
Using Mini-Bucket Heuristics for Max-CSP �

Kalev Kask and Rina Dechter

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425

fkkask, dechterg@ics.uci.edu

June 30, 2000

Abstract

This paper evaluates the power of a new scheme that generates search heuristics
mechanically. This approach was presented and evaluated �rst in the context of op-
timization in belief networks. In this paper we extend this work to Max-CSP. The
approach involves extracting heuristics from a parameterized approximation scheme
called Mini-Bucket elimination that allows controlled trade-o� between computa-
tion and accuracy. The heuristics are used to guide Branch-and-Bound and Best-
First search, whose performance are compared on a number of constraint problems.
Our results demonstrate that both search schemes exploit the heuristics e�ectively,
permitting controlled trade-o� between preprocessing (for heuristic generation) and
search.

1 Introduction

In this paper we will present a general scheme of mechanically generating search heuristics
for solving combinatorial optimization problems, using either Branch and Bound or Best
First search. Within this scheme, the trade-o� between the quality of the heuristic function
and its computational complexity is quanti�ed by an input parameter.

The scheme is based on the Mini-Bucket technique; a class of parameterized approxi-
mation algorithms for optimization tasks based on the bucket-elimination framework [2].
The mini-bucket approximation uses a controlling parameter which allows adjustable levels

�This work was supported by NSF grant IIS-9610015 and by Rockwell Micro grant #99-030.

1

of accuracy and e�ciency [5]. It was presented and analyzed for deterministic and proba-
bilistic tasks such as �nding the most probable explanation (MPE), belief updating, and
�nding the maximum a posteriori hypothesis. Encouraging empirical results were reported
on a variety of classes of optimization domains, including medical-diagnosis networks and
coding problems [7]. However, as evident by the error bound produced by these algorithms,
in some cases the approximation is seriously suboptimal even when using the highest feasi-
ble accuracy level. In such cases, augmenting the Mini-Bucket approximation with search
could be cost-e�ective.

Recently, we demonstrated how the mini-bucket scheme can be extended and used for
mechanically generating heuristics search algorithms that solve optimization tasks, using
the task of �nding the Most Probable Explanation in a Bayesian network. We showed
that the functions produced by the Mini-Bucket method can serve as the basis for creating
heuristic evaluation functions for search [9, 8]. These heuristics provide an upper bound
on the cost of the best extension of a given partial assignment. Since the Mini-Bucket's
accuracy is controlled by a bounding parameter, it allows heuristics having varying degrees
of accuracy and results in a spectrum of search algorithms that can trade-o� heuristic
computation and search.

In this paper we extend this approach to Max-CSP. Max-CSP is an optimization version
of Constraint Satisfaction. Instead of �nding an assignment that satis�es all constraints,
a Max-CSP solution satis�es a maximum number of constraints. We will use the Mini-
Bucket approximation to generate a heuristic function that computes a lower bound on
the minimum number of constraints that are violated in the best extension of any partial
assignment. We evaluate the power of the generated heuristic within both Branch-and-
Bound and Best-First search on a variety of randomly generated constraint problems.

Branch-and-Bound searches the space of partial assignments in a depth-�rst manner.
It will expand a partial assignment only if its lower-bounding heuristic function is smaller
than the current best upper bound solution. The virtue of Branch-and-Bound is that it
requires a limited amount of memory and can be used as an anytime scheme; whenever
interrupted, Branch-and-Bound outputs the best solution found so far. Best-First explores
the search space in uniform frontiers of partial instantiations, each having the same value for
the evaluation functions, while progressing in waves of increasing values. Since, as shown,
the generated heuristics are admissible and monotonic, their use within Best-First search
yields A* type algorithms whose properties are well understood. When the algorithm �nds
a solution, it is guaranteed to be optimal. When provided with more accurate heuristics,
it explores a smaller search space, but otherwise it requires substantial memory. It is also
known that Best-First algorithms are optimal performance wise. Namely, when given the
same heuristic information, Best-First search is the most e�cient algorithm in terms of
the size of the search space it explores [4]. In particular, Branch-and-Bound will expand
any node that is expanded by Best-First (up to some tie breaking conditions), and in
many cases it explores a larger space. Still, Best-First may occasionally fail because of its

2

memory requirements. Hybrid approaches similar to those presented for A* in the search
community in the past decade are clearly of potential here as well [11].

In this paper we extend our studies of Mini-Bucket search heuristics to the Max-CSP
class. Speci�cally, we evaluate a Best-First algorithm with Mini-Bucket heuristics (BFMB)
and a Branch-and-Bound algorithm with Mini-Bucket heuristics (BBMB), and compared
empirically against the full bucket elimination and its Mini-Bucket approximation over
randomly generated constraint satisfaction problems for solving the Max-CSP problem.
For comparison we also ran a number of state of the art algorithms such as PFC-MPRDAC
[12] and a variant of Stochastic Local Search.

We show that both BBMB and BFMB exploit heuristics' strength in a similar manner:
on all problem classes, the optimal trade-o� point between heuristic generation and search
lies in an intermediate range of the heuristics' strength. As problems become larger and
harder, this optimal point gradually increases towards the more computationally demand-
ing heuristics. We show that BBMB/BFMB outperform both SLS and PFC-MRDAC on
some of the problems, while on others SLS and PFC-MRDAC are better. Unlike our results
in [8, 9] here Branch-and-Bound clearly dominates Best-First search.

Section 2 provides preliminaries and background on the Mini-Bucket algorithms. Sec-
tion 3 describes the main idea of the heuristic function which is built on top of the Mini-
Bucket algorithm, proves its properties, and embeds the heuristic within Best-First and
Branch-and-Bound search. Sections 4 and 5 present empirical evaluations, while Section 6
provides conclusions.

1.1 Related work

Our approach applies the paradigm that heuristics can be generated by consulting relaxed
models, suggested in [14]. It can be viewed as a generalization of Branch-and-Bound
algorithms for integer programming that are restricted to linear objective functions and
constraints, and use relaxation to linear programming, assuming the integer restrictions
on the domains are removed [?, 19]. The Mini-Bucket heuristics can also be viewed as
an extension of bounded constraint propagation algorithms that were investigated in the
constraint community in the last decade [1]. However, rather than applying this idea to
the constraints only, we extend it to the objective function as well.

2 Background

2.1 Notation and De�nitions

Constraint Satisfaction is a framework for formulating real-world problems as a set of
constraints between variables. They are graphically represented by nodes corresponding

3

to variables and edges corresponding to constraints between variables.

Definition 2.1 (Graph Concepts) An undirected graph is a pair, G = fV;Eg, where
V = fX1; :::;Xng is a set of variables, and E = f(Xi;Xj)jXi;Xj 2 V g is the set of edges.
The degree of a variable is the number of edges incident to it.

Definition 2.2 (Constraint Satisfaction Problem (CSP)) A Constraint Satisfaction
Problem (CSP) is de�ned by a set of variables X = fX1; :::;Xng, associated with a set of
discrete-valued domains, D = fD1; :::;Dng, and a set of constraints C = fC1; :::; Cmg.
Each constraint Ci is a pair (Si; Ri), where Ri is a relation Ri � Di1 � ::: �Dik de�ned
on a subset of variables Si = fXi1; :::;Xikg called the scope of Ci, consisting of all tu-
ples of values for fXi1; :::;Xikg which are compatible with each other. For the max-CSP
problem, we express the relation as a cost function Ci(Xi1 = xi1; :::;Xik = xik) = 0 if
(xi1; :::; xik) 2 Ri, and 1 otherwise. A constraint network can be represented by a con-
straint graph that contains a node for each variable, and an arc between two nodes i� the
corresponding variables participate in the same constraint. A solution is an assignment
of values to variables x = (x1; :::; xn), xi 2 Di, such that each constraint is satis�ed. A
problem with a solution is termed satis�able or consistent. A binary CSP is a one where
each constraint involves at most two variables.

Many real-world problems are often over-constrained are don't have a solution. In
such cases, it is often desirable to �nd an assignment that satis�es a maximum number of
constraints.

Definition 2.3 (Max-CSP) Given a CSP, the Max-CSP task is to �nd an assignment
that satis�es the most constraints.

Although a Max-CSP problem is de�ned as a maximization problem, it can be imple-
mented as a minimization problem. Instead of maximizing the number of constraints that
are satis�ed, we minimize the number of constraints that are violated.

Definition 2.4 (Induced-width) An ordered graph is a pair (G; d) where G is an undi-
rected graph, and d = X1; :::;Xn is an ordering of the nodes. The width of a node in an
ordered graph is the number of its earlier neighbors. The width of an ordering d, w(d), is
the maximum width over all nodes. The induced width of an ordered graph, w�(d), is the
width of the induced ordered graph obtained by processing the nodes recursively, from last
to �rst; when node X is processed, all its earlier neighbors are connected.

Definition 2.5 Given a function h de�ned over a subset of variables S, where X 2 S,
functions (minX h), (maxX h), and (

P
X h) are de�ned over U = S � fXg as follows:

For every U = u, and denoting by (u; x) the extension of tuple u by assignment X = x,

4

Width w=3
Induced width w*=3

/=

/=

/=

/=

/=
/=

(b)

A

E

D

C

BA

B C

D

E

(a)

Figure 1: a) Constraint graph of a graph coloring problem, b) an ordered graph along
d = (A;E;D;C;B):

(minX h)(u) = minx h(u; x), (maxX h)(u) = maxx h(u; x), and (
P

X h)(u) =
P

x h(u; x).
Given a set of functions h1; :::; hj de�ned over the subsets S1; :::; Sj, the product function
(�jhj) and

P
J hj are de�ned over U = [jSj . For every U = u, (�jhj)(u) = �jhj(uSj),

and (
P

j hj)(u) =
P

j hj(uSj).

Example 2.1 A graph coloring problem is a typical example of a CSP problem. It is
de�ned as a set of nodes and arcs between the nodes. The task is to assign a color to each
node such that adjacent nodes have di�erent colors. An example of a constraint graph of a
graph coloring problem containing variables A, B, C, D, and E, with each variable having
2 values (colors) is in Figure 1. The fact that adjacent variables must have di�erent colors
is represented by an inequality constraint. The problem in Figure 1 is inconsistent. When
formulated as a Max-CSP problem, its solution satis�es all but one constraint. Given the
ordering d = A;E;D;C;B of the graph, the width and induced-width of the ordered graph
is 3.

2.2 Bucket and Mini-Bucket Elimination Algorithms

Bucket elimination is a unifying algorithmic framework for dynamic-programming algo-
rithms applicable to probabilistic and deterministic reasoning [3]. In the following we will
present its adaptation to solving the Max-CSP problem.

The input to a bucket-elimination algorithm consists of a collection of functions or
relations (e.g., clauses for propositional satis�ability, constraints, or conditional probability
matrices for belief networks). Given a variable ordering, the algorithm partitions the
functions into buckets, each associated with a single variable. A function is placed in the
bucket of its argument that appears latest in the ordering. The algorithm has two phases.

5

Algorithm Elim-Max-CSP

Input: A constraint network P (X;D;C); an ordering of the variables d.
Each constraint is represented as a function Ci(Xi1 = xi1; :::; Xik = xik) = 0
if (xi1; :::; xik) 2 Ri, and 1 otherwise.
Output: An assignment satisfying the most constraints.
1. Initialize: Partition P into bucket1, : : :, bucketn, where bucketi contains
all constraints whose highest variable is Xi. Let S1; :::; Sj be the scopes of
functions (new or old) in the processed bucket.
2. Backward: For p n down-to 1, do
for h1; h2; :::; hj in bucketp, do
� If bucketp contains an instantiation Xp = xp, assign Xp = xp to each
hi and put each resulting function into its appropriate bucket.
� Else, generate the function hp: hp = minXp

Pj
i=1 hi. Add h

p to the bucket

of the largest-index variable in Up
Sj
i=1 Si � fXpg.

3. Forward: Assign values in the ordering d s.t. the sum of cost functions
in each bucket is minimized.

Figure 2: Algorithm Elim-Max-CSP

During the �rst, top-down phase, it processes each bucket, from the last variable to the
�rst. Each bucket is processed by a variable elimination procedure that computes a new
function which is placed in a lower bucket. For Max-CSP, this procedure computes the
sum of all constraint matrices and minimizes over the bucket's variable. During the second,
bottom-up phase, the algorithm constructs a solution by assigning a value to each variable
along the ordering, consulting the functions created during the top-down phase. Figure 2
shows Elim-Max-CSP, the bucket-elimination algorithm for computing Max-CSP. It can
be shown that

Theorem 2.2 [2] The time and space complexity of Elim-Max-CSP applied along order
d, are exponential in the induced width w�(d) of the network's ordered moral graph along
the ordering d. 2

The main drawback of bucket elimination algorithms is that they require too much time
and, especially, too much space for storing intermediate functions. Mini-Bucket elimination
is an approximation scheme designed to avoid this space and time complexity of full bucket
elimination [5] by partitioning large buckets into smaller subsets called mini-buckets which
are processed independently. Here is the rationale. Let h1; :::; hj be the functions in bucketp.
When Elim-Max-CSP processes bucketp, it computes the function hp: hp = minXp

Pj
i=1 hi.

Instead, the Mini-Bucket algorithm creates a partitioning Q0 = fQ1; :::; Qrg where the mini-
bucketQl contains the functions hl1; :::; hlk and it processes each mini-bucket (by taking the

6

sum and minimizing) separately. It therefore computes gp =
Pr

l=1minXp

P
li
hli. Clearly,

hp � gp. Therefore, the lower bound gp computed in each bucket yields an overall lower
bound on the number of constraints violated by the output assignment.

The quality of the lower bound depends on the degree of the partitioning into mini-
buckets. Given a bounding parameter i, the algorithm creates an i-partitioning, where each
mini-bucket includes no more than i variables. Algorithm MB-Max-CSP(i), described in
Figure 3, is parameterized by this i-bound. The algorithm outputs not only a lower bound
on the Max-CSP value (namely, on the minimum number of violated constraints) and an
assignment whose number of violated constraints is an upper bound, but also the collection
of augmented buckets. By comparing the lower bound to the upper bound, we can always
have a bound on the error for the given instance.

The algorithm's complexity is time and space O(exp(i)) where i � n. When the bound,
i, is large enough (i.e. when i � w�), the Mini-Bucket algorithm coincides with the full
bucket elimination. In summary,

Theorem 2.3 Algorithm MB-Max-CSP(i) generates a lower bound on the exact Max-CSP
value, and its time and space complexity is exponential in its bound i. 2

Example 2.4 Figure 4 illustrates how algorithms Elim-Max-CSP and MB-Max-CSP(i)
for i = 3 process the network in Figure 1a along the ordering (A; E;D; C;B). Algorithm
Elim-Max-CSP records new functions hB(a; d; e), hC(a; e), hD(a; e), and hE(a). Then, in
the bucket of A, minah

E(a) equals the minimum number of constraints that are violated.
Subsequently, an assignment is computed for each variable from A to B by selecting a value
that minimizes the sum of functions in the corresponding bucket, conditioned on the previ-
ously assigned values. On the other hand, the approximation MB-Max-CSP(3) splits bucket
B into two mini-buckets, each containing no more than 3 variables, and generates hB(e) and
hB(d; a). A lower bound on the Max-CSP value is computed by L = mina(h

E(a) + hD(a)).
Then, a suboptimal tuple is computed similarly to the Max-CSP tuple by assigning a value
to each variable that minimizes the sum of functions in the corresponding bucket.

3 Heuristic Search with Mini-Bucket Heuristics

3.1 The Heuristic Function

In the following, we will assume that a Mini-Bucket algorithm was applied to a constraint
network using a given variable ordering d = X1; :::;Xn, and that the algorithm outputs
an ordered set of augmented buckets bucket1,...,bucketp,...,bucketn, containing both the
input constraints and the newly generated functions. Relative to such an ordered set of
augmented buckets, we use the following convention:

7

Algorithm MB-Max-CSP(i)
Input: A constraint network P (X;D;C); an ordering of the variables d.
Each constraint is represented as a function Ci(Xi1 = xi1; :::; Xik = xik) = 0 if
(xi1; :::; xik) 2 Ri, and 1 otherwise.
Output: An upper bound on the Max-CSP, an assignment, and the set of
ordered augmented buckets.
1. Initialize: Partition constraints into buckets. Let S1; :::; Sj be the scopes of
constraints in bucketp.
2. Backward For p n down-to 1, do
� If bucketp contains an instantiation Xp = xp, assign Xp = xp to each
hi and put each in appropriate bucket.
� Else, for h1; h2; :::; hj in bucketp, generate an (i)-partitioning, Q

0

=
fQ1; :::; Qrg. For each Ql 2 Q

0

containing hl1 ; :::hlt generate function hl,
hl = minXp

Pt
i=1 hli : Add hl to the bucket of the largest-index variable in

Ul
Sj
i=1 S(hli)� fXpg.

3. Forward For i = 1 to n do, given x1; :::; xp�1 choose a value xp of Xp that
minimizes the sum of all the cost functions in Xp's bucket.
4. Output the ordered set of augmented buckets, an upper bound and a lower
bound assignment.

Figure 3: Algorithm MB-Max-CSP(i)

Σ

D(a,e)

h B(a,d,e)

B
min

h h (a,e)C

(a)Eh A

E

D

C

Bbucket

bucket

bucket

bucket

bucket

C(b,d)

C(c,e)

Max-CSP
Complexity: O(exp(3))

C(a,c)

C(a,d)

C(b,e)C(a,b)

Σ

B(e)

E

h h C(a,e)

h (a) D(a)

h B (d,a)

in a mini-bucket

2

2

1

Mini-buckets Max variables

B

L= Lower Bound (Max-CSP)
Complexity:

min

h

C(b,e) C(a,b)

C(a,c) 2

2

O (exp(2))

C(c,e)

C(a,d)

C(b,d)

(a) A trace of Elim-Max-CSP (b) A trace of MB-Max-CSP(2)

Figure 4: Execution of Elim-Max-CSP and MB-Max-CSP(i)

8

� Cpj denotes an input constraint matrix in bucketp (namely, one whose highest-ordered
variable is Xp), enumerated by j.

� hpj denotes a function residing in bucketp that was generated by the Mini-Bucket
algorithm, enumerated by j.

� hpj stands for a function created by processing the j-th mini-bucket in bucketp.

� �pj stands for an arbitrary function in bucketp, enumerated by j. Notice that f�pjg =
fCpjg [fhpjg.

We denote by buckets(1::p) the union of all functions in the bucket of X1 through the
bucket of Xp. S(f) denotes the scope of function f .

We will now show that the functions recorded by the Mini-Bucket algorithm can be
used to lower bound the number of constraints violated by the best extension of any partial
assignment, and therefore can serve as heuristic evaluation functions in a Best-First or
Branch-and-Bound search.

Definition 3.1 (Exact Evaluation Function) Given a variable ordering d = X1; :::;Xn,
let �xp = (x1; :::; xp) be an assignment to the �rst p variables in d. The number of constraints
violated by the best extension of �xp, denoted f�(�xp) is de�ned by

f�(�xp) = minxp+1;:::;xn

nX
k=1

Ck

The above sum de�ning f� can be divided into two sums expressed by the functions
in the ordered augmented buckets. In the �rst sum all the arguments are instantiated
(belong to buckets 1; :::; p), and therefore the minimization operation is applied to the
second product only. Denoting

g(�xp) =

0
@ X
Ci2 buckets(1::p)

Ci

1
A (�xp)

and

h�(�xp) = min(xp+1;:::;xn)

0
@ X
Ci2buckets(p+1::n)

Ci

1
A (�xp; xp+1; :::; xn)

we get
f�(�xp) = g(�xp) + h�(�xp):

During search, the g function can be evaluated over the partial assignment �xp, while h�

can be estimated by a heuristic function h, derived from the functions recorded by the
Mini-Bucket algorithm, as de�ned next:

9

Definition 3.2 Given an ordered set of augmented buckets generated by the Mini-Bucket
algorithm, the heuristic function h(�xp) is de�ned as the sum of all the hkj functions that
satisfy the following two properties: 1) They are generated in buckets p+1 through n, and
2) They reside in buckets 1 through p. Namely, h(�xp) =

Pp
i=1

P
hkj2bucketi

hkj , where k > p,

(i.e. hkj is generated by a bucket processed before bucketp.)

The following proposition shows how g(�xp+1) and h(�xp+1) can be updated recursively.

Proposition 1 Given a partial assignment �xp = (x1; : : : xp), both g(�xp) and h(�xp) can be
computed recursively by

g(�xp) = g(�xp�1) +
X
j

Cpj(�x
p) (1)

h(�xp) = h(�xp�1) + (
X
k

hpk(�x
p)�

X
j

hpj (�x
p)) (2)

Proof. A straightforward derivation from the de�nition. 2

Theorem 3.1 (Mini-Bucket Heuristic) For every partial assignment �xp = (x1; :::; xp),
of the �rst p variables, the evaluation function f(�xp) = g(�xp) +h(�xp) is: 1) Admissible - it
never overestimates the number of constraints violated by the best extension of �xp, and 2)
Monotonic - namely f(�xp+1)=f(�xp) � 1.

Notice that monotonicity means better accuracy at deeper nodes in the search tree.
Proof. To prove monotonicity we will use the recursive equations (1) and (2) in Proposition
1. For any �xp and any value v in the domain of Xp+1, we have

f(�xp; v)

f(�xp)
=
g(�xp; v) + h(�xp; v)

g(�xp) + h(�xp)

=
(g(�xp) +

P
j C(p+1)j

(�xp; v)) + (h(�xp) + (
P

k h(p+1)k(�x
p; v)�

P
j h

p+1
j (�xp)))

g(�xp) + h(�xp)

= 1 +

P
j C(p+1)j

(�xp; v) + (
P

k h(p+1)k(�x
p; v)�

P
j h

p+1
j (�xp))

g(�xp) + h(�xp)

= 1 +

P
i �(p+1)i(�x

p; v)�
P

j h
p+1
j (�xp)

g(�xp) + h(�xp)

Since hp+1j (�xp) is computed for the j-th mini-bucket in bucket (p + 1) by minimizing over
variable Xp+1, (eliminating variable Xp+1), we get

X
i

�(p+1)i(�x
p; v) �

X
j

hp+1j (�xp)

10

Thus, f(�xp; v) � f(�xp), concluding the proof of monotonicity.
The proof of admissibility follows from monotonicity. It is well known that if a heuristic

function is monotone and if it is exact for a full solution (which is our case), then it is also
admissible [14]. 2

In the extreme case when each bucket p contains exactly one mini-bucket, the heuristic
function h equals h�, and the full evaluation function f computes the exact number of
constraints violated by the best extension of the current partial assignment.

3.2 Search with Mini-Bucket Heuristics

The tightness of the lower bound generated by the Mini-Bucket approximation depends
on its i-bound. Larger values of i generally yield better lower-bounds, but require more
computation. Since the Mini-Bucket algorithm is parameterized by i, we get an entire class
of Branch-and-Bound search and Best-First search algorithms that are parameterized by
i and which allow a controllable trade-o� between preprocessing and search, or between
heuristic strength and its overhead. Figures 5 and 6 present algorithms BBMB(i) and
BFMB(i).

Both algorithms (BBMB(i) and BFMB(i)) are initialized by running the Mini-Bucket
algorithm that produces a set of ordered augmented buckets. Branch-and-Bound with
Mini-Bucket heuristics (BBMB(i)) traverses the search space in a depth-�rst manner, in-
stantiating variables from �rst to last, along ordering d. Throughout the search, the
algorithm maintains an upper bound on the value of the Max-CSP assignment, which cor-
responds to the number of constraints violated by the best full variable instantiation found
thus far. When the algorithm processes variable Xp, all the variables preceding Xp in the
ordering are already instantiated, so it can compute f(�xp�1;Xp = v) = g(�xp�1; v)+h(�xp; v)
for each extension Xp = v. The algorithm prunes all values v whose heuristic estimate
(lower bound) f(�xp;Xp = v) is greater than or equal to the current best upper bound,
because such a partial assignment (x1; : : : xp�1; v) cannot be extended to an improved full
assignment. The algorithm assigns the best value v to variable Xp and proceeds to vari-
able Xp+1, and when variable Xp has no values left, it backtracks to variable Xp�1. Search
terminates when it reaches a time-bound or when the �rst variable has no values left. In
the latter case, the algorithm has found an optimal solution.

AlgorithmBest-First with Mini-Bucket heuristics (BFMB(i)) starts by adding a dummy
node x0 to the list of open nodes. Each node corresponds to a partial assignment �xp and has
an associated heuristic value f(�xp). Initially f(x0) = 0. The basic step of the algorithm
consists of selecting an assignment �xp from the list of open nodes having the smallest
heuristic value f(�xp), expanding it by computing all partial assignments (�xp; v) for all
values v of Xp+1, and adding them to the list of open nodes.

Since, as shown, the generated heuristics are admissible and monotonic, their use within
Best-First search yields A* type algorithms whose properties are well understood. The

11

Algorithm BBMB(i)

Input: A constraint network P (X;D;C); ordering d; time bound t.
Each constraint is represented as a function Ci(Xi1 = xi1; :::; Xik = xik) = 0 if
(xi1; :::; xik) 2 Ri, and 1 otherwise.
Output: A Max-CSP assignment, or an upper bound and a lower bound on
the Max-CSP.
1. Initialize: Run MB(i) algorithm which generates a set of ordered augmented
buckets and a lower bound on Max-CSP. Set upper bound U to 1. Set p to 0.
2. Search: Execute the following procedure until variable X1 has no legal
values left or until out of time, in which case output the current best solution.
� Expand: Given a partial instantiation �xp, compute all partial assignments
�xp+1 = (�xp; v) for each value v of Xp+1. For each node �xp+1 compute its
heuristic value f(�xp+1) = g(�xp+1) + h(�xp+1) using
g(�xp+1) = g(�xp) +

P
j C(p+1)j

and

h(�xp+1) = h(�xp) + (
P

k h(p+1)k �
P

j h
(p+1)
j).

Discard those assignments �xp+1 for which f(�xp+1) is not smaller than the upper
bound U . Add remaining assignments to the search tree as children of �xp.
� Forward: If Xp+1 has no legal values left, goto Backtrack. Otherwise let
�xp+1 = (�xp; v) be the best extension to �xp according to f . If p + 1 = n, then
set L = f(�xn) and goto Backtrack. Otherwise remove v from the list of legal
values. Set p = p+ 1 and goto Expand.
� Backtrack: If p = 1, Exit. Otherwise set p = p� 1 and repeat the Forward
step.

Figure 5: Algorithm Branch-and-Bound with MB(i)

12

Algorithm BFMB(i)

Input: A constraint network P (X;D;C); ordering d; time bound t.
Each constraint is represented as a function Ci(Xi1 = xi1; :::; Xik = xik) = 0 if
(xi1; :::; xik) 2 Ri, and 1 otherwise.
Output: A Max-CSP assignment or just a lower bound and an upper bound
(produced by Mini-Bucket).
1. Initialize: Run MB(i) algorithm which generates a set of augmented buck-
ets, a lower bound and an upper bound assignment. Insert a dummy node �x0
in the set L of open nodes. Set f(�x0) to 0.
2. Search:
� If out of time, output Mini-Bucket assignment.
� Select and remove a node �xp with the smallest heuristic value f(�xp) from the
set of open nodes L.
� If p = n then �xp is an optimal solution. Exit.
� Expand �xp by computing all child nodes (�xp; v) for each value v in the do-
main of Xp+1. For each node �xp+1 compute its heuristic value f(�xp+1) =
g(�xp+1) + h(�xp+1), where
g(�xp+1) = g(�xp) +

P
j C(p+1)j

and

h(�xp+1) = h(�xp) + (
P

k h(p+1)k �
P

j h
(p+1)
j).

� Add all nodes (�xp; v) to L and goto Search.

Figure 6: Algorithm Best-First search with MB(i)

13

algorithm is guaranteed to terminate with an optimal solution. When provided with more
powerful heuristics it explores a smaller search space, but otherwise it requires substantial
space. It is known that Best-First algorithms are optimal. Namely, when given the same
heuristic information, Best-First search is the most e�cient algorithm in terms of the size
of the search space it explores [4]. In particular, Branch-and-Bound will expand any node
that is expanded by Best-First (up to tie breaking conditions), and in many cases it explores
a larger space. Still, Best-First may occasionally fail because of its memory requirements,
because it has to maintain a large subset of open nodes during search, and because of tie
breaking rules at the last frontier of nodes having evaluation function value that equals
the optimal solution. As we will indeed observe in our experiments, Branch-and-Bound
and Best-First search have complementary properties, and both can be strengthen by the
Mini-Bucket heuristics.

4 Experimental Methodology

We tested the performance of BBMB(i) and BFMB(i) on set of random CSPs. Each
problem in this class is characterized by �ve parameters: < A;N;K;C; T >, where A is
the arity of the constraint, N is the number of variables, K is the domain size, C is the
number of constraints, and T is the tightness of each constraint, de�ned as the number of
tuples not allowed. In our experiments we used A=2 (binary) and A=3. Each problem

is generated by randomly picking C constraints out of
�
N

A

�
total possible constraints, and

picking T nogoods out of KA maximum possible for each constraint.
We ran experiments with the following classes of CSPs :

1. < 2; 10; 10; 45; T >

2. < 2; 15; 10; 50; T >

3. < 2; 25; 10; 37; T >

4. < 2; 15; 5; 105; T >

5. < 2; 20; 5; 100; T >

6. < 2; 40; 5; 55; T >

7. < 3; 50; 3; 75; T >

The �rst 6 are binary CSPs and all are over-constrained. Problem classes 1 and 4 are
complete graphs, while problems 2 and 5 have medium density, and problems 3 and 6 are
sparse. Problems in set 7 have arity 3 and contain both solvable and unsolvable problems.

14

Max-CSP A=2 N=15 K=10 C=50 T=85

Time [sec]

0 10 20 30 40 50 60 70 80 90 100 110 120

%
 S

o
lv

e
d

 E
xa

ct
ly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BFMB i=2
BBMB i=4
BFMB i=4
BBMB i=6
BFMB i=6
SLS

Figure 7: Max-CSP.

We used the min-degree heuristic for computing the ordering of variables. It places a
variable with the smallest degree at the end of the ordering, connects all of its neighbors,
removes the variable from the graph and repeats the whole procedure.

In addition to MB(i), BBMB(i) and BFMB(i) we ran, for comparison, two state of the
art algorithms : PFC-MPRDAC as de�ned in [12] and a Stochastic Local Search (SLS)
algorithm we developed for CSPs ([10]).

PFC-MPRDAC [12] is a Branch-and-Bound search algorithm. It uses a forward check-
ing step based on a partitioning of unassigned variables into disjoint subsets of variables.
This partitioning is used for computing a heuristic evaluation function that is used for
determining variable and value ordering.

Stochastic Local Search (SLS) algorithms, such as GSAT [15, 18], starts from a ran-
domly chosen complete instantiation of all the variables, and moves from one complete
instantiation to the next. It is guided by a cost function that is the number of unsatis�ed
constraints in the current assignment. At each step, the value of the variable that leads
to the greatest reduction of the cost function is changed. The algorithm stops when either
the cost is zero (a global minimum), in which case the problem is solved, or when there
is no way to improve the current assignment by changing just one variable (a local mini-
mum). A number of heuristics have been reported in the literature, designed to overcome
the problem of local minima, that greatly improve the performance of the basic scheme
[13, 17, 16, 6]. In our implementation of SLS we use the basic greedy scheme combined with
the constraint reweighting as introduced in [13]. In this algorithm, each constraint has a

15

Max-CSP A=2 N=20 K=5 C=100 T=18

Time [sec]

0 20 40 60 80 100 120 140

%
 S

o
lv

e
d

 E
xa

ct
ly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BFMB i=2
BBMB i=6
BFMB i=6
BBMB i=10
BFMB i=10
SLS

Figure 8: Max-CSP.

weight and the cost function is the weighted sum of unsatis�ed constraints. Whenever the
algorithm reaches a local minimum, it will increase the weights of unsatis�ed constraints
so that the current assignment will not be a local minimum of the new cost function.

SLS algorithms have become popular recently because they were shown to work well in
practice for solving constraint satisfaction and satis�ability problems. They can sometimes
solve problems larger than any complete algorithm can solve. They are naturally suitable
for solving the Max-CSP problem since they use a cost function that tries to minimize the
number of constraints satis�ed.

We treat all algorithms as approximation algorithms. Algorithms BBMB and BFMB,
if allowed to run until completion will solve all problems exactly. However, since we use a
time-bound, both algorithms may return suboptimal solutions, especially for harder and
larger instances. BBMB outputs its best solution, while BFMB, if interrupted, outputs
the Mini-Bucket solution. Consequently BFMB is e�ective only as a complete algorithm.

As a measure of performance we used the accuracy ratio opt = Falg=FMax�CSP between
the value of the solution found by the test algorithm (Falg) and the value of the optimal
solution (FMax�CSP), whenever FMax�CSP is available. We also record the running time of
each algorithm.

We recorded the distribution of the accuracy measure opt over �ve prede�ned ranges
: opt � 0:95, opt � 0:5, opt � 0:2, opt � 0:01 and opt < 0:01. However, we only report
the number of problems that fall in the range 0.95. Problems in this range were solved
optimally.

16

Max-CSP A=2 N=40 K=5 C=55 T=18

Time [sec]

0 5 10 15 20 25 30 35 40 45 50

%
 S

o
lv

e
d

 E
xa

ct
ly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BFMB i=2
BBMB i=5
BFMB i=5
BBMB i=8
BFMB i=8
SLS

Figure 9: Max-CSP.

In addition, during the execution of both BBMB and BFMB we also stored the current
upper bound U at regular time intervals. This allows reporting the accuracy of each
algorithm as a function of time.

5 Results

Tables 1, 2, and 3 report results with random CSPs. Table 1 contains results with binary
CSPs with domain size K=10, Table 2 contains results with binary CSPs with domain
size K=5, and Table 3 contains CSPs with arity 3 with domain size K=3. Tables 1 and
2 contain three large blocks, each corresponding to a set of CSPs with a �xed number
of constraints. Within each block, there are three small blocks each corresponding to a
di�erent constraint tightness, given in the �rst column. In columns 2 through 6 (Tables 1
and 3), and columns 2 through 7 (Table 2), we have results for MB, BBMB and BFMB
(in di�erent rows) for di�erent i-bound. In Tables 1 and 2 we also have results for PFC-
MRDAC and SLS in last two columns. Table 3 does not include results with PFC-MRDAC
because it is implemented only for binary constraints. Each entry in the table gives the
percentage of problems that fall in the 0.95 range and the average CPU time for these
problems.

For example, looking at the middle block of the second large block in Table 1 (cor-
responding to binary CSPs with N=15, K=10, C=70 and T=85) we see that MB with
i=bound 2 (column 2) solved only only 1% of the problems exactly in 0.02 seconds of CPU

17

Max-CSP A=3 N=50 K=3 C=75 T=10

Time [sec]

0 10 20 30 40 50

%
 S

o
lv

e
d

 E
xa

ct
ly

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BFMB i=2
BBMB i=6
BFMB i=6
BBMB i=10
BFMB i=10
SLS

Figure 10: Max-CSP.

time. On the same set of problems BBMB, using Mini-Bucket heuristics, solved 20% of the
problems optimally using 180 seconds of CPU time, while BFMB solved 1% of the problems
exactly in 190 seconds. When moving to columns 3 through 6 in rows corresponding to
the same set of problems, we see a gradual change caused by a higher level of Mini-Bucket
heuristic (higher values of the i-bound). As expected, Mini-Bucket solves more problems,
while using more time. Focusing on BBMB, we see that it solved all problems when the
i-bound is 5 or 6, and its total running time as a function of time forms a U-shaped curve.
At �rst (i=2) it is high (180), then as i-bound increases the total time decreases (when
i=5 the total time is 28.7), but then as i-bound increases further the total time starts to
increase again. The same behavior is shown for BFMB as well.

This demonstrates a trade-o� between the amount of preprocessing performed by MB
and the amount of subsequent search using the heuristic cost function generated by MB.
The optimal balance between preprocessing and search corresponds to the value of i-bound
at the bottom of the U-shaped curve. The added amount of search on top of MB can be
estimated by tsearch = ttotal� tMB. As i increases, the average search time tsearch decreases,
and the overall accuracy of the search algorithm increases (more problems fall within higher
ranges of opt). However, as i increases, the time of MB preprocessing increases as well.

One crucial di�erence between BBMB and BFMB is that BBMB is an anytime algo-
rithm - it always outputs an assignment, and as time increases, the solution improves.
BFMB on the other hand only outputs a solution when it �nds an optimal solution. In
our experiments, if BFMB did not �nish within the preset time bound, it returned the MB

18

Max-CSP A=2 N=15 K=10 C=50 T=85

Time [sec]

0 10 20 30 40 50 60 70 80 90 100 110 120

%
 S

o
lv

e
d

 E
x
a

c
tl
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BBMB i=4
BBMB i=6
SLS

Figure 11: Max-CSP : anytime.

assignment.
From the data in the Tables we can see that the performance of BFMB is consistently

worse than that of BBMB. BFMB(i) solves fewer problems than BBMB(i) and, on the
average, takes longer on each problem. This is more pronounced when non-trivial amount
of search is required (lower i-bound values) - when the heuristic is not exact. We speculate
that this because there are large numbers of nodes on each level of the search tree with
the same heuristic values. This will result in a large branching factor for BFMB(i).

Tables 1 and 2 also report results of PFC-MRDAC. When the constraint graph is
dense (blocks 1 and 2) PFC-MRDAC is up to 2-3 times faster than the best performing
BBMB. When the constraint graph is sparse (block 3) the best BBMB is up to an order
of magnitude faster than PFC-MRDAC.

In Figures 7-10 we provide an alternative view of the performance of BBMB(i), BFMB(i)
and SLS. Let FBBMB(i)(t) and FBFMB(i)(t) be the fraction of the problems solved com-
pletely by BBMB(i) and BFMB(i), respectively, by time t. Each graph in Figure 7 plots
FBBMB(i)(t) and FBFMB(i)(t) for several values of i. These �gures display trade-o� between
preprocessing and search in a clear manner. Clearly, if FBBMB(i)(t) > FBBMB(j)(t) for all t,
then BBMB(i) completely dominates BBMB(j). For example, in Figure 7 BBMB(4) com-
pletely dominates BBMB(2). When FBBMB(i)(t) and FBBMB(j)(t) intersect, they display
a trade-o� as a function of time. For example, if we have only few seconds, BBMB(4) is
better than BBMB(6). However, when su�cient time is allowed, BBMB(6) is superior to
BBMB(4).

19

Max-CSP A=2 N=40 K=5 C=55 T=19

Time [sec]

0 1 2 3 4 5

%
 S

o
lv

e
d

 E
x
a

c
tl
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BBMB i=2
BBMB i=4
BBMB i=6
BBMB i=8
SLS

Figure 12: Max-CSP : anytime.

6 Anytime algorithms

In all Tables we also report results with SLS. On each problem, we set the SLS time
bound the same as for BBMB/BFMB. At the end of its execution, SLS outputs the best
assignment it found. For each set of problems, we report the number of times an SLS
solution is optimal. To determine that, we used the optimal cost found by BBMB/BFMB.
We also report the average time it took for the SLS algorithm to �nd an assignment with
an optimal cost, as opposed to the completion time of SLS. Because of this, SLS time and
BBMB/BFMB/PFC-MRDAC times reported in Tables 1-4 cannot be directly compared,
since BBMB/BFMB/PFC-MRDAC times are completion times.

Figures 11 and 12 compare BBMB and SLS as anytime algorithms. Figure 11 (12)
corresponds to one row in Table 1 (2). When the constraint graph is dense (Figure 11),
SLS is substantially faster than BBMB. However, when the constraint graph is sparse
(Figure 12), BBMB(4) and BBMB(6) are faster than SLS.

7 Summary and Conclusion

In this paper we evaluate the power of a scheme that generates search heuristics mechani-
cally for solving the Max-CSP problem. The heuristics are extracted from the Mini-Bucket
approximation method which allows controlled trade-o� between computation and accu-
racy. Our experiments demonstrate the potential of this scheme in improving general

20

search, showing that the Mini-Bucket heuristic's accuracy can be controlled to yield a
trade-o� between preprocessing and search. We demonstrate this property in the context
of both Branch-and-Bound and Best-First search. Although the best threshold point can-
not be predicted a priori, a preliminary empirical analysis can be informative when given
a class of problems that is not too heterogeneous.

We show that search with Mini-Bucket heuristics can be competitive with state of
the art algorithms for solving the Max-CSP problem. Although SLS was faster than
BBMB/BFMB/PFC-MRDACon many classes of problems we tried, completemethods like
BBMB/BFMB/PFC-MRDAC have a number of advantages. Unlike complete methods,
SLS cannot be used to prove optimality. It has been reported in the literature that there
are classes of constraint satisfaction and satis�ability problems for which the performance
of SLS is very poor while being easy for complete methods like backtracking. Due to the
close nature between CSP and Max-CSP problems this is most likely true for Max-CSP
problems as well.

References

[1] R. Dechter. Constraint networks. Encyclopedia of Arti�cial Intelligence, pages 276{
285, 1992.

[2] R. Dechter. Bucket elimination: A unifying framework for probabilistic inference
algorithms. In Uncertainty in Arti�cial Intelligence (UAI-96), pages 211{219, 1996.

[3] R. Dechter. Bucket elimination: A unifying framework for reasoning. Arti�cial Intel-
ligence, 113:41{85, 1999.

[4] R. Dechter and J. Pearl. Generalized best-�rst search strategies and the optimality of
a*. Journal of the ACM, 32:506{536, 1985.

[5] R. Dechter and I. Rish. A scheme for approximating probabilistic inference. In Pro-
ceedings of Uncertainty in Arti�cial Intelligence (UAI97), pages 132{141, 1997.

[6] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for
sat. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence
(AAAI-93), pages 28{33, 1993.

[7] K. Kask I. Rish and R. Dechter. Approximation algorithms for probabilistic decoding.
In Uncertainty in Arti�cial Intelligence (UAI-98), 1998.

[8] K. Kask and R. Dechter. Branch and bound with mini-bucket heuristics. Proc. IJCAI,
1999.

21

[9] K. Kask and R. Dechter. Mini-bucket heuristics for improved search. Proc. UAI, 1999.

[10] K. Kask and R. Dechter. Gsat and local consistency. In International Joint Conference
on Arti�cial Intelligence (IJCAI95), pages 616{622, Montreal, Canada, August 1995.

[11] R. Korf. Linear-space best-�rst search. In Arti�cial Intelligence, pages 41{78, 1993.

[12] J. Larossa and P. Meseguer. Partition-based lower bound for max-csp. Proc. CP99,
1999.

[13] P. Morris. The breakout method for escaping from local minima. In Proceedings of
the Eleventh National Conference on Arti�cial Intelligence (AAAI-93), pages 40{45,
1993.

[14] J. Pearl. Heuristics: Intelligent search strategies. In Addison-Wesley, 1984.

[15] A.B. Philips S. Minton, M.D. Johnston and P. Laired. Solving large scale constraint
satisfaction and scheduling problems using heuristic repair methods. In National
Conference on Arti�cial Intelligence (AAAI-90), pages 17{24, Anaheim, CA, 1990.

[16] B. Selman and H. Kautz. An empirical study of greedy local search for satis�ability
testing. In Proceedings of the Eleventh National Conference on Arti�cial Intelligence,
pages 46{51, 1993.

[17] B. Selman, H. Kautz, and B. Cohen. Noise strategies for local search. In Proceedings
of the Eleventh National Conference on Arti�cial Intelligence, pages 337{343, 1994.

[18] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis�ability
problems. National Conference on Arti�cial Intelligence (AAAI-92), 1992.

[19] G. L. Nemhauser Z, Gu and M. W. P. Savelsbergh. Lifted ow covers for mized 0-1
integer programs. Mathematical Programming, pages 439{467, 1999.

22

MB MB MB MB MB
BBMB BBMB BBMB BBMB BBMB PFC-MRDAC SLS

T FBMB FBMB FBMB FBMB FBMB
i=2 i=3 i=4 i=5 i=6 #/time #/time

#/time #/time #/time #/time #/time

N=10, K=10, C=45. Time bound 180 sec.

84 2/0.02 4/0.11 6/0.87 10/7.25 16/56.7
26/180 98/90.7 100/11.7 100/10.0 100/57.6 100/4.00 100/0.21
2/189 4/184 78/65.7 98/17.9 100/59.3

85 0/- 3/0.11 2/0.89 8/7.45 10/57.3
20/180 100/80.1 100/11.6 100/9.62 100/57.3 100/3.95 100/0.21
0/- 5/124 82/54.4 100/18.7 100/58.9

86 0/- 2/0.11 4/0.91 10/7.12 14/55.2
24/180 100/87.1 100/10.5 100/9.38 100/57.2 100/3.84 100/0.23
0/- 4/154 84/56.6 98/16.1 100/58.1

N=15, K=10, C=50. Time bound 180 sec.
84 0/- 0/- 3/0.96 6/8.77 14/78.3

10/180 60/161 90/50.1 100/26.2 100/86.2 100/13.5 100/0.47
0/- 0/- 21/70.5 65/49.8 97/89.7

85 1/0.02 2/0.13 3/0.95 7/8.12 17/71.0
20/180 68/164 98/79.0 100/28.7 100/74.9 100/13.2 100/0.43
1/190 5/184 16/82.0 63/59.6 97/82.8

86 0/- 0/- 1/0.98 3/9.05 15/81.5
0/- 50/173 100/58.2 100/32.1 100/83.6 100/16.8 100/0.48
0/- 0/- 20/74.5 60/52.3 86/86.7

N=25, K=10, C=37. Time bound 180 sec.
84 0/- 7/0.10 30/0.60 84/3.41 99/9.74

36/114 99/4.42 100/0.77 100/3.70 100/9.93 100/4.16 99/0.90
3/56.9 94/8.67 100/1.28 100/3.77 100/9.93

85 0/- 10/0.10 34/0.60 79/3.20 99/9.36
31/88.6 100/7.55 100/0.75 100/3.31 100/9.58 100/7.51 100/1.04
9/51.1 89/17.1 100/1.34 100/3.34 100/9.59

86 1/0.02 9/0.09 44/0.60 88/3.09 100/8.75
37/122 99/4.74 100/0.73 100/3.19 100/8.75 100/4.10 100/1.72
6/90.3 91/14.8 100/1.13 100/3.23 100/8.77

Table 1: Max-CSP. A=2, K=10.

23

MB MB MB MB MB MB MB
BBMB BBMB BBMB BBMB BBMB BBMB BBMB PFC- SLS

T FBMB FBMB FBMB FBMB FBMB FBMB FBMB MRDAC
i=2 i=3 i=4 i=5 i=6 i=7 i=8

#/time #/time #/time #/time #/time #/time #/time #/time #/time

N=15, K=5, C=105. Time bound 180 sec.

17 0/- 0/- 10/0.16 20/0.69 30/2.86 50/13.0 70/57.2
20/180 70/180 90/134 100/61.9 100/22.0 100/19.4 100/59.0 100/10.1 100/1.0
0/- 0/- 10/180 30/152 60/92.0 100/48.0 100/64.0

18 0/- 0/- 0/- 12/0.56 13/2.27 31/11.7 34/49.7
10/180 32/180 64/148 96/81.4 100/33.4 100/21.9 100/52.5 100/9.61 100/1.0
0/- 0/- 0/- 13/111 59/64.5 88/47.4 100/58.1

19 0/- 0/- 0/- 0/- 10/2.78 10/14.6 40/60.3
10/180 30/180 80/155 100/76.8 100/29.7 100/22.8 100/60.9 100/7.69 100/1.0
0/- 0/- 10/188 20/182 50/54.0 80/39.2 100/61.9

N=20, K=5, C=100. Time bound 180 sec.
17 0/- 0/- 10/0.16 10/0.74 10/3.46 10/15.9 10/67.0

0/- 20/180 50/153 80/128 90/122 100/62.2 100/94.0 100/19.3 100/1.0
0/- 0/- 10/184 10/138 10/188 40/70.0 50/108

18 0/- 0/- 7/0.17 10/0.71 11/3.12 23/14.4 29/68.7
5/180 15/180 38/170 71/132 86/82.3 95/57.4 96/90.6 100/18.7 100/1.0
0/- 0/- 1/183 2/60.0 9/76.9 33/81.5 59/98.9

19 0/- 0/- 0/- 0/- 30/3.21 40/15.3 40/70.0
0/- 40/180 50/180 90/179 100/120 100/79.0 100/91.2 100/17.4 100/1.0
0/- 0/- 0/- 0/- 30/180 40/131 60/132

N=40, K=5, C=55. Time bound 180 sec.
17 0/- 1/0.03 22/0.07 47/0.20 89/0.54 100/1.07 100/1.24

56/75.7 100/2.80 100/0.17 100/0.23 100/0.56 100/1.08 100/1.25 100/4.29 100/0.42
12/70.2 97/13.0 100/0.26 100/0.24 100/0.56 100/1.08 100/1.25

18 0/- 12/0.02 36/0.07 54/0.19 88/0.53 100/1.03 100/1.14
44/87.7 100/4.41 100/0.21 100/0.23 100/0.56 100/1.04 100/1.15 100/4.94 100/0.51
3/4.56 92/14.9 100/0.45 100/0.27 100/0.57 100/1.04 100/1.16

19 0/- 7/0.03 25/0.07 55/0.20 79/0.56 96/1.29 100/1.89
38/104 99/8.35 100/0.34 100/0.25 100/0.61 100/1.35 100/1.90 100/8.04 99/1.19
1/25.4 83/14.4 100/1.28 100/0.30 100/0.63 100/1.36 100/1.90

Table 2: Max-CSP. A=2, K=5.

24

MB MB MB MB MB
BBMB BBMB BBMB BBMB BBMB

T FBMB FBMB FBMB FBMB FBMB SLS
i=2 i=4 i=6 i=8 i=10

#/time #/time #/time #/time #/time #/time

A=3, N=50, K=3, C=75. Time bound 180.

10 0/- 0/- 0/- 0/- 0/-
40/62.7 80/60.4 98/26.3 100/9.10 100/15.5 100/0.5
17/41.7 50/49.5 67/24.6 97/8.83 97/20.3

14 0/- 0/- 0/- 0/- 0/-
10/141 20/63.6 80/57.4 100/30.7 100/22.8 100/1.5
10/83.8 10/2.24 20/30.7 60/23.4 90/31.3

14 0/- 0/- 0/- 0/- 0/-
0/- 0/- 40/79.7 40/30.9 80/52.8 100/3.7
0/- 0/- 10/182 20/16.4 50/40.2

Table 3: Max-CSP. A=3, N=50, K=3, C=75

25

MB MB MB MB MB
BBMB BBMB BBMB BBMB BBMB PFC-MRDAC SLS

T FBMB FBMB FBMB FBMB FBMB
i=2 i=4 i=6 i=8 i=10 #/time #/time

#/time #/time #/time #/time #/time

N=100, K=3, C=200. Time bound 180 sec.

1 70/0.03 90/0.06 100/0.32 100/2.15 100/15.1
90/12.5 100/0.07 100/0.33 100/2.16 100/15.1 100/0.08 100/0.01
80/0.03 100/0.07 100/0.33 100/2.15 100/15.1

2 0/- 0/- 10/0.34 10/2.03 40/15.7
0/- 0/- 40/38.0 80/19.6 100/22.6 100/757 100/0.02
0/- 0/- 20/0.76 70/19.8 100/33.2

3 0/- 0/- 0/- 0/- 10/16.2
0/- 0/- 60/72.4 70/27.7 100/24.5 100/2879 100/0.74
0/- 0/- 30/39.2 60/28.7 90/28.9

N=100, K=3, C=200. Time bound 600 sec.
4 0/- 0/- 0/- 0/- 0/-

0/- 0/- 60/431 80/236 100/165 100/7320 100/5.32
0/- 0/- 0/- 20/243 20/165

5 0/- 0/- 0/- 0/- 0/-
0/- 0/- 10/180 60/108 70/92.9 100/7168 70/18.6
0/- 0/- 0/- 10/- 0/-

6 0/- 0/- 10/0.30 0/- 0/-
0/- 10/180 20/106 30/111 20/24.8 100/7533 30/34.6
0/- 0/- 10/180 0/- 10/166

7 0/- 0/- 10/0.33 0/- 10/16.4
0/- 0/- 10/180 30/101 40/115 100/4824 40/12.9
0/- 0/- 10/183 0/- 0/-

8 0/- 0/- 0/- 0/- 10/13.6
0/- 0/- 10/180 30/180 40/74.8 100/3.78 40/46.6
0/- 0/- 0/- 0/- 10/41.1

Table 4: Max-CSP. A=2, K=3.

26

