst that the network is acyclic; any such network may be
directed into a rooted tree. The algorithm is based on the observation that
given an activation value (0/1) for a node in a tree, the optimal assignments for
all its adjacent nodes are independent of each other. In particular, the optimal
assignment to the node's descendants are independent of the assignments for
its ancestors. Therefore, each node i in the tree may compute two values:
G1

i is the maximal goodness contribution of the subtree rooted at i, including
the connection to i's parent whose activation is one. Similarly, G0

i is the
maximal goodness of the subtree, including the connection to i's parent whose
activation value is zero. The acyclicity property will allow us to compute each
node's G1

i and G0
i as a a simple function of its children's values, implemented

as a propagation algorithm initiated by the leaves.
Knowing the activation value of its parent and the values G0

j ; G
1
j of all its

children, a node can compute the maximal goodness of its subtree. When the
information reaches the root, it can assign a value (0/1) that maximizes the

1Standard algorithms need to assume the same condition in order to guarantee conver-
gence to a local minimum (see [Hop�eld 82]). This condition can be relaxed by restricting
that only adjacent nodes are not activated at the same time (mutual exclusion).

4



goodness of the whole network. The assignment information propagates now
toward the leaves. Knowing the activation value of its parent, a node can
compute the preferred activation value for itself. At termination (at stable
state), the tree is optimized.

The algorithm has 3 basic steps:
1) Directing a tree: knowledge is propagated from leaves toward the center
so that after a linear number of steps, every unit in the tree knows its parent
and children.
2) Propagation of goodness values: the values (G1

i and G0
i ), are propa-

gated from leaves to the root. At termination, every node knows the maximal
goodness of its subtree and the appropriate activation value it should assign
given that of its parent. In particular, the root can now decide its own acti-
vation value so as to maximize the whole tree.
3) Propagation of activation values: starting with the root, each node in
turn determines its activation value. After O(depth of tree) steps, the units
are in a stable state which globally maximizes the goodness.

Each unit's activation register consists of the following �elds: Xi: the
activation value; G0

i and G1
i : the maximal goodness values; and (P 1

i ; ::; P
j
i ): a

bit for each of the j neighbors of i that indicates i's parent.

3.2 Directing a tree

The goal of this algorithm is to inform every node of its role in the network
and its child-parent relationships. Nodes with a single neighbor identify them-
selves as leaves �rst and then identify their neighbor as a parent (point to it).
A node identi�es itself as a root when all neighbors point toward it. When a
node's neighbors but one point toward it, the node selects the one as a parent.
Finally, a node that has at least two neighbors not pointing toward it, identi-
�es itself as being outside the tree.

The problem of directing a tree is related to the problem of selecting a
leader in a distributed network, and of selecting a center in a tree [Korach et. al, 84].
Our problem di�ers (from general leader selection problems) in that the net-
work is a tree. In addition we require our algorithms to be self-stabilized. A
related self-stabilizing algorithm appears in [Collin et al. 91]. That algorithm
is based on �nding a center of the tree as the root node and therefore creates
more balanced trees. The advantage of the algorithm presented here is that it
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Figure 1: Directing a tree: a) A tree b) A cyclic network with a tree-like
subnetwork.

6



3.3 Propagation of goodness values

In this phase every node i computes its goodness values G1
i and G0

i , by prop-
agating these two values from the leaves to the root (see �gure 2).
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Figure 2: a) Propagating goodness values. b) Propagating activation values.

Given a node Xi, its parent Xk and its children, children(i) in the tree,
it can be shown, based on the energy function (1), that the goodness values
obey the following recurrence:

GXk
i = maxXi2f0;1gf

X
j2children(i)

Gxi
j + wi;kXiXk + �iXig

Consequently a nonleaf node i computes its goodness values using the goodness
values of its children as follows: If Xk = 0, then i must decide between setting
Xi = 0, obtaining a goodness of

P
j G

0
j , or setting Xi = 1, obtaining a goodness

of
P

j G
1
j + �i. This yields:

G0
i = maxf

X
j2children(i)

G0
j ;

X
j2children(i)

G1
j + �ig

Similarly, when Xk = 1, the choice between Xi = 0 and Xi = 1, yields:

G1
i = maxf

X
j2children(i)

G0
j ;

X
j2children(i)

G1
j + wi;k + �ig

The initial goodness values for leaf nodes can be obtained from the above (no
children). Thus, G0

i = maxf0; �ig, G1
i = f0; wik + �ig.
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For example: If unit 3 in �gure 2 is zero then the maximal goodness con-
tributed by node 1 is G0

1 = maxX12f0;1gf2X1g = 2 and is obtained at X1 = 1.
Unit 2 (when X3 = 0) contributes G0

2 = maxX22f0;1gf�X2g = 0 obtained
at X2 = 0, while G1

2 = maxX22f0;1gf3X2 � X2g = 2 is obtained at X2 = 1.
As for nonleaf nodes, if X4 = 0, then when X3 = 0, the goodness contribu-
tion will be

P
k G

0
k = 2 + 0 = 2, while if X3 = 1, the contribution will be

�3 +
P

k G
1
k = �3 + 1 + 2 = 0. The maximal contribution G0

3 = 2 is achieved
at X3 = 0.

3.4 Propagation of activation values

Once a node is assigned an activation value, all its children can activate them-
selves so as to maximize the goodness of the subtrees they control. When such
value is chosen for a node, its children can evaluate their activation values,
and the process continues until the whole tree is assigned.

There are two kinds of nodes that may start the process: a root which will
choose an activation value to optimize the entire tree, and a non-tree node
which uses a standard activation function.

When a root Xi is identi�ed, if the maximal goodness is
P

j G
0
j , it chooses

the value \0." If the maximal goodness is
P

j G
1
j + �i, it chooses \1." In

summary, the root chooses its value according to:

Xi =

(
1 i�

P
j G

1
j + �i �

P
j G

0
j

0 otherwise

In �gure 2 for example, G1
5+G1

3+0 = 2 < G0
5+G0

3 = 3 and therefore X4 = 0.
An internal node whose parent is k chooses an activation value that maxi-

mizes
P

j G
xi
j +wi;kXiXk+�iXi. The choice therefore, is between

P
j G

0
j (when

Xi = 0) and
P

j G
1
j + wi;kXk + �i (when Xi = 1), yielding:

Xi =

(
1 i�

P
j G

1
j + wi;kXk + �i �

P
j G

0
j

0 otherwise

As a special case, a leaf i chooses Xi = 1 i� wi;kXk � ��i, which is exactly the
discrete Hop�eld activation function for a node with a single neighbor. For
example, in �gure 2, X5 = 1 since w4;5X4 = 0 > ��5 = �1, and X3 = 0 since
G1

1 +G1
2 +2X4 + �3 = 1+ 2+ 0� 3 = 0 < G0

2+G0
1 = 2. Figure 2-b shows the

activation values obtained by propagating them from the root to the leaves.
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3.5 A complete activation function

Interleaving the three algorithms described earlier achieves the goal of identi-
fying tree-like subnetworks and maximizes their goodness. In this subsection
we present the complete algorithm, combining the three phases while simpli-
fying the computation. The algorithm is integrated with the discrete Hop�eld
activation function demonstrating how similar the formulas are.

Let i be the executing unit, j a non-parent neighbor of i and k the parent
of i:
Algorithm activate: Optimizing on Tree-like Subnetworks (unit i):

1. Initialization: If �rst time, then (8j) P j
i = 0; /*Clear pointers (cyclic nets)*/

2. Tree directing: If there exists a single neighbor k, such that P i
k = 0,

then P k
i = 1 and for all other neighbors j, P j

i = 0;
else, for all neighbors P j

i = 0;

3. Computing goodness values:
G0

i = maxf
P

j2children(i)G
0
jP

i
j ;
P

j2children(i)G
1
jP

i
j + �ig;

G1
i = maxf

P
j2children(i)G

0
jP

i
j ;
P

j2children(i)(G
1
jP

i
j + wi;jP

j
i ) + �ig;

4. Assigning activation values:
If at least two neighbors are not pointing to i, then /*Not in tree: use Hop�eld*/

Xi =

(
1 if

P
j wi;jXj � ��i

0 otherwise
else, /* Node in a tree (including root and leaves) */

Xi =

(
1 if

P
j((G

1
j �G0

j )P
i
j + wi;jXjP

j
i ) � ��i

0 otherwise

The algorithm's properties will be discussed in section 4.

3.6 Goodness computation without tree-directing

When restricted to acyclic networks, the tree-directing procedure is not needed
for computing the goodness values, but merely for assigning activation after
the goodness values had converged. The idea is that each node compute for
each of its neighbors a pair of goodness values dedicated to it. It operates as
if each neighbor is its "parent".

Let i be the executing unit, j an arbitrary neighbor of i and k be the
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neighbor to which the goodness values are directed:

Algorithm activate1: Optimizing goodness on Tree-like Subnetworks (unit
i):

1. Computing goodness values for neighbor k:
G0

i = maxf
P

j2neighbors(i);j 6=k G
0
j ;
P

j2neighbors(i);j 6=k G
1
j + �ig;

G1
i = maxf

P
j2neighbors(i);j 6=k G

0
j ;
P

j2neighbors(i);j 6=k(G
1
j + wi;k) + �ig;

It is easy to show that:

Theorem 1 : The goodness values are guaranteed to converge to the correct
googness values.

The task of "assigning activation value" still needs to be done in a coor-
dinated manner using the structure of the tree. Each node will be assigned a
value relative to the value that its parent has, as before.

3.7 An example

The example illustrated in �gure 3 demonstrates a case where a local minimum
of the standard algorithms is avoided. Standard algorithms may enter such
local minimum and stay in a stable state that is clearly wrong.

The example is a variation on a Harmony network example [Smolensky 86]
(page 259), and an example from [McClelland et al. 86] (page 22). The task of
the network is to identify words from low-level line segments. Certain patterns
of line segments excite units that represent characters, and certain patterns of
characters excite units that represent words. The line strokes used to draw the
characters are the input units: L1,..., L5. The units \N," \S," \A" and \T"
represent characters. The units \able", \nose", \time" and \cart" represent
words, and Hn, Hs, Ha, Ht, H1...,H4 are hidden units required by the Harmony
model. For example, given the line segments of the character S, unit L4 is
activated (input), and this causes units Hs and \S" to be activated. Since
\NOSE" is the only word that contains the character \S", both H2 and the
unit \nose" are also activated and the word \NOSE" is identi�ed.

The network has feedback cycles (symmetric weights) so that ambiguity
among characters or line-segments may be resolved as a result of identifying
a word. For example, assume that the line segments required to recognize the
word \NOSE" appear, but the character \N" in the input is blurred and there-
fore the setting of unit L2 is ambiguous. Given the rest of the line segments
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Figure 3: A Harmony network for recognizing words: local minima along the
subtrees are avoided.

(e.g., those of the character \S"), the network identi�es the word \NOSE"
and activates units \nose" and H2. This will cause unit \N" and all of its line
segments to be activated. Thus the ambiguity of L2 is resolved.

The network is designed to have a global minimum when L2, Hn, \N",
H2 and \nose" are all activated. However, standard connectionist algorithms
may fall into a local minimum when all these units are zero, generating good-
ness of 5 � 4 = 1. The correct setting (global minimum) is found by our
tree-optimization algorithm (with goodness: 3-1+3-1+3-1+5-1-4+3-1+5=13).
The thick arcs in the upper network of �gure 3 mark the arcs of a tree-like
subnetwork. This tree-like subnetwork is drawn with pointers and weights in
the lower part of the �gure. Node \S" is not part of the tree and its activation
value is set to one because the line-segments of \S" are activated. Once \S"
is set, the units along the tree are optimized (by setting them all to one) and
the local minimum is avoided.
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4 Feasibility, convergence, and self-stabilization

So far we have shown how to enhance the performance of connectionist energy
minimization networks without losing much of the simplicity of the standard
approaches. The simple algorithm presented is limited in three ways, however.
First, it assumes unrealistically that a central scheduler is used; i.e., a sched-
uler that activates the units one after the other synchronously.2 We would like
the network to work correctly under a distributed scheduler, where any subset
of units may be activated for execution at the same time asynchronously. Sec-
ond, the algorithm guarantees convergence only for tree-like sub-networks. We
would like to �nd an algorithm that converges to correct solutions even if cy-
cles are introduced. Finally, we would like the algorithm to be self-stabilizing.
It should converge to a legal, stable state given enough time, even after noisy
uctuations that cause the units to execute arbitrary program states and the
registers to have arbitrary content. Formally, an algorithm is self-stabilizing if
in any fair execution, starting from any input con�guration and any program
state (of the units), the system reaches a valid stable con�guration.

In this section, we illustrate two negative results regarding the �rst two
problems; i.e., that it is not feasible to build uniform algorithms for trees
under a distributed scheduler, and that such an algorithm is not feasible for
cyclic networks even under a central scheduler. We then show how to weaken
the conditions so that convergence is guaranteed (for tree-like subnetworks) in
realistic environments and self-stabilization is obtained.

A scheduler can generate any speci�c schedule consistent with its de�nition.
Thus the central scheduler can be viewed as a speci�c case of the distributed
scheduler. We say that a problem is impossible for a scheduler, if for every
possible algorithm there exists a fair execution generated by such a scheduler
that does not �nd a solution to the problem. Since all the speci�c schedules
generated by a central scheduler can also be generated by a distributed sched-
uler, what is impossible for the central scheduler is also impossible for the
distributed scheduler.

2The same results are obtained if the steps of the algorithm executes as one atomic
operation or if neighbors are mutually excluded.
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4.1 Negative results for uniform algorithms

In [Collin et al. 91] following [Dijkstra 74] negative results are presented re-
garding the feasibility of distributed constraint satisfaction. Since constraint
satisfaction problems can be formulated as energy minimization problems,
these feasibility results apply also for computing the global minimum of en-
ergy functions. For completeness we now adapt their results for a connectionist
computation of energy minimization.

Theorem 4.1 No deterministic3 uniform algorithm exists that guarantees a
global minimum under a distributed scheduler, even for simple chain-like trees,
assuming that the algorithm needs to be insensitive to initial conditions.

Proof:
Consider the network of Figure 4. There are two global minima possible :
(11:::1101:::11) and (11:::1011:::11) (when the four centered digits are assigned
to units, i � 1; i; i+ 1; i + 2). If the network is initialized such that all units
have the same register values, and all units start with the same program state,
then there exists a fair execution under a distributed scheduler such that in
every step all units are activated. The units left of the center (1; 2; 3; :::i) \see"
the same input as those units right of the center (2i; 2i � 1; 2i � 2; :::; i + 1)
respectively. Because of the uniformity and the determinism, the units in each
pair (i; i+ 1); (i� 1; i+ 2); :::; (1; 2i) must transfer to the same program state
and produce the same output on the activation register.Thus, after every step
of that execution, units i and i+ 1 will always have the same activation value
and a global minimum (where the two units have di�erent values) will never
be obtained.

This negative result should not discourage us in practice since it relies on
an obscure in�nite sequence of executions which is unlikely to occur under
a random scheduler. Despite the negative result, one can show that the al-
gorithm presented will optimize the energy of tree-like subnetworks under a
distributed scheduler if at least one of the following cases holds (see the next
section for details):

1. If step 2 of algorithm activate in Section 3.5 is atomic;

3The proof of this theorem assumes determinism and does not apply to stochastic acti-
vation functions.
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Figure 4: No uniform algorithm exists to optimize chains under distributed
schedulers.

2. if for every node i and every neighbor j, node i is executed without j
in�nitely often (fair exclusion);4

3. if one node is unique and acts as a root, that is, does not execute step 2
(an almost uniform algorithm);

4. if the network is cyclic (one node will be acting as a root).5

Another negative result similar to [Collin et al. 91] is given in the following
theorem.

Theorem 4.2 If the network is cyclic, no deterministic uniform algorithm
exists that guarantees a global minimum, even under a central scheduler, as-
suming that the algorithm needs to be insensitive to initial conditions.

This may be proved even for cyclic networks as simple as rings.
Proof:
In Figure 5, we see a ring-like network whose global minima are (010101) and
(101010). Consider a fair execution under a central scheduler that activates
the units 1,4,2,5,3,6 in order and repeats this order inde�nitely. Starting with
the same program state and same inputs, the two units in every pair of (1,4),
(2,5), (3,6) \see" the same input, therefore they have the same output, and
transfer to the same program state. As a result, these units never output
di�erent values and a global minimum is not obtained.

4Case one is a special case of case two.
5Global solutions are not guaranteed to be found but all tree-like subnetworks will be

optimized.
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Note that any tree-like subnetwork of a cyclic network will be optimized
even under a distributed scheduler (since nodes that are part of a cycle are
identi�ed as roots and the algorithm acts as an almost uniform algorithm).

1
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1
3

−3
2

1

−3
1

1

−3

6
1

−3
5

1

−3

Global Minima:  010101

101010

Schedule:  1, 4, 2, 5, 3, 6, 1, 4, 2, 5,......

Figure 5: No uniform algorithm exists that guarantees to optimize rings even
under a central scheduler.

4.2 Convergence and self-stabilization

In the previous subsection we proved that under a pure distributed scheduler
there is no hope for a uniform network algorithm. In addition, we can easily
show that the algorithm is not self-stabilizing when cycles are introduced. For
example, consider the con�guration of the pointers in the ring of Figure 6. It
is in a stable state, although, clearly not a valid tree.6

5
16

7

0

0

0

1

1

Figure 6: The uniform algorithm is not self-stabilizing in cyclic networks.

6Such con�guration will never occur if all units start at the starting point; i.e., clearing
the bits of Pi. It may only happen due to some noise or hardware uctuations.
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In this subsection we weaken the requirements allowing our algorithm
to converge to correct solutions and to be self-stabilizing under realistically
weaker distributed schedulers.

We will not use the notion of a pure distributed scheduler; instead, we will
ask our distributed scheduler to have the fair exclusion property.

Definition 4.1 A scheduler has the fair exclusion property if for every two
neighbors, one is executed without the other in�nitely often.

Intuitively, a distributed scheduler with fair exclusion will no longer generate
in�nite sequences of the pathological execution schedules used in the previous
subsection to prove the negative results. Instead, it is guaranteed that from
time to time, every two neighboring units will not execute together.

In addition we might weaken the requirement on the uniformity of the
algorithm (that all nodes execute the same procedure). An almost uniform
algorithm is when all the nodes perform the same procedure except one node
that is marked unique. In the almost uniform version of algorithm activate,
the root of the tree is marked and executes the procedure of section 3.5 as if
all its neighbors are pointing to it; i.e., it constantly sets P j

i to zero.

Theorem 4.3 Algorithm activate of section 3.5 has the following properties:
1. It converges to a global minimum and is self-stabilizing in networks with
tree-like topologies under a distributed scheduler with fair exclusion. 2. The
algorithm also converges in tree-like subnetworks (but is not self-stabilizing)
when the network has cycles. 3. It is self-stabilizing for any topology if an
almost uniform algorithm is applied, even under a pure distributed scheduler.

For proof see appendix.

5 Extensions to arbitrary networks

The algorithm we present in section 3 is limited in that it is restricted to
nodes of tree-like subnetworks only. Nodes that are part of a cycle execute the
traditional activation function which may lead to the known drawbacks of local
energy minima and slow convergence. In this section we suggest generalizations
of our algorithms to nodes that are parts of cycles, that will work well for sparse
networks. In the following paragraphs we will discuss the principles underlying
this method. A full account of this extension is deferred for future work.
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Two well-known complementary schemes for extending tree algorithms to
non-tree networks, are tree clustering, and cycle-cutset decomposition [Dechter 90]
used both in Bayes networks and constraint networks. In tree clustering the
idea is to combine subsets of variables into higher level meta variables until
the interaction between the meta level variables is tree-like. The cycle-cutset
decomposition, on the other hand, is based on the fact that an instantiated
variable cuts the ow of information on any path on which it lies and there-
fore changes the e�ective connectivity of the network. Consequently, when
the group of instantiated variables cuts all cycles in the graph, (e.g., a cycle-
cutset), the remaining network can be viewed as cycle-free and can be solved by
a tree algorithm. The complexity of the cycle-cutset method can be bounded
exponentially in the size of the cutset set in each nonseperable component of
the graph [Dechter 90].

In this section we show how to extend our distributed energy minimization
tree algorithm to arbitrary networks using the cycle-cutset idea.

5.1 Using cutset nodes and values

Recall that the energy minimization task is to �nd a zero/one assignment to
the variables X = fX1; :::;Xng that maximizes the goodness function. De-
�ne, Gmax(X1; :::;Xn) = maxX1;:::;XnG(X1; :::;Xn). The task is to �nd an
activation level X1; :::;Xn satisfying

Gmax(X1; :::Xn) = maxX1;:::;Xn(
X
i<j

wi;jXiXj +
X
i

�iXi): (2)

Let Y = fY1; :::; Ykg be a subset of the variables X = fX1; :::;Xng. The max-
imum can be computed in two steps. First we compute the maximum energy
conditioned on a �xed assignment Y = y, then maximize the resulting func-
tion over all possible assignments to Y . Let Gmax(XjY = y), the maximum
goodness value of G conditioned on Y = y, be de�ned by:

Gmax(XjY = y) = maxX=xjxY=yfG(X)g;

where, xY is the zero/one value assignments in the instantiation x that are
restricted to the variable subset Y . Clearly,

Gmax(X) = maxY=yGmax(XjY = y):
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If the variables in Y form a cycle-cutset, then the conditional maxima of
Gmax(XjY = y) can be computed e�ciently using a tree algorithm. The
overall maxima is achieved by enumerating over all possible assignments to
Y . As a matter of fact, enumeration can be restricted to each nonseparable
component and to each of its own cutset since the hyper structure between
components is tree-like [Dechter 90], [Even, 79]. Obviously, this scheme is
e�ective only when the cycle-cutset is small. In section 5.2 we discuss some
steps toward implementing this idea in a distributed environment.

Given a network with a set of nodes X = fX1; :::;Xng, let us �rst assume
(1) that there is a known set of cutset variables Y = fY1; :::; Ykg, (2) that each
node knows whether or not it is designated as a cutset node, and (3) that
a cutset node has already had an assigned activation value of `0' or `1'.7 We
denote the cutset node assignments, Y = y. Under these assumptions we show
that the network can compute the conditional maxima energy, Gmax(XjY =
y), using a simple modi�cation to the tree algorithm activate. The modi�ed
procedure, called activate-with-cycle is given next.

Algorithm activate-with-cutset-values is guaranteed to compute the maxi-
mum energy of the network conditioned to Y = y.

7Later we'll see that the assumptions above need not hold. We can design a uniform algo-
rithm which obtains a cutset using randomization and determines the cutset values using a
local algorithm. In addition, we can design an algorithm (with exponential complexity) that
computes a global solution (GMAX) by enumerating all possible cutset value-combinations.
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Algorithm activate-with-cutset-values: Optimizing with cycle-cutset,
Assumptions: 1) The cutset (Y ), removes all cycles. 2) The values of the
cutset nodes (y) are known a priori.

1. Initialization: If �rst time, then (8j) P j
i = 0;

2. Tree directing:
If i is a cutset node, then for every neighbor (j) If P i

j = 0, then P j
i = 1; (A

cutset variable selects each of its neighbors as a parent if that neighbor doesn't
point to it.)
else (regular node), if there exists a single neighbor k, such that P i

k = 0,
then P k

i = 1 and for all other neighbors j, P j
i = 0;

else, for all neighbors P j
i = 0;

3. Assigning activation values:
If i is a cutset node, then Xi = yi, where yi is the cutset (known) value.
else (regular tree nodes)

Xi =

(
1 if

P
j((G

1
j �G0

j )P
i
j + wi;jXjP

j
i ) � ��i

0 otherwise

4. Computing goodness values:
If (cutset node)

(For each neighbor (j), G0
i ; G

j1
i are goodness values for neighbor (j) ).

G0
i = yi(�i),

Gj1
i = yi(�i) + wij

else (a regular tree node),
G0

i = maxf
P

j2children(i)G
0
jP

i
j ;
P

j2children(i)G
1
jP

i
j + �ig;

G1
i = maxf

P
j2children(i)G

0
jP

i
j ;
P

j2children(i)(G
1
jP

i
j + wi;jP

j
i ) + �ig;

(note that, if (j) is a cutsetnode, then G1
j = Gi1

j )

The basic idea is to let each cutset node behave as a leaf node. One can view a
cutset node as if it duplicates itself for each neighbor. In the above algorithm
we assume that all the nodes are on the tree, some of which are cutset nodes
that act as leaves. The change to the tree-directing part is in that a cutset
variable makes each one of its neighbors (for whom it is not a parent), its own
parent. Thus a cutset variable may have several parents and zero or more
part-of-a-tree neighbors (which point to it). Considering again the example
network in �gure 1b and assuming node (7) is a cutset variable, a tree-directing
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may now change so that node (7) points both to (5) and to (6), (6) points to
(5) and (5) remains the root. Note that with this modi�cation all arcs are
directed and the resulting graph is an acyclic directed graph.

Once the graph is directed, each regular non-cutset node has exactly the
same view as before. It has one parent (or no parent) and perhaps a set of
child nodes, some of which may be cutset nodes. It then computes goodness
values and activation values almost as before. A cutset variable will compute
its goodness values for each of its neighbors separately based on the weighted
arc with the parent (the G0

i 's are identical for all parents but the G1
i may

di�er for each parent). In addition, if one of the children of node i is a cutset
variable, i should be using the goodness values of that child that is designated
to it when computing its own goodness values. The reader should note that
a solution found in this method is a global energy minimum (goodness maxi-
mum) conditioned on the values of the cutset variables. It is not guaranteed
however, to be even a local minimum of the original energy function. Some
of the cutset nodes may be unstable and may ip their value if they use the
Hop�eld activation function after the convergence of the tree.

In the next subsections, we will extend the cutset approach in two direc-
tions. The �rst is to compute an unconditioned global solution by enumerating
all possible cutset values. The second direction is to combine a standard local
activation algorithm with the cutset technique. This combination produces a
uniform, connectionist-style algorithm that although not guaranteed to �nd a
global solution, is still more powerful than both standard and cutset methods
alone.

5.2 Unconditioned global minimum

In order to extend this algorithm for computing unconditional maxima we
have to address the issue of enumerating all conditional energy minimizations
over all instantiations of Y . One option we propose is to use the brute-force
approach of computing all conditional goodness values in parallel as follows.
Once the tree-directing part is accomplished, a node computes a collection of
goodness values, each indexed by a conditioning assignment Y = y. In actu-
ality, a node will only condition its values on a subset of the cutset variables
that reside in the directed subtree for which it is the root. Nodes will compute
goodness values associated with each assignment to the cutset variable. In
step (4) of the algorithm the goodness values of a node that are associated
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with the cutset assignment Y = y will be computed using the goodness values
of child nodes that are also associated with the same assignment Y = y. The
maximumnumber of goodness values each node may need to carry is exponen-
tial in the cutset size.8 Upon convergence, the roots of the trees obtained from
the cutsets will compare the goodness value associated with all its indices, se-
lect an assignment Y = y that maximize the overall goodness value and then
choose a corresponding activation value. Subsequently, it will propagate this
information down the tree. Nodes will compute their activation using those
goodness values that are associated with the maximizing assignment. Cut-
set variables will switch to the activation value associated with the selected
assignment. All the above steps can be executed using one activation function.

The main issues that still must be addressed in this approach are where
cutset variables come from and how they will be selected. It is known that com-
puting the minimal cutset is NP-hard. We will therefore settle for any heuristic
method that tries to compute a small cutset. One simple answer is that the
determination of the cutset variable is performed centrally and announced to
each node. This clearly violates the spirit of connectionist computation but
may nevertheless be a practical solution for real networks. Alternatively, we
should be looking for a uniform algorithm for �nding a cycle-cutset. Clearly
the problem is unsolvable for completely uniform networks. For an almost uni-
form network, when just one node is allowed to execute a di�erent algorithm,
one can envision a algorithm that may simulate one of the approximation al-
gorithms for cycle-cutset [Becker, Geiger, 1994]. This is one of the open issues
that we leave for future work.

5.3 A local search with dynamic cutset values

Another approach is to use the cutset method to improve local search without
trying to enumerate all possible cutset values. In this approach, cutset nodes
are either known (a priori) or randomly selected; however, their values aren't
given and are computed using standard local techniques (e.g., Hop�eld). The
rest of the nodes use the tree algorithm (or Hop�eld if they are not marked as
parts of trees).

8A careful implementation can assure that the maximumnumber of goodness values that
must be carried by each node is exponential only in the cutset size of its own nonseparable
component.
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Algorithm activate-with-cutset: Optimizing with cycle-cutset when values
are not given,
Assumption: The cutset nodes are given a priori.

1. Initialization: If �rst time, then (8j) P j
i = 0;

2. Tree directing:
If i is a cutset node, then for every neighbor (j), if P i

j = 0, then P j
i = 1;

(neighbors become parents unless they already point to it)
else (regular tree node), if there exists a single neighbor k, such that P i

k = 0,
then P k

i = 1 and for all other neighbors j, P j
i = 0;

else (root or non-tree node), for all neighbors P j
i = 0;

3. Assigning activation values:
If all neighbors of i point to it except maybe one (i.e., it is part of a tree) then,

Xi =

(
1 if

P
j((G

1
j �G0

j )P
i
j + wi;jXjP

j
i ) � ��i

0 otherwise
else (a cutset node or a node that is not yet part of any tree), Compute Hop�eld:

Xi =

(
1 if

P
j wi;jXj � ��i

0 otherwise

4. Computing goodness values:
If i is a cutset node, then for each neighbor j,

G0
i = Xi(�i),

Gj1
i = Xi(�i) + wij (G0

i ; G
j1
i are goodness values for neighbor j ).

else (a regular tree node),
G0

i = maxf
P

j2children(i)G
0
jP

i
j ;
P

j2children(i)G
1
jP

i
j + �ig;

G1
i = maxf

P
j2children(i)G

0
jP

i
j ;
P

j2children(i)(G
1
jP

i
j + wi;jP

j
i ) + �ig;

As before, the network computes a minimum of the energy, conditioned on
the values of the cutset variables. This time, however, the cutset values are
not given a priori and instead, are computed constantly using a standard local
algorithm such as Hop�eld. In addition, nodes that are not yet part of a tree,
or nodes that are still part of a cycle (if the cutset is not perfect) use Hop�eld
as well.

A node ips its value either as a result of a Hop�eld step (cutset and
non-tree nodes) or in order to optimize a tree. In both steps, the energy
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does not increase and as a result the algorithm is guaranteed to converge on a
stable local or global minimum. This is summarized in algorithm activate-with-
cutset. The algorithm's idea is that if performed sequentially it would iterate
between the following two steps: 1. �nding a local minima using Hop�eld
activation function 2. �nding global minima conditioned on the cutset values
determined in the previous step, via the tree algorithm. In the connectionist
algorithm these two steps are not synchronized. As a result we get an algorithm
that converges on a solution that is both a local minima relative to Hop�eld
algorithm as well as a conditional global minima relative to the cutset variables.

The following example demonstrates how the algorithm �nds a better min-
imum than what is found by the standard Hop�eld algorithm when there are
cycles:

Consider the energy function: energy = 50AB�200BC�100AC�3AD�
3DE�3AE+0:1A+0:1B+0:1C+4E+4D. The associated network consists
of two cycles: A;B;C and A;D;E. If we select node A as a cutset node, the
network would then be cut into two acyclic (tree-like) sub-networks. Assume
that the network starts with a setting of zeros (A;B;C;D;E = 0). This is
a local minimum (energy = 0) of the Hop�eld algorithm. Our activate-with-
cutset algorithm breaks out of this local minimum by optimizing the acyclic
sub-network A;B;C conditioned on A = 0. The result of the optimization is
the assignment A = 0; B = 1; C = 1;D = 0; E = 0 with energy = �199:7.
It is not a stable state because A obtains an excitatory sum of inputs (50)
and therefore ips its value to A = 1 using its Hop�eld activation algorithm.
The new state A;B;C = 1;D;E = 0 is also a local minimum of the Hop�eld
paradigm (energy = �249:7). However, since nodes A;D;E form a tree,
the activate-with-cutset algorithm also manages to break out of this local
minimum. It �nds a global solution conditioned on A = 1 which happens
to be the global minimum A;B;C;D;E = 1 with energy = �250:97. The
new algorithm was capable of �nding the only global minimum of the energy
function and managed to escape two of the local minima that trapped the
Hop�eld algorithm.

In the next subsection we examine a uniform extension of the cutset idea
that does not assume knowing the cutset nodes a priori.

23



5.4 A local search with dynamic cutset variables

The activate-with-cutset algorithm is not a uniform algorithm. The cutset
nodes have to be known prior to execution and special logic has to be associated
with these nodes. When the cutset nodes are not given a priori, or when
we wish to have a uniform algorithm, we might select our cutset nodes by
randomization. A random cutset selection may be obtained using a local
heuristics that is designed to improve the chances for selecting good cutset
nodes.

The activate-with-random-cutset algorithm does not assume known cutset
nodes. Instead, a node that is not part of any tree (e.g., part of a cycle),
may turn into a cutset node with probability P = f(). The function f() is
a heuristics that assigns high probabilities to nodes with potential to become
\good" cutset nodes. Similarly, a cutset node may turn into a non-cutset
node if it becomes part of a tree or if the the random process decides so (with
probability P = 1� f(). The rest of the algorithm is very similar to activate-
with-cutset; we just have to be aware that the randomly selected cutset is not
perfect and that there might be too many or too few cutset nodes. Fewer cutset
nodes will leave some cycles around, while too many cutset nodes may cause
the solution to be conditioned on more nodes than is needed. Cutset nodes
that haven't been identi�ed yet as parts of trees and nodes that are parts of
cycles compute the standard Hop�eld activation function.9 Redundant cutset
nodes that are not needed are going to be de-selected in time and optimized
as parts of trees.

The algorithm needs to di�erentiate between three types of nodes, when
none is known a priori: 1) Nodes that are currently selected as cutset nodes;
2) nodes that are parts of trees; and 3) nodes that are neither cutset nodes or
are parts of trees (have potential to become cutset nodes or to become part of
a tree).

A node maymark itself as a cutset node by setting an indication (CUTSETi=
1). A node is considered to be part of a tree if all its neighbors (except maybe
one) point to it. The rest of the nodes may become cutset nodes using random-
ization. Similarly, only cutset nodes may be de-selected and transformed back
into non-cutset kinds of nodes. The dynamic and randomized selection/de-
selection process allows the search for the best cutset nodes to continue with

9Boltzmann, (with simulated annealing) or Mean�eld (deterministic approximation to
simulated annealing) activation functions may be used instead of Hop�eld for the cutset
nodes, thus increasing the chances of �nding the \right" value.
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non-increasing energy. As long as there are cycles, cutset nodes will be se-
lected. At the same time, nodes functioning too long as cutset nodes are
de-selected thus reducing the chances for redundant cutset nodes while con-
tinuously exploring the space of possible cutsets.

These ideas are incorporated into algorithm activate-with-random-cutset.
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Algorithm activate-with-random-cutset:
Optimizing with cycle-cutset that is selected randomly with heuristics.

1. Initialization: If �rst time, then (8j) P j
i = 0; CUTSETi = 0;

2. Cutset setting:
If all its neighbors except maybe one, point to it (part of a tree), then

CUTSETi = 0;
else (not part of tree), if CUTSETi = 0 (not yet a cutset node), then

with probability P = f() make i a cutset node: CUTSETi = 1.
else (a previously selected cutset node) with probability P = 1�f() de-select node
i

and make it a non-cutset node: CUTSETi = 0.

3. Tree directing:
If CUTSETi = 1 (a cutset node), then for every neighbor (j),

if pij = 0 then, P j
i = 1;

else (not a cutset node) if there exists a single neighbor k, such that P i
k = 0 then,

(part of a tree but not a root) P k
i = 1; for all other neighbors j, P j

i = 0;
else, for all neighbors P j

i = 0;

4. Assigning activation values:
If all neighbors of i point to it except maybe one then (part of a tree),

Xi =

(
1 if

P
j((G

1
j �G0

j )P
i
j + wi;jXjP

j
i ) � ��i

0 otherwise
else (a cutset node or a node that is not part of any tree), Compute Hop�eld:

Xi =

(
1 if

P
j wi;jXj � ��i

0 otherwise

5. Computing goodness values: (only nodes in trees need goodness values)
If i is a cutset node, then for each neighbor j,

G0
i = Xi(�i),

Gj1
i = Xi(�i) + wij

else (a regular node),
G0

i = maxf
P

j2children(i)G
0
jP

i
j ;
P

j2children(i)G
1
jP

i
j + �ig;

G1
i = maxf

P
j2children(i)G

0
jP

i
j ;
P

j2children(i)(G
1
jP

i
j + wi;jP

j
i ) + �ig;

The heuristic function f may increase the cutset probability of a node
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based on the following guidelines:

1. Increase probability to nodes that have not been cutset nodes for a long
time. Also, a node that has been a cutset node long enough should have
a higher probability to become a non cutset node.

2. Increase probability to nodes that have not ipped their value for a long
time. The more time that has passed, the more chances a node has to
become a good cutset candidate. Also, more time gives more opportu-
nities for the node to become part of a tree, thus avoiding premature
decision.

3. Increase the probability of nodes with high connectivity; the more con-
nections a node has, the more e�ective cutset node it may become (since
it may cut several cycles at once).

We can start execution by assigning small probabilities to all nodes that
are not part of a tree. As a result only few nodes would become cutset nodes,
giving opportunities to other nodes to become part of a tree. With time, as we
still have nodes that are not part of a tree, we may increase these probabilities,
thus allowing more cutset nodes. Gradually increasing the probability will
lead to solutions that are conditioned on fewer cutset nodes. At the same
time, nodes that act too long as cutset nodes will become regular nodes giving
opportunities to better cutset nodes to a�ect the process. During the whole
process, energy never increases.

Further investigation and experimentation with the activate-with-random-
cutset algorithm are left for future research.

6 Potential applications

Clearly, our improved algorithm will work better than the standard methods
in networks that have large tree-like subnetworks or have only a few cycles.
In this section we discuss shortly two domains that are most likely to produce
sparse, near-tree networks. Assumptions and conditions are mentioned that
cause the relevant networks to be mostly cycle free.
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6.1 Inheritance networks

Inheritance is a straightforward example of an application, where translations
of symbolic rules into energy terms form networks that are mostly cycle free.

Each arc of an inheritance network, such as A ISA B or A HAS B is mod-
eled by the energy term A � AB. The connectionist network that represents
the complete inheritance graph is obtained by summing the energy terms that
correspond to all the ISA and HAS relationships in the graph.

Nonmonotonicity can be expressed if we add penalties to arcs and use the
semantics discussed in [Pinkas 94]. Nonmonotonic relationships may cause cy-
cles in both the inheritance graph and the connectionist network (eg. Penguin
ISA Bird; Bird ISA FlyingAnimal; Penguin ISA not(FlyingAnimal)). Multiple
inheritance may cause cycles as well, even when the rules are monotonic (eg.,
Dolphin ISA Fish; Dolphin ISA Mammal; Fish ISA Animal; Mammal ISA
Animal).

Arbitrary constraints on the nodes of the graph may be introduced in this
model. Constraints may be represented as proposition logic formulas and then
translated into energy terms using the method in [Pinkas 90b].

In a \pure" inheritance network that has no multiple inherited nodes and
no nonmonotonic relationships, the network is cycle-free. If we allow multiple
inheritance, nonmonotonicity, or arbitrary propositional constraints, we may
introduce cycles into the network that are generated.

Nevertheless, it is reasonable to assume that in large practical inheritance
and taxonometric domains, the majority of the network is based on pure in-
heritance. Cycles (multiple inheritance, nonmonotonicity and arbitrary con-
straints) are scarcely introduced and the few that exist may be handled by our
extension using the cycle-cutset idea.

6.2 Diagnosis

Another potential application that will generate mostly cycle-free subnetworks
is diagnosis.

6.2.1 Formalism

Let X1;X2; :::Xn be True(1)/false(0) propositions that represent symptoms
and hypotheses. In a diagnosis application we may have the following sets of
rules (formal semantics is discussed later):
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� (�1X1; �2X2; :::; �mXm >! �X) i.e., the symptomsX1; :::;Xm with im-
portance factors �1; :::; �m, suggest the hypothesis X with sensitivity �.
A subset of the symptomsmay be enough to suggest the hypothesis if the
sum of the importance factors of the active symptoms is larger than the
sensitivity �. Intuitively, the larger the sum of the factors, the larger the
support for the hypothesis. By determining the support needed, the sen-
sitivity � encourages parsimonious explanations of the symptoms. The
corresponding energy function is

Pm
i ��iXiX +

Pm
i �iXi + �X.

� (�') where ' is a constraint expressed as a well formed propositional
formula, and � is the importance of the constraint. Examples of such
constraints are:

{ (X ! Xi) i.e., if the hypothesis X holds, so does the symptom Xi.

{ (X1 ! (:X2 ^ :X3) ^X2 ! (:X1 ^ :X3) ^X3 ! (:X1 ^ :X2))
i.e., only one of the propositions X1;X2;X3 can be true (mutual
exclusion).

Any propositional logic formula is allowed and nonmonotonicity may be
expressed using conicting constraints (augmented with importance fac-
tors). Quadratic energy function may be generated from arbitrary propo-
sitional constraints by introducing hidden variables (see [Pinkas 90b] for
details).

Note that any variable X may be used as a symptom in some rules and as a
hypothesis in other rules. This observation will be used later in our discussion
of independence.

6.2.2 Semantics

We can use a formal logic and semantics called penalty logic [Pinkas 94],
[Pinkas 91] that is based on rankedmodels [Shoham 88], [Pearl 90], [Lehmann, Magidor 88].
In this semantics, models are ranked according to a score computed by sum-
ming the penalties associated with violating the rules. Propositions that are
held in all the models of minimal penalty are concluded.

For a diagnosis rule (�1X1; :::; �kXk ! �X), a model is penalized by adding
(
Pk

j=1 �ij ) if the symptoms Xi1 ; :::;Xik are active and the hypothesis X inac-
tive. To encourage parsimonious explanations, � is always added when the
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corresponding hypothesis (X) is activated. For violating a constraint �', a
model is penalized by adding an extra �.

A set of rules such as the above can be translated into an energy function
and be implemented as a connectionist network. Penalty logic, its semantics,
and the algorithms for translating formulas into energy functions are discussed
in [Pinkas 94].

6.2.3 Cycles, trees and independence assumption

Assume for now that our knowledge base consists only of diagnosis rules
(�1X1; :::; �mXm ! �X) and (optional) causal constraints of the type (X !
Xi).

We say that the symptoms of hypothesis X are independent of each other,
when all its direct symptoms (neighbors) (of X), given a value for X, are not
a�ected by the value of any other direct symptom of X.

When the symptoms of any hypothesis in a knowledge base are indepen-
dent of each other there are no cycles in the network and the tree algorithm
converges to a global maximum in linear time.

When we start adding symptoms that a�ect a hypothesis through di�erent
paths; e.g., X1 ! X, and X1 ! X2 ! ::: ! X, or when we start adding
arbitrary constraints, cycles may be added.

Independency assumptions of this kind are quite common in actual im-
plementations of Bayes networks, inuence diagrams [Pearl 88], and certainty
propagation of rule-based expert systems [Shortli�e 76].

7 Summary

We have shown a uniform self-stabilizing connectionist activation function that
is guaranteed to �nd a global minimum of acyclic symmetric networks in linear
time under a realistically weakened distributed scheduler. It can also be used to
improve local repair techniques when the connectivity of the problem variables
form tree-like subnetworks. For general (cyclic) topologies we show how our
tree-like algorithm can be extended using cutset nodes that force a network to
become a collection of tree-like sub-networks. The algorithm optimizes tree-
like subnetworks within general networks but is not self-stabilizing when used
in cyclic topologies. Variations of the cutset algorithm allow the cutset nodes
to be selected a priori or to be selected randomly with local heuristics and use
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a uniform activation algorithm. Another variation allows a global minimum
to be found by enumerating all combinations of cutset values.

Two domains (inheritance and diagnosis) are brought as examples for ap-
plications that will bene�t in particular from the new optimization algorithm.
Networks of these domains are likely to have near tree topologies having only
few cycles.

We stated two negative results: 1) Under a pure distributed scheduler no
uniform algorithm exists to globally optimize even simple chain-like networks.
2) No uniform algorithm exists to globally optimize simple cyclic networks
(rings) even under a central scheduler. We conjecture that these negative re-
sults are not of signi�cant practical importance since in realistic schedulers the
probability of having pathological scheduling scenarios approaches zero. We
show that our algorithm converges correctly (on tree-like subnetworks) when
the demand for pure distributed schedulers is somewhat relaxed (adding ei-
ther fair exclusion, almost uniformity or cycles). Similarly, self-stabilization is
obtained in acyclic networks or when the requirement for a uniform algorithm
is relaxed (adding almost uniformity).

The negative results apply to connectionist algorithms as well as to parallel
versions of local repair techniques. The positive results suggests improvements
both to connectionist activation functions and to local repair techniques.

8 Appendix

Proof sketch: of theorem 4.3:
The second and third phases of the algorithm are adaptations of an existing
dynamic programming algorithm [Bertel�e, Brioschi 72], and their correctness
is therefore not proved here. The self-stabilization of these steps is obvious
because no variables are initialized. The proof therefore concentrates on the
tree directing phase.

Let us �rst assume that the scheduler is distributed with fair exclusion and
that the network is a tree. We now prove the �rst part of the theorem. We
want to show that the algorithm converges, that it is self-stabilizing and that
the �nal stable result is that the pointers P j

i represent a tree. We will prove
the other parts of the theorem toward the end.
De�nitions:
A node is legal if it is either a root (i.e., all its neighbors are legal, point to it
and it doesn't point to any of them), or an intermediate node (i.e., it points to
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one of the neighbors and the rest of its neighbors are all legal and point back).
A node is a candidate if it is an illegal node and has all its neighbors but one
pointing to it and legal.
We must show:
1) The property of being legal is stable; i.e., once a node becomes legal it will
stay legal.
2) A state where the number of illegal nodes is k > 0, leads to a state where
the number of illegal nodes is less than k; i.e., the number of illegal nodes
decreases and eventually all nodes turn legal.
3) If all the nodes are legal then the graph is marked as a tree.
4) The algorithm is self-stabilizing for trees.
5) The algorithm converges even if the graph has cycles (part 2 of the theo-
rem).
6) The algorithm is self-stabilizing in arbitrary networks if an almost uniform
version is used, even under a distributed scheduler (part 3 of the theorem).
Proof:
1) Show that a legal state is stable. Assume a legal node i becomes illegal. It
is either a root node and one of its children became illegal, or an intermediate
node whose one of its children became illegal (it cannot be that its parent
suddenly points to i or that one of the children stopped pointing and still is
legal). Therefore, there must be a chain of i1; i2; :::; ik of nodes that became
illegal. Since there are no cycles, there must be a leaf that was legal and
turned illegal. This cannot occur since a leaf does not have children, leading
to a contradiction.

2) Show that if there are illegal nodes, their number is reduced. To prove
this claim we need three steps: 2.1) Eventually a state is reached where if
there is at least one illegal node then there is also a candidate node among the
illegal nodes. 2.2) This candidacy is stable. 2.3) eventually the candidate will
become legal (therefore the number of illegal nodes is reduced).

2.1) Because of the fair execution, eventually a state is reached where each
node has been executed at least once. Assume that at least one node is illegal,
and all the illegal nodes are not candidates. If a node is illegal and not a candi-
date, then either it is a root-type (all point to it) but at least one of its children
is illegal, or there are at least two of its neighbors that are illegal. Suppose
there are no root-type illegal nodes. Then all illegal nodes have at least two
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illegal neighbors. Therefore there must be a cycle that connects illegal nodes
(contradiction). Therefore, one of the illegal nodes must be root-type. Sup-
pose i is a root-type illegal node. It must have a neighbor j which is illegal.
Consider the subtree of j that does not include i: it must contain illegal nodes.
If there are no root-type illegal nodes we get a contradiction again. However,
if there is a root-type node, we eliminate it and look at the subtree of some
illegal j0 that does not include j. Eventually, since the network is �nite, we
obtain a subtree with no root-like illegal nodes but which includes other illegal
nodes. This leads to a contradiction. The conclusion is that there must be
candidates if there are illegal nodes.

2.2) Show that a candidate is stable unless it becomes legal.
If a node i is a candidate, all its legal children remain legal. There are three
types of candidate nodes (node j is an illegal neighbor of i): 1) node j points
to i; 2) the pointer goes in both directions; 3) there is no pointer from i to j
or vice-versa. All possible changes in the pointers P j

i or P i
j will cause i to re-

main a candidate or to turn legal (the rest of the pointers will not be changed).

2.3) Show that every candidate node will eventually turn legal: assume j is
the illegal neighbor of the candidate i. In the next execution of i without j, if
P i
j = 0 then i becomes legal by pointing to j; otherwise, i becomes a root-type

candidate (all its neighbors point to it) but j is illegal. We will prove now
that if an illegal node j points to i then eventually a state is reached where
either j is legal or P i

j = 0, and that this proposition is stable once it holds. If
this statement is true then i is executed eventually: if j is legal then all of i0s
neighbors are legal and therefore i turns legal. If j is illegal then P i

j = 0, and

i will point to it (P j
i = 1) making itself legal.

To prove: if j is an illegal node pointing to i then there will be a state
where either j is legal or P i

j = 0, and this state is stable.
We prove it by induction on the size of the subtree of j that does not include
i.
Base: If j is a leaf and j points to i then if at the time j is executed (without i)
P j
i = 0, then node j points to i and turns legal; otherwise, j updates P i

j = 0.
This status is stable because the legal state is stable and since a leaf will point
to a node only if it turns legal.
Induction step: Assume hypothesis is true for trees of size less than n. Sup-
pose j is the illegal neighbor if i. Node j points to i and it has j1; :::; jk other
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neighbors. Because we assume that all nodes were executed at least one time,
since j points to i we assume that at the last execution of j all the other
neighbors j1; :::; jk pointed to j. The subtrees rooted by jl (not including j)
are of size n and therefore by the hypothesis there will be a state where all
the nodes j1; :::; jk are either legal or P j

jl
= 0. This state is stable, so when

eventually j is executed, it will either point to i turning legal (if all j1; :::; jk
are pointing to it), or it will make P i

j = 0 (if some of its neighbors do not
point to it). Since the status of j1; :::; jk is stable at that point, whenever j is
executed it will either become legal or its pointers become zero.

3) Show that if all the nodes are legal then the graph is marked as a tree:
If a node is legal, then all its children are legal and point to it. Therefore each
node represents a subtree (if not a leaf) and has one parent at the most. To
show that there is only one root we make the following argument. If several
roots exist, then because of connectivity, there is one node that is shared be-
tween at least two subtrees and therefore has two parents (contradiction).

4) The algorithm is self-stabilizing for cycle-free networks since no initial-
ization is needed (in the proof we haven't use the �rst initialization step; i.e.,
P j
i = 0). In the case where no cycles exist we do not need this step. The

pointers can get any initial values and the algorithm still converges.

5) The algorithm (with P j
i = 0 initialization) converges even if the graph

has cycles. Since all the nodes start with zero pointers, a (pseudo) root of a
tree-like subnetwork will never point toward any of its neighbors (since it is
part of a cycle and all of its neighbors but one must be legal).

6) Show that the algorithm is self-stabilizing in arbitrary networks if an almost
uniform version is used, even under a distributed scheduler. We need to show
that a candidate will eventually turn legal even if its neighbors are executed
in the same time.
Suppose node i is a candidate and node j is its illegal neighbor:
1) If j is a root, then it will never point to i, and therefore i will eventually
turn legal by pointing to j.
2) If i is the root, then P j

i = 0, and if j becomes legal it will point to i making
i legal. Node j will turn eventually legal using the following induction (on the
size of the subtree of j).
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Hypothesis: In a subtree without a node that acts as a root, all illegal nodes
will eventually turn legal.
Base: If j is a leaf, it will point eventually to its neighbor i which in its turn
will make j legal by P j

i = 0.
Induction: If j1; :::; jk are other neighbors of j, then they will eventually turn
legal (induction hypothesis) while pointing to j. Eventually j is executed and
also turns legal.
3) Suppose neither i nor j are roots, but one of them is not part of a cycle
(and therefore is part of a subtree that does not include a node marked as a
root). Using the above induction, all the nodes in the subtree will eventually
turn legal. As a result either i or j eventually turns legal, and therefore i will
eventually turn legal as well.
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