
To Guess or to Think?

Hybrid Algorithms for SAT

Irina Rish and Rina Dechter
Information and Computer Science
University of California, Irvine
fdechter,irinarg@ics.uci.edu

http://www.ics.uci.edu/f~irinar,~dechterg
phone: (714)824-6556, fax: (714)824-4056

Abstract

Complete algorithms for solving propositional satis�ability fall into twomain classes:
backtracking (e.g., the Davis-Putnam Procedure [4]) and resolution (e.g., Directional
Resolution [9]). Roughly speaking, backtracking amounts to \guessing" (making as-
sumption), while resolution invokes \thinking" (inference). Experimental results show
that both \pure guessing" and \pure thinking" might be ine�cient. We propose an
approach that combines resolution and backtracking and yields a family of hybrid al-
gorithms, parameterized by a bound on the "e�ective" amount of resolution allowed.
The idea is to divide the set of propositional variables into two classes: conditioning

variables, which are assigned truth values, and resolution variables, which are resolved
upon. We report on preliminary experimental results demonstrating that on certain
classes of problems hybrid algorithms are more e�ective than either the Davis-Putnam
Procedure or Directional Resolution in isolation.

Keywords: propositional satis�ability, computational complexity, resolution, back-
tracking, graph representation of a propositional theory, induced width.

1

1 Introduction

One of the most common approaches for solving constraint satisfaction problems (CSPs)
is combining search with local consistency enforcing. Backtracking search may be viewed
as a systematic \guessing", as opposed to consistency enforcing which may be viewed as
\thinking" as it involves making inferences. A key to having e�cient constraint satisfaction
algorithms lies in �nding a good balance between these two activities.

The problem of propositional satis�ability is a special case of CSP, where the domains
are restricted to ftrue; falseg. The well-known Davis-Putnam Procedure (DP)[4] is a back-
tracking algorithm enhanced by unit resolution performed at each level of the search, which
is a form of forward checking (roughly equivalent to arc-consistency). Directional Resolution
(DR)[9], a variation on the original Davis-Putnam Algorithm[5], is a variable-elimination
algorithm (like adaptive-consistency for CSPs[8]) applied to propositional satis�ability. The
time and space complexity of DR is O(exp(w�)), where w� is a parameter of the interaction
graph of the theory, called induced-width or tree-width [9]. It was not surprising, there-
fore, that DR was found to be signi�cantly less e�cient than DP when applied to uniformly
generated 3-cnfs having large w�, while outperforming DP, sometimes by many orders of
magnitude, when applied to structured theories with bounded w�. This last phenomenon
occurred on structured theories when DP encountered rare, but exceptionally hard problems
[14]. Since those problems had small w� they were all easy for DR. This complementary
behavior of DP and DR prompted the idea of combining the advantages of both algorithms.
Indeed, we have shown that preprocessing DP by a bounded version of DR results in an al-
gorithm BDR-DP [9] which is superior to either of its components. In this paper we pursue
the idea of hybrid algorithms further.

We wish to come up with an algorithm that adjusts automatically to the problem instance.
For instances likely to be solved e�ciently by DP it should reduce to DP, while for favorite
instances of DR it will reduce to DR. Otherwise, for instances which are not likely to be
solved e�ectively by either DP nor DR, the algorithm will exploit a middle ground between
these two extremes yielding a better algorithm than both.

To that aim, we present a family of parameterized hybrid algorithms using a parameter
that controls the levels of DP and DR in the combination, and study their properties. Our
preliminary results suggest that the selection of the right hybrid algorithm may be guided by
the induced width of the input theories and that a selected number of themmay be adjustable
to the problem instance yielding a better algorithm overall. Our combined algorithms have
the properties that, like DR, they produce an output theory from which a portion of the set
of models can be extracted in linear output time, while, like DP, they are more space-e�cient
than DR [7].

In general, conditioning facilitates integration. It is a universal principle that is used to
reduce a general problem into a tractable class. Here we focus on tractable problems whose
interaction graph has a bounded induced width [9] on which DR is polynomial. The idea
is to �nd a small subset of conditioning variables, also called cutset, such that instantiating

2

them leaves the remaining theory manageable for DR. 1. The combined algorithm uses
DP to instantiate the cutset variables and DR to resolve upon the remaining ones and its
complexity is exponential in the sum of cutset size and the conditional induced-width.

Dividing the set of variables into cutset and resolution variables can be accomplished
dynamically, during the algorithm's execution, or in advance of executing it. Accordingly, we
consider two variations: Dynamic Conditioning + DR, calledDCDR, and Static Conditioning
+ DR, called SCDR.

The rest of the paper has the following structure. Sections 2 and 3 contain the necessary
de�nitions and preliminaries, section 4 discusses algorithms DCDR and SCDR, section 5
reports on our preliminary experimental results for solving propositional satis�ability. Con-
cluding remarks are given in section 6.

2 De�nitions

Propositional symbols, also called variables, are denoted by uppercase letters P;Q;R; :::;
propositional literals (i.e., P;:P) by lowercase letters p; q; r; :::, and disjunctions of literals,
or clauses, by �; �; :::. A unit clause is a clause of size 1. A formula, or theory, ' in
conjunctive normal form (cnf) is a conjunction of clauses. The set of propositional variables
involved in ' is denoted as V . The notation (� _ T) will be used as a shorthand for the
disjunction (P _Q_R_T), and �_� denotes the clause whose literal appears in either � or
�. The resolution operation over two clauses (�_Q) and (�_:Q) results in a clause (�_�),
thus eliminating Q. Unit resolution is a resolution operation when one of the clauses is a
unit clause. Unit propagation is a procedure that performs unit resolution on a given theory
until no unit clauses are left. We denote by Qi the positive assignment, or instantiation,
Qi = true, and by :Qi the negative instantiation, Qi = false. I(C) denotes an instantiation
of a subset of variables C � V . The theory ' augmented with I(C), 'I(C), is the conditional
restriction of ' relative to I(C).

The interaction graph of ', denoted G('), is an undirected graph that contains a node for
each propositional variable and an arc connecting any two nodes whose associated variables
appear in the same clause. Given an ordering d of the variables, the parent set of a node Q is
the set of nodes connected to Q in G(') that precede Q. The size of this parent set is called
the width of Q relative to d. The width wd of an ordering d is the maximum width of nodes
along the ordering, and the width w of a graph is the minimal width over all its orderings.
The graph generated by recursively connecting the parents of G, in the reverse order of d is
called the induced graph of G, and is denoted by IGd(G). The width of IGd(G), w

�(d), is
the induced width of G [10, 8]. The conditional interaction graph w.r.t. I(C), G('I(C)), is
obtained from G(') by deleting 2 the nodes corresponding to variables in C.

1This is a generalization of the cycle-cutset algorithm proposed in [8] which transforms the interaction
graph of a theory into a tree (CSPs whose graph is a tree are tractable) by instantiating the cutset variables.

2Deleting a node x from a graph G(V;E) means removing x from V , and deleting all edges incident with
x from E.

3

DP(')
Input: A cnf theory '

Output: A decision of whether ' is satis�able.
1. Unit propagate(');
2. If the empty clause is generated, return(false);
3. Else, if all variables are assigned, return(true);
4. Else
5. Q = some unassigned variable;
6. return(DP(' ^Q) _

DP(' ^ :Q))

Figure 1: The Davis-Putnam Procedure

The conditional width and conditional induced width of a theory ' relative to I(C),
denoted wI(C) and w�

I(C), are the width and induced width of G('I(C)).

3 Preliminaries

The Davis-Putnam Procedure (DP) [4] and Directional Resolution (DR) [5, 9] are shown
for completeness sake in �gures 1 and 2, respectively. DP is the commonly used back-
tracking algorithm that systematically searches the space of possible truth assignments of
propositional variables. DP performs unit propagation at each step, and is often augmented
by dynamic variable ordering heuristic for selecting the next unassigned variable (line 5 in
Figure 1).

DR [9] is an ordering-based restricted resolution that can be described using the notion of
buckets. Given an ordering d = Q1; :::; Qn, all the clauses containing Qi that do not contain
any symbol higher in the ordering should be placed in bucketi. Algorithm DR processes the
buckets in a reverse order of d. When processing bucketi, it resolves over Qi all possible
pairs of clauses in the bucket and inserts the resolvents into appropriate lower buckets. The
output theory, Ed('), is called the directional extension of '. A theory has a non-empty
directional extension (i.e. not containing the empty clause, ;) i� it is satis�able [5]. If Ed(')
is not empty, than any model of ' can be generated in time O(jEd(')j) in a backtrack-free
manner, consulting Ed(') , as follows: Step 1. Assign to Q1 a truth value that is consistent
with clauses in bucket1 (if the bucket is empty, assign Q1 an arbitrary value); Step i. After
assigning values to Q1; :::; Qi�1, assign a value to Qi so that together with the previous
assignments it will satisfy all clauses in bucketi [9]. It was shown that

Theorem 1: [9] Given a theory ' and an ordering d, the time and space complexity of
algorithm DR is O(n � exp(w�(d))), where n is the number of propositional variables and
w�(d) is the induced width of ' relative to d.

In [9] we have shown that, although ine�cient on uniformly generated problems, DR

4

DR(',d)
Input: A cnf theory ', an ordering d = Q1; :::; Qn of its variables.
Output: A decision of whether ' is satis�able. If it is, a theory Ed('), equivalent to ', else an
empty directional extension.
1. Initialize: generate an ordered partition of the clauses, bucket1; :::; bucketn, where bucketi con-
tains all the clauses whose highest literal is Qi.
2. For i = n to 1 do:
3. Resolve each pair f(�_Qi); (� _ :Qi)g � bucketi. If = � _ � is empty, return Ed(') = ;, the
theory is not satis�able; else, determine the index of and add it to the appropriate bucket.
4. End-for.
5. Return Ed(')(=

S
i
bucketi.

Figure 2: Algorithm Directional Resolution (DR)

greatly outperforms DP on problems with special structure, namely on k-tree embeddings.
It is known that the induced width of a graph embedded in a k-tree is bounded by k [1]. A
k-tree is de�ned recursively as follows. A clique of size k (complete graph with k vertices) is
a k-tree. Given a k-tree de�ned on Q1; :::; Qi�1, a k-tree on Q1; :::; Qi can be generated by
selecting a clique of size k and connecting Qi to every node in that clique.

Our earlier attempt to combine the advantages of DP on uniform problems with those of
DR on structured problems resulted in the algorithm Bounded DR + DP (BDR-DP) which
was shown empirically to be superior on both classes of problems. BDR-DP applies DR,
restricted by the size of resolvents, as a preprocessing to DP. In this paper we present a more
re�ned, approach to combining DR with DP.

4 Conditioning + Directional Resolution: Hybrid Al-

gorithms

We combine backtracking with resolution, by splitting the variables into two subsets: condi-
tioning, or cutset, variables, to be instantiated, and resolution variables, to be resolved upon.
We propose two variations of splitting, static and dynamic, leading to two algorithms, Dy-
namic Conditioning + DR, called DCDR, and Static Conditioning + DR, called SCDR. We
perform most of the experimental work on the dynamic version while use SCDR primarily
for theoretical purposes.

A pseudocode of DCDR(b) is given in Figure 3. The algorithm takes as an input a
propositional theory ' and determines whether ' is satis�able. If it is, the algorithm returns a
consistent partial assignment I(C), and the conditional directional extension of ', Ed('I(C)).
The algorithm decides dynamically whether the next variable is a cutset one or a resolution
one, and processes the variable accordingly. DCDR(b) is described as a recursive procedure.
It applies unit propagation to the current theory. If an inconsistency is discovered, the
algorithm backtracks to the latest cutset variable (returns to the previous level of recursion

5

DCDR(', b)
Input: A cnf theory ' on the set of variables V .
Output: A decision of whether ' is satis�able.
If it is, an assignment of cutset variables, I(C), and Ed('I(C)).
1. If Unit propagate(') = false, return(false);
2. Else If no more variables to process, return true;
3. While 9Q s.t. degree(Q) � b

4. Resolve Upon(Q);
5. If the empty clause is not generated,
6. add all resolvents to appropriate buckets of ';
7. Else return false.
8. End While
11. Q = some unassigned variable;
12. C = C [Q;
13. return(DCDR(' ^Q, b) _
14. DCDR(' ^ :Q, b)).

Figure 3: Algorithm DCDR

in line 12 or 13). Otherwise, it decides whether the next step is going to be resolution or
conditioning (instantiation), and what variable it should be applied to. A variable is resolved
upon if its conditional induced width is below b. Then, if selected, all the clauses in Q's
bucket are resolved relative to Q, and the resolvents are added to the appropriate bucket.
If Q is selected to be conditioning variable it is assigned a value, and DCDR(b) is called
recursively. The algorithm returns the cutset C and the conditional directional extension
Ed('I(C)) along an ordering d, if ' is consistent.

The static version of the algorithm, SCDR(b), assumes a �xed ordering d, and a cutset
Cb involving the �rst sb variables in d. SCDR may save time by avoiding dynamic decision
making; however, the partitioning of V into cutset and resolution variables may be less
e�ective. Given a �xed ordering d, and a cutset size sb such that the conditional induced
width of the theory is below b, SCDR(b) applies DP to the subtheory restricted to Cb. If
a consistent instantiation of the cutset variables is found, it processes the remaining theory
by DR. If an empty clause is discovered, the algorithm backtrack,�nds a new assignment to
the cutset variables and continues.

We present some properties of the proposed family of algorithms described above.

Theorem 2: [soundness and completeness] Algorithms DCDR(b) and SCDR(b) are sound
and complete for satis�ability. If a theory ' is satis�able, any model of ' that agrees with
I(C) can be generated in time O(jEd('I(C))j) in a backtrack-free manner.

Proof: As shown in [9], given a non-empty directional extension Ed(') obtained by DR,
any model of ' can be found in a backtrack-free manner in timeO(jEd(')j) by a backtracking

6

algorithm on the same ordering, but in opposite direction. Since the algorithms return the
directional extension of 'I(C), the result follows.

2

Theorem 3: [complexity] The time complexity of algorithm SCDR(b) when applied to a
theory ' is O(exp(b+sb)), where sb is a cutset size for which ' has conditional induced width
bounded by b. The space complexity is O(exp(b)).

Proof: Given an instantiation of the sb cutset variables, the time and space complexity of
DR in SCDR(b) is O(exp(b)). Enumerating all possible instantiations of the cutset variables
takes O(exp(sb)), yielding the result. 2

Similar result can be stated for DCDR(b), relative to the largest cutset size encountered
during run-time. Note that using b as a parameter b allows control of the space complexity
of the algorithms. We see that if b � w�('), the algorithm reduces to pure directional
resolution, having time and space exponential in w�(') complexity. If b � 1, the algorithm
is close to pure DP, whose time complexity becomes O(exp(s1)), while its space complexity
is linear. It is known that the best cycle cutset of a theory, s0, and the smallest induced
width, w�, obey the relation w� � s0 + 1 [2]. Thus the time bound of the parameterized
algorithms are smaller as b increases. When we use intermediate values of b, we activate an
hybrid algorithm that trade space for time; as b increases, the algorithm may require more
space and less time.

Di�erent heuristic orderings can be used in both the static and the dynamic versions
of the algorithm and they may a�ect the results dramatically. In both cases we use the
following principle: select Q as resolution variable if its conditional width is below b. Select
Q as a next conditioning variable if it has the maximal degree in the current graph.

Note that in case of SCDR(b) the upper bound b on w�

I(C) may be very loose; at run
time some of the resolution variables might be instantiated by unit propagation. Indeed,
our experiments show that dynamic ordering provides a tighter upper bound on the e�ective
w�

I(C).

5 Experimental Results

5.1 Methodology

We compare algorithms DCDR(b) for di�erent values of bound b. With SCDR(b) we per-
formed just a limited amount of experiments. We also compare those algorithms with pure
DP. Our implementation of DP uses the 2-literal clause heuristic proposed in [3]. The same
heuristic is used when processing cutset variables in DCDR(b) and SCDR(b).

Several random problem generators are used. Uniform k-cnfs are obtained using the
generator proposed in [12]. It takes as an input the number of variables n, the number of
clauses m, and the number of literals per clause k, and obtains each clause by choosing k
variables randomly from the set of n variables and by determining the polarity of each literal
with probability p = 0.5.

7

To test our algorithms on problems having bounded w� we implemented a (k;m)-trees
generator, which generalizes the idea of k-trees [1]. A (k;m)-tree is a tree of cliques, each
having (k + m) nodes, where k is the size of intersection between each two neighboring
cliques. Thus, conventional k-trees are (k; 1)-trees. The (k;m)-trees generator takes as an
input k, m; the number of cliques, Ncliques; and the number of clauses for each clique,
Nclauses. Given a set of cliques previously generated, it chooses a clique, randomly selects
k variables in this clique, adds m new variables, and generates Nclauses clauses on the new
clique. Note that Nclauses is not the number of clauses per each clique, because each new
clique shares variables with other cliques. The induced width of a (k;m)-tree is bounded by
k +m� 1.

For each algorithm, we computed the CPU time, the number of dead ends encountered,
the cutset size, the number of variables resolved upon, the number of new clauses in the
output theory, and the total number of new clauses generated.

We tested problem instances in the phase transition region which tends to yield di�cult
problems. According to experimental studies, on uniform 3-cnfs, the crossover point in such
a transition phase occurs when the clauses/variables ratio equals approximately 4.3 [12, 3].
For (k;m)-trees, the transition region is not identi�ed yet, and we had to experiment with
several combinations of parameters in order to �nd relatively hard instances.

5.2 Experimental results for DCDR(b)

Our results are summarized in Figures 4-7. In Figure 5, we focus on uniform 3-cnfs having
100 variables and 400 clauses. In Figures 6 and 7 we provide the same statistics when
experimenting with (4; 5)-trees and (4; 8)-trees, respectively. For each class we show the
average time, deadends and number of clauses generated. The averages for uniform 3-cnfs
are computed on 100 problem instances. We experimented with relatively few (k;m)-tree
instances while trying many di�erent combinations of parameters. An enormous amount
of time is needed to cover all algorithms with various bounds over large number of regions
in a statistically signi�cant way. We therefore view our results as preliminary. Many more
instances need to be tested before we can have conclusive results. Nevertheless, we feel that
our preliminary results indicate the general promise of the approach.

As expected, the performance of DCDR(b) depends on the induced width of the theories
tested. We have observed three di�erent patterns of the algorithm's behavior as a function
of w�. Figure 7 describes the average number of resolution variables in each of the three
classes and may hint at the potential of these algorithms for knowledge compilation. When
the cutset is small, many variables are resolved upon, so the resulting conditional directional
extension codes a larger portion of the solutions, all agreeing with the assignment to the
cutset variables.

� On problems having large w�, such as uniform 3-cnfs in the transition region (see
Figure 4), the time complexity of DCDR(b) is similar to DCDR(-1) when b is small.
However, when b increases, the CPU time grows exponentially. Indeed, the number of
dead ends encountered by DCDR(b) is decreasing too slowly relative to the exponential

8

109876543210-1
0

200

400

600

800
 DCDR Time

 DCDR on uniform 3-cnfs
 100 variables, 400 clauses
100 experiments per point

 Bound

 T
im

e

109876543210-1
580

600

620

640

660

680

700
 Dead Ends

 DCDR on uniform 3-cnfs
 100 variables, 400 clauses
 100 experiments per point

 Bound

 D
ea

d
E

nd
s

109876543210-1
0

5000

10000

15000 Clauses added to theory
Total # of new clauses

 DCDR on uniform 3-cnfs
100 variables, 400 clauses
100 experiments per point

 Bound

C
la

us
es

Figure 4: DCDR on uniform 3-cnfs: time, the number of deadends, total number of new
clauses

109876543210-1
10

100

1000

10000
 DCDR Time

DCDR on (4,5)-trees, 40 cliques,
 15 clauses per clique
 23 experiments per point

 Bound

 T
im

e
 (

lo
g

sc
al

e)

109876543210-1
0

10000

20000
 Dead Ends

 DCDR on (4,5)-trees, 40 cliques,
 15 clauses per clique
 23 experiments per point

 Bound

 D
ea

d
E

nd
s

109876543210-1
0

1000

2000

3000 Clauses added to theory
Total # of new clauses

 DCDR on (4,5)-trees, 40 cliques
 15 clauses per clique
 23 experiments per point

 Bound

C
la

us
es

Figure 5: DCDR on (4,5)-trees: time, the number of deadends, total number of new clauses

131211109876543210-1
0

1000

2000
 DCDR Time

DCDR on (4,8)-trees, 50 cliques,
 20 clauses per clique

 Bound

 T
im

e

131211109876543210-1
1

10

100

1000

10000
 Dead Ends

 DCDR on (4,8)-trees, 50 cliques,
 20 clauses per clique
 21 experiment per point

 Bound

 D
ea

d
E

nd
s

131211109876543210-1
0

1000

2000

3000

4000 Clauses added to theory
Total # of new clauses

 DCDR on (4,8)-trees, 50 cliques,
 20 clauses per clique
 21 experiment per point

 Bound

C
la

us
es

Figure 6: DCDR on (4,8)-trees: time, the number of deadends, total number of new clauses

9

10
9

8
7

6
5

4
3

2
1

0
-1 0

10 20 30 40
R

esolved V
ariables

 D
C

D
R

 on uniform
 3-cnfs

100 variables, 400 clauses
100 experim

ents per point

 B
ound

Resolved Variables

10
9

8
7

6
5

4
3

2
1

0
-1 0

100

200

R
esolved V

ariables

D
C

D
R

 on (4,5)-trees, 40 cliques,
 15 clauses per clique
 23 experim

ents per point

 B
ound

Resolved Variables

13
12

11
10

9
8

7
6

5
4

3
2

1
0

-1 0

100

200

300

400
R

esolved V
ariables

D
C

D
R

 on (4,8)-trees, 50 cliques,
 20 clauses per clique
 21 experim

ent per point

 B
ound

Resolved Variables

F
igu

re
7:

D
C
D
R
:
th
e
n
u
m
b
er

of
resolv

ed
variab

les
on

d
i�
eren

t
p
rob

lem
s

(in
b)

grow
th

in
th
e
total

n
u
m
b
er

of
gen

erated
clau

ses.
N
ote

th
at

th
e
n
u
m
b
er

of
n
ew

clau
ses

in
th
e
�
n
al

th
eory

grow
s
in

a
slow

er
p
ace,

an
d
,
th
erefore,

th
e
�
n
al

con
d
ition

al
d
irection

al
ex
ten

sion
s
h
ave

m
an
ageab

le
sizes.

W
h
en

look
in
g
at

th
e
d
ata

in
F
igu

re
7,

w
e
see

th
at

for
relativ

ely
large

b's
th
e
cu
tset

size
tak

es
at

m
ost

70%
of

th
e
variab

les.
W
e
h
ave

ob
tain

ed
sim

ilar
resu

lts
w
h
en

ex
p
erim

en
tin

g
w
ith

u
n
iform

th
eories

h
av
in
g
150

variab
les

an
d
640

clau
ses.

�
C
learly,

D
R
is
eq
u
ivalen

t
to

D
C
D
R
(b)

w
h
en
ever

b
is
eq
u
al

or
greater

th
en

w
�.

T
h
ere-

fore,
for

th
eories

h
av
in
g
sm

allin
d
u
ced

w
id
th
,
D
C
D
R
(b)

coin
cid

es
w
ith

D
R
for

relatively
sm

allvalu
es

of
b.

F
igu

re
5
d
em

on
strates

th
is
b
eh
av
ior

on
(4,5)-trees

w
ith

40
cliq

u
es,

15
clau

ses
p
er

cliq
u
e,
an
d
in
d
u
ced

w
id
th

6.
A
sim

ilar
p
ictu

re
w
as

ob
served

on
(3,6)-trees

h
av
in
g
40

cliq
u
es,

15
clau

ses
p
er

cliq
u
e,
an
d
(2,5)-trees

h
av
in
g
40

cliq
u
es,

14
clau

ses
p
er

cliq
u
e.

W
e
see

th
at

startin
g
at

b
�

8,
th
e
C
P
U

tim
e,
th
e
total

n
u
m
b
er

of
clau

ses
gen

erated
,
an
d
th
e
n
u
m
b
er

of
n
ew

clau
ses

ad
d
ed

to
th
e
ou
tp
u
t
th
eory,

are
id
en
tical.

N
atu

rally,
w
e
ob
serv

e
h
ere

th
e
sam

e
p
h
en
om

en
on

w
h
en

com
p
arin

g
D
C
D
R
(�

1)
to

D
C
D
R
(b
)
w
ith

b
�

w
�

as
w
e
ob
served

in
[9]

com
p
arin

g
D
P
an
d
D
R
.
N
ote

th
at

for
very

sm
all

valu
es

of
b
(b

=
0
;1
;2
;3),

th
e
e�

cien
cy

of
D
C
D
R
(b)

w
as

som
etim

es
w
orse

th
an

th
at

of
D
C
D
R
(-1)

d
u
e
to

th
e
overh

ead
in
cu
rred

b
y
ex
tra

clau
se

gen
eration

.

�
W
h
en

testin
g
D
C
D
R
(b)

on
(k
;m

)-trees
w
ith

larger
size

of
cliq

u
es

(F
igu

re
6),

w
e
ob
-

served
an

in
term

ed
iate

region
for

b's
valu

es
th
at

y
ield

ed
a
b
etter

p
erform

an
ce

th
an

b
oth

ex
trem

es.
T
h
is
h
ap
p
en
s
w
h
en

D
P
(or,

eq
u
ivalen

tly,
D
C
D
R
(-1))

is
still

in
e�

cien
t

on
th
e
stru

ctu
red

p
rob

lem
s,
w
h
ile

at
th
e
sam

e
tim

e
large

in
d
u
ced

w
id
th

m
ak
es

p
u
re

D
R

too
costly

tim
e-
an
d
sp
ace-w

ise.

A
s
w
e
see

in
F
igu

re
6,

for
(4,8)-trees,

th
e
op
tim

al
valu

es
of
b
ap
p
ear

b
etw

een
5
an
d
8.

S
im

ilar
p
attern

h
as

b
een

ob
serv

ed
on

(4,7)-trees
w
ith

50
cliq

u
es
an
d
18

to
20

clau
ses

p
er

cliq
u
e.

In
th
ose

cases
a
su
b
stan

tial
n
u
m
b
er
of
th
e
variab

les
are

resolv
ed

u
p
on
,
resu

ltin
g

in
an

e�
ective

con
d
ition

al
d
irection

al
ex
ten

sion
th
at

cap
tu
res

m
an
y
solu

tion
s.

F
in
ally,

in
F
igu

re
8
w
e
su
m
m
arize

th
e
resu

lts
for

D
C
D
R
(-1),

D
C
D
R
(5),

an
d
D
C
D
R
(13)

10

Uniform 3-cnfs (2,5)-trees (4,8)-trees
10

100

1000

10000
DCDR(-1)
DCDR(5)
DCDR(13)

DCDR (-1), DCDR(5) , DCDR(13)
 on different types of problems

Problem types

T
im

e
(l

og
 s

ca
le

)

Figure 8: Relative performance of DCDR(b) for b = �1; 5; 13 on di�erent types of problems

on all three classes of problems considered in the experiments. These results suggest that
intermediate bounds, like 5, can be e�ective in all three cases.

5.3 Results for SCDR

When comparing DCDR(�1) with pure DP, we observed that DP was signi�cantly more
e�cient, although the two algorithms are supposedly identical. This is due to the not very
e�cient implementation of DCDR(b), which we hope to improve in the future. Also, we
expected that SCDR(b) will avoid this overhead. Indeed, the CPU time of SCDR(-1) was
comparable to the DP's time, which was an order of magnitude better than the time for
DCDR(-1). Although we have experimented with SCDR, we omit any tables and �gures
since the results are preliminary. The main di�erence observed between DCDR(b) and
SCDR(b) is that for small values of b static version is more e�cient due to low overhead.
On the other hand, since b here provides a looser upper bound on w�, larger values of b are
necessary in order to observe a transition a from DP to DR.

6 Summary and conclusions

We have presented a family of hybrid algorithms that combine backtracking search (e.g.
Davis-Putnam procedure) with resolution (e.g. directional resolution). Backtracking is a
form of conditioning, while resolution is a variable elimination procedure. Conditioning and
elimination algorithms are widely used in solving constraint satisfaction, constraint opti-
mization and in reasoning under uncertainty. The combined algorithms are parameterized
by a constant b, which bounds the amount of resolution permitted, and which invokes the
notion of induced width. Given b, the algorithm selects a subset of conditioning variables
Cb such that the resulting (conditional) theory has an induced width not exceeding b. The

11

hybrid algorithm searches the space of truth assignments for the conditioning variables and
resolves upon the rest of the variables.

This family of algorithms lies between the extreme points of DP and DR strategies, and
enables us to exploit the virtues of both on given problem instance. In particular we have
shown that 1. hybrid algorithms can be more e�ective than either backtracking (DP) or
resolution (DR) on some classes of problems having intermediate sizes of induced width,
2. hybrid algorithms require less space than pure resolution, and 3. hybrid algorithms can
output a compiled theory from which a portion of the solution set can be generated in linear
time.

Our preliminary experimental results show that the induced width provides a reasonable
predictor of the level b that should be used for a given instance. Roughly speaking, when
w� is very large we choose b � 1, when the induced width is very small (less than 4) we
choose large b's, while for intermediate levels of w� it is better to choose a bounded level
of b. We are not ready at this point to suggest a more re�ned recommendation. However,
from our preliminary study we can see that when using the hybrid algorithms with b ranging
over b = 5; :::; 8, performance improved over all problem classes tested. These algorithms
automatically reduce to DP on uniform instances, to DR for (k;m)-trees having small width,
while on intermediate sizes of w* the algorithms exploit both the DP and DR strategies in
a way that outperforms each of them.

References

[1] Arnborg, S., Corneil, D.G., and Proskurowski, A., Complexity of Finding Embedding in
a k-tree, Journal of SIAM, Algebraic Discrete Methods, 8(2):177-184 (1987).

[2] Bertele, U. and Brioschi, F., Nonserial Dynamic Programming, Academic Press, New
York, 1972.

[3] Crawford, J.M. and Auton, L.D., Experimental Results on the Cross-over Point in Sat-
is�ability Problems, in Proceedings of the National Conference on Arti�cial Intelligence
(AAAI-93) , July 1993, pp. 21-27.

[4] M. Davis, G. Logemann and D. Loveland, A machine program for theorem proving,
Communications of the ACM, 5, 1962, pp. 394-397.

[5] M. Davis and H. Putnam, A computing procedure for quanti�cation theory, Journal of
the ACM, 7, 1960, pp. 201-215.

[6] R. Dechter, Constraint networks. Encyclopedia of Arti�cial Intelligence (2nd Ed.), John
Wiley, New York, 1991 pp. 276-285.

[7] R. Dechter, Topological parameters for time-space tradeo�, In Proceedings of the Fourth
International Symposium on Arti�cial Intelligence and Mathematics, AI/MATH-96,
1996.

12

[8] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems.
In Arti�cial Intelligence, 34, pp. 1-38, 1987.

[9] R. Dechter and I. Rish, Directional Resolution: The Davis-Putnam Procedure, Revisited.
In Proceedings of KR-94, pp. 134-145, 1994.

[10] E.C. Freuder, A su�cient condition for backtrack-free search. Journal of the ACM, 29,
1982, 24-32.

[11] K. Kask and R. Dechter, GSAT and Local Consistency. In Proceedings of IJCAI-95, pp.
616-622, 1995.

[12] Mitchell, D., Selman, B., and Levesque, H., Hard and Easy Distributions of SAT Prob-
lems, in Proceedings of the National Conference on Arti�cial Intelligence (AAAI-92), San
Jose, CA, July 1992, pp. 459-465.

[13] Selman, B., Levesque, H., and Mitchell, D., A New Method for Solving Hard Satis-
�ability Problems, in Proceedings of the National Conference on Arti�cial Intelligence
(AAAI-92), San Jose, CA, July 1992, pp. 440-446.

[14] B. Smith and S. Grant, Sparse Constraint Graphs and Exceptionally Hard Problems.
In Proceedings of IJCAI-95, pp.646-651, 1995.

13

