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Abstract

This paper explores algorithms for process-

ing probabilistic and deterministic informa-

tion when the former is represented as a be-

lief network and the latter as a set of boolean

clauses. The motivating tasks are 1. evalu-

ating belief networks having a large number

of deterministic relationships and 2. evaluat-

ing probabilities of complex boolean queries

or complex evidence information over a be-

lief network. We present and analyze a vari-

able elimination algorithm that exploits both

types of information, and provide empirical

evaluation demonstrating its computational

bene�ts.

1 Introduction and motivation

The paper addresses the question of processing deter-

ministic relationships that interact with probabilistic

information expressed as belief networks. Two pri-

mary sources of determinism are considered: network-

based and query-based. Network determinism means

that a portion of the probabilistic network contains de-

terministic relationships, such as OR, AND and Par-

ity functions. A second source of determinism can be

generated outside the knowledge-base, when evaluat-

ing the posterior belief of complex constraint-based

queries, or when given complex evidence structure

(e.g., disjunctive information).

We will show that both sources of determinism can

be reduced to evaluating the probability of Boolean

queries. While we will assume that the deterministic

information is expressed as boolean formulas in con-

junctive normal form (CNF), the framework is exten-

sible, in principle, to relational constraint expressions

over multi-valued domains.

The paper presents a variable-elimination algorithm

for computing the probability of a CNF query over

a belief network. It is known that such queries can

be handled by modeling the formula as part of the

belief network ([Pearl, 1988]). However, as we demon-

strate, it is computationally bene�cial to distinguish

between the deterministic and probabilistic informa-

tion. It facilitates constraint processing, especially

search and constraint propagation (e.g. unit resolu-

tion), which has proven essential for e�cient process-

ing of Boolean and constraint expressions. We analyze

the algorithm's complexity based on its dependency

graph. Preliminary experiments show that exploit-

ing deterministic information can lead to signi�cant

speedup of up to a factor of 2 on the average.

2 Preliminaries and background

Let X = fX1; :::; Xng be a set of random variables

over multi-valued domains,D1; :::; Dn, respectively. A

belief network is a pair (G;P ) where G = (X;E)

is a directed acyclic graph over the variables, and

P = fPig, where Pi denotes conditional probability

tables (CPTs) Pi = fP (Xijpai)g, and pai is the set

of parent nodes pointing to Xi in the graph. When

the CPTs entries are \0" or \1" only, they are called

deterministic or functional CPTs. When some of the

CPT's entries are \0" or \1" they are called mixed

CPTs. The family of Xi, Fi, includes Xi and its

parent variables. The belief network represents a

probability distribution over X having the product

form P (x1; ::::; xn) = �n

i=1P (xijxpai) where an as-

signment (X1 = x1; :::; Xn = xn) is abbreviated to

x = (x1; :::; xn) and where xS denotes the restriction

of a tuple x over a subset of variables S. An evidence

set e is an instantiated subset of variables. We use

upper case letters for variables and nodes in a graph

and lower case letters for values in a variable's domain.

The scope of an arbitrary function is its set of argu-

ments. The moral graph of a directed graph is the

undirected graph obtained by connecting the parent

nodes of each variable and eliminating direction.
Propositional theories. Propositional variables

which take only two values ftrue; falseg or f1; 0g, are
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Figure 1: Belief network P (g; f; d; c; b; a)

= P (gjf; d)P (f jc; b)P (djb; a)P (bja)P (cja)P (a)

denoted by uppercase letters P ,Q, R. Propositional

literals (i.e., P;:P ) stand for P = true or P = false;

and disjunctions of literals, or clauses, are denoted by

�; �; : : :. For instance, � = (P _Q _R) is a clause. A
unit clause is a clause of size 1. The resolution op-

eration over two clauses (� _Q) and (� _:Q) results
in a clause (� _ �), thus eliminating Q. A formula '

in conjunctive normal form (CNF) is a set of clauses

' = f�1; : : : ; �tg that denotes their conjunction. The
set ofmodels or solutions of a formula', denotedm(')

is the set of all truth assignments to all its symbols that

do not violate any clause. resolve('; �) is the set of

resolvents of each clause in ' with �.

Example 2.1 Figure 1a gives an example of a belief

network over 6 variables. Assume that the CPTs as-

sociated with C is mixed given by P (C = 1jA = 0) =

1; P (C = 1; A = 1) = 0:5 and that G is associated

with a deterministic function: G = D_F . The rest of
the CPTs are positive. The moral graph is given in

Figure 1b.

Bucket elimination. Bucket elimination is a

unifying algorithmic framework for variable elim-

ination algorithms applicable to probabilistic and

deterministic reasoning [Bertele and Brioschi, 1972,

N. L. Zhang and Poole, 1994, Dechter, 1996]. The in-

put to a bucket-elimination algorithm is a set of func-

tions or relations. Given a variable ordering, the algo-

rithm partitions the functions (e.g., CPTs) into buck-

ets, where a function is placed in the bucket of its lat-

est argument in the ordering. The algorithm processes

each bucket, from last to �rst, by a variable elimina-

tion procedure that computes a new function that is

placed in an earlier (lower) bucket. The time and

space complexity of such algorithms is exponential in

a graph parameter called induced width w�. For more

information see [Dechter, 1999].

3 Tasks

The primary basic query over belief networks is belief

updating, namely evaluating the posterior probability

of each singleton proposition given some evidence. In

this paper we address complex queries and complex ev-

idence that are expressible as Boolean formulas on sub-

sets of the variables. In addition we will discuss the

processing of hybrid networks containing deterministic

and mixed CPTs, and show that both explicit and im-

plicit deterministic information in such networks can

be exploited computationally by appropriate transfor-

mation to CNF query evaluation.

3.1 Complex queries, given complex evidence

CNF Probability Evaluation (CPE). The prob-

lem of evaluating the probability of CNF queries over

belief networks has application to query answering in

massive databases. In particular, for massive data

archives, it is possible to construct an approximate

model of the data o�ine using a belief network and

then to answer real-time queries using the approxi-

mate model (without recourse to the original data)

[Pavlov et al., 2000].

Another application is to network reliability. Given a

communication graph with a source and destination,

one seeks to diagnose failure of communication. Since

several paths may be available, the reason for failure

can be described by a CNF formula. Failure means

that for all paths (conjunctions) there is a link on that

path (disjunction) that fails. Given a probabilistic

fault model of the network, the task is to assess the

probability of a failure [Portinale and Bobbio, 1999].

Definition 3.1 (CPE)

Given a belief network (G;P ), de�ned over proposi-

tional variables X = fX1; :::; Xng and given a CNF

query ' over a subset Q = fQ1; :::Qrg, where Q � X,

the CNF Probability Evaluation (CPE) is to �nd the

probability P (').

Complex evidence. We can envision situations

when one wants to assess belief of a proposition given

partial, disjunctive information. For example, given

that a customer purchased a coat or a shirt, but did

not buy a tie, what is the probability that they will also

purchase shoes? This type of query is very valuable

for predictive modeling, e.g., \cross-sell" applications

where we determine which other products a customer

is likely to purchase.

Belief assessment conditioned on a CNF evidence is

the task of assessing P (Xj') for every variable X.

Since P (Xj') = �P (X ^ ') when � is a normalizing

constant relative toX, computingP (Xj') reduces to a
CPE task for the query ((X = x)^'). More generally,

P ('j ) can be derived from P ('j ) = �' � P (' ^  )
when �' is a normalization constant relative to all the

models of '.



A CNF query can also be de�ned over multi-valued

variables X1; :::Xn. Its propositions are (Xi; a), where

a 2 Di. The proposition is true if Xi is assigned value

a 2 Di and is false otherwise. The CNF is augmented

with a collection of 2-CNFs for each variable, that for-

bids assignments of more than one value to a variable.

Namely, for every i (Xi; a)! :(Xi; b) if a 6= b.

3.2 Evaluating beliefs in hybrid networks

Often belief networks have a hybrid probabilis-

tic and deterministic relationships. Such net-

works appear in medical applications in coding net-

works [R.J. McEliece and Cheng, 1997] and in net-

works having CPTs that are causally independent

[Heckerman, 1989]. Recent work in dynamic decision

networks reveals the need to express large portion of

the knowledge using deterministic constraints. We ar-

gue that treating such information in a special manner,

using constraint processing methods is likely to yield

signi�cant computational bene�t.

Hybrid networks A hybrid belief network (HBN) is

a triplet < G;P; F >, G = (X;E), where X is a set

of variables partitioned into X = R [ D. Variables

in R are probabilistic and have regular CPTs while

variables in D are deterministic having a function de-

�ned from their parents to the variable. The CPTs of

probabilistic variables can be positive or mixed. In the

latter case some probability entries in the CPTs are 0

or 1.

Belief assessment in an HBN translates to a CPE

task. The idea is to collect together all the determin-

istic information appearing in the functions of F and

to extract the deterministic information in the mixed

CPTs, and then transform it all to one CNF expres-

sion. This expression can then be treated as a CNF

query over the original network. Clearly, every func-

tion can be expressed as a CNF formula. Also, each en-

try in a mixed CPT P (Xijpai), having P (xijxpai) = 1,

(x is a tuple of variables in the family of Xi) can be

translated to the clause xpai ! xi, and all such entries

constitute a conjunction of clauses.

Let HBN =< C;P; F > be a hybrid network. Given

evidence e, assessing the posterior probability of a

single variable X given evidence e is to compute

P (Xje) = �P (X ^ e). Let cl(P ) be the clauses ex-

tracted from the mixed CPTs, and let cl(F ) be the

clauses expressing the conjunction of functions in F .

The network's deterministic portion is cl(F ) ^ cl(P ),
and because this conjunction is redundant relative to

the given network, namely since P (cl(F ) ^ cl(P ) = 1

we can write:

P ((X = x) ^ e) = P ((X = x) ^ e ^ cl(F ) ^ cl(P ))
Therefore, to evaluate the belief of X = x we can eval-

uate the probability of the CNF formula ' = ((X =

x) ^ e ^ cl(F ) ^ cl(P )) over the original HBN. While

some of the information is expressed redundantly, both

in the network and in the query, it is semantically cor-

rect.

Example 3.1 Consider the HBN in Figure 1. We can

extract the clauses ' = f(:D_G); (:F_G); (:G_D_
F )g from the only deterministic function G = D _ F .
From the mixed CPT of C we can extract the clause

(A _ C). Answering the query P (X ^ :G) when

X is any variable is equivalent to evaluating P (X ^
:G;^(:D_G)^ (:F _G)^ (:G_D_F )^ (A_C)g.

4 Bucket-elimination for CPE

The following paragraphs derive a bucket-elimination

algorithm for CPE. This is a straightforward exten-

sion of the variable elimination algorithm Elim-bel for

belief updating [Dechter, 1996]. Given a belief net-

work de�ned over variables X = fX1; :::; Xng and a

CNF query ' over1 Q � X, where the size of Q

is r, the CPE task is to compute a sum of prob-

abilities of all the models of ', namely: P (') =P
�xQ2m(') P (�xQ) where �x = (x1; :::; xn). Using

the belief-network product form we get: P (') =P
f�xj�xQ2m(')g

Q
n

i=1P (xijxpai). For derivation pur-

pose, we next assume that Xn is one of the query vari-

ables, and we separate the summation over Xn and

X �fXng. We denote by 
n the set of all clauses con-

taining Xn and by �n all the rest of the clauses. The

scope of 
n is denoted Qn, Sn = X � fXng and Un is

the set of all variables in the scopes of the CPTs and

clauses that mention Xn. We de�ne �xi = (x1; :::; xi).

We get:

P (') =
X

f�xn�1j�xSn2m(�n)g

X

fxnj�xQn2m(
n )g

nY

i=1

P (xijxpai)

Denoting by tn the indices of functions in the product

that do not mention Xn and by ln = f1; :::ng� tn we

get:

P (') =
X

f�xn�1 j�xSn2m(�n)g

Y

j2tn

Pj �
X

fxnj�xQn2m(
n)g

Y

j2ln

Pj

Therefore:

P (') =
X

f�xn�1 j�xSn2m(�n)g

(
Y

j2tn

Pj) � �
Xn (1)

where �Xn over Un � fXng, is de�ned by

�Xn =
X

fxnj�xQn2m(
n )g

Y

j2ln

Pj (2)

1It is easy to extend this to propositions over multi-
valued variables



Therefore, if we place all CPTs and clauses mentioning

Xn into the bucket of Xn we can compute the func-

tion in EQ. ( 2). The computation of the rest of the

expression proceeds with Xn�1, using EQ. (1), in the

same manner.

Case of observed variables. When Xn is observed,

or constrained by a literal, the summation operation

reduces to assigning the observed value to each of its

CPTs and to each of the relevant clauses. In this case

EQ. (2) becomes (assume Xn = xn and P=xn is the

function instantiated by assigning xn to Xn):

�xn =
Y

j2ln

Pj=xn ; if �xQn 2 m(
n^(Xn = xn)) (3)

Otherwise, �xn = 0. Since �xQn satis�es 
n^(Xn = xn)

only if �xQn�Xn
satis�es 
xn = resolve(
n ; (Xn = xn)),

we get:

�xn =
Y

j2ln

Pj=xn if �xQn�Xn
2 m(
xn

n
) (4)

Therefore, we can extend the case of observed vari-

able in a natural way: CPTs are assigned the observed

value as usual while clauses are individually resolved

with the unit clause (Xn = xn), and both are moved

to appropriate lower buckets.

Algorithm Elim-CPE, described in Figure 2, includes

therefore a limited amount of constraint propagation

in the form of unit-resolution. Thus, for the variable

ordering of choice, once all CPTs and clauses are par-

titioned (each clause and CPT is placed in the latest

bucket of its scope), we process the buckets from last

to �rst. If the bucket contains a literal we assign its

value to the CPTs, resolve it with the clauses and move

the resulting functions and clauses to the appropriate

bucket. Otherwise, in each bucket we generate the

probabilistic function. From our derivation it follows

that

Theorem 4.1 (Correctness and Completeness)

Algorithm Elim-CPE is sound and complete for the

CPE task. 2

Note that the algorithm includes also a dynamic re-

ordering of the buckets that prefers processing buckets

that include unit clauses. This may have a signi�cant

impact on e�ciency because observations (namely unit

clauses) avoid the creation of new dependencies.

Example 4.2 Lets treat the belief network in Figure

1 as if all its CPTs are pure positive, and assume we

get the query ' = (B _ C) ^ (G _ D) ^ (:D _ :B).
The initial partitioning into buckets along the order-

ing d = A;C;B;D; F;G, as well as the output buck-

ets are given in Figure 3a. In bucket G we com-

pute: �G(f; d) =
P

fgjg_d=trueg P (gjf; d). In bucket

Algorithm Elim-CPE
Input: A belief network (G;P ), P = fP1; :::;Png; A
CNF formula on r propositions ' = f�1; :::�mg an or-
dering, d
Output: The belief P (').
1. Initialize: Place buckets with unit clauses last in
the ordering (to be processed �rst). Partition P and '

into bucket1, : : :, bucketn, in the usual manner. (We
denote probabilistic functions as �s and clauses by �s).
Scopes of CPTs are denoted by S, of clauses by Q.
2. Backward: Process from last to �rst.
Let P be the current bucket.
For �1; :::; �j, �1; :::;�r in bucketp, do
� If bucketp contains Xp = xp (or a unit clause),
a. Assign Xp = xp to each �i
b. Resolve each �i with the unit clause, and put re-
solvents and probabilistic function lower buckets and
c. Move any bucket with unit clause to top of process-
ing.
� Else, compute probabilistic function �P =P

fxpj�xUp2m(�1 ;:::;�r )g

Q
j

i=1
�i,

over Up = S [Q� fXpg, S = [iSi, Q = [jQj, and
place any generated function or clause into its appro-
priate lower bucket.
3. Return P (') generated in the �rst bucket.

Figure 2: Algorithm Elim-CPE

F : �F (b; c; d) =
P

f
P (f jb; c)�G(f; d). In bucket D:

�D(a; b; c) =
P

fdj:d_:b=trueg P (dja; b)�
F (b; c; d). In

bucket B: �B(a; c) =
P

fbjb_c=truegP (bja)�
D(a; b; c).

In bucket C: �C(a) =
P

c
P (cja)�B(a; c). In bucket

A: �A =
P

a
P (a)�C(a) P (') = �A.

Let's now extend the example by adding :G to the

query. This will place :G in the bucket of G (See

Figure 3b.) The Figure shows the derived functions

and clauses, demonstrating the e�ect of unit resolu-

tion. Note the change in bucket ordering due to the

preference to processing buckets with unit clauses.

The following example extract clauses from the CPTs

and then applies Elim-CPE.

Example 4.3 Consider again the belief network in

Figure 1 and the query P (Aj:G) but assume the de-

terministic and mixed CPTs as described in Example

3.1. The extracted CNF is ' = (:D _ G) ^ (:F _
G)^ (:G_D _F )^ (A _C). The initial partitioning

into buckets along the ordering d = A;B;C;D; F;G,

as well as the output buckets are given in Figure 4a.

In bucket G, since we have a unit clause, we compute:

�G(f; d) = P (G = 0jD;F ). Applying unit resolu-

tion yields the literals :F and :D. Since we have

a unit clause in bucket F , it will be assigned, yield-

ing �F (b; c) = P (F = 0jb; c). In bucket D we have

a generated unit clause :D causing an assignment:

�D(a; b) = P (d = 0ja; b) and �D = �F (D = 0).

In bucket C: �C(a; b) =
P

fbja_c=trueg P (cja)�
F (b; c).



Bucket G:    P(G|F,D)

Bucket F:    P(F|B,C)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A)

Bucket C:   P(C|A)

Bucket A:   P(A)

)( CB ∨ ),,( CBADλ

)( DG ∨

)( BD ¬∨¬

),( CABλ

)(ACλ

),,( DCBfλ

),( DFGλ

)(ϕP

(a)

Bucket G:    P(G|F,D)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A),P(F|B,C),

Bucket C:   P(C|A)

Bucket F:

Bucket A:

)( CB ∨ ),( BADλ

),( CFBλ

)(1 ABλ

G   )( ¬∨ DG

D        ),(  ), ( DFBD Gλ¬∨¬

)(FCλ

)(2 ABλ )(ACλ Fλ

C

)(ϕP

B¬

)(FDλ

(b)

Figure 3: Trace of Elim-CPE (a) no observation (b)

with observation

Since the clause A _ C was extracted from P (CjA)
there is a redundancy in the above computation.

Instead we will generate the function �C(a; b) =P
b
P (cja)�F (b; c) which may save time, depending

on the implementation. In bucket B: �B(a) =P
c
P (bja)�C(a; b)�D(a; b). In bucket A: �A(a) =

P (a)�B(a)�D . P (Aj:G) = ��A(a). Regular Elim-

CPE, not extracting deterministic CNF information,

creates functions on 3 variables as is shown in Figure

4b.

Algorithm Elim-CPE-D is geared towards processing

hybrid networks. It �rst extracts deterministic clauses

from deterministic CPTs, and then applies Elim-CPE.

However, for e�ciency's sake, the new clauses are used

for resolutions only in each bucket and are ignored for

function computation.

4.1 Complexity

Induced-graphs and induced width. The width

of a node in an ordered graph is the number of the

node's neighbors that precede it in the ordering. The

width of an ordering d, denoted w(d), is the maxi-

mum width over all nodes. The induced width of an

ordered graph, w�(d), is the width of the induced or-

dered graph obtained as follows: nodes are processed

from last to �rst; when node X is processed, all its

preceding neighbors are connected. The induced width

of a graph, w�, is the minimal induced width over all

its orderings [Arnborg, 1985].

As usual, the complexity of bucket elimination algo-

Bucket G:    P(G|F,D)

Bucket F:    P(F|B,C)

Bucket D:   P(D|A,B)

Bucket C:   P(C|A)

Bucket B:   P(B|A)

Bucket A:   P(A) DB A λλ           )(

)(      )( DDF ¬λ

),(   ),,( BABA CD λλ

GGDFGFGD ¬¬∨∨∨¬∨¬ ),)()((

)|( GAP ¬

C)(B,Fλ

)(        ),|0( FDFGP ¬=

(a)

C)(A ∨

Bucket G:    P(G|F,D)

Bucket F:    P(F|B,C)

Bucket D:   P(D|A,B)

Bucket C:   P(C|A)

Bucket B:   P(B|A)

Bucket A:   P(A)

),,( CBADλ

)(ACλ

),,( DCBFλ

),( BABλ

),|0( DFGP =

G¬

)|( GAP ¬

(b)

Figure 4: Variable elimination for a hybrid network:

(a) Elim-CPE with clause extraction (b) regular Elim-

CPE

rithms is related to the number of variables appearing

in each bucket. The worst-case complexity is time and

space exponential in the size of the maximal bucket,

which is captured by the induced-width of the relevant

graph. Given a belief network and a query ', the aug-

mented graph of the network is the moral graph with

additional arcs between each two variables appearing

in the same clause of the CNF.

Consider now the computation inside a bucket. If


P is the CNF theory in bucket P , de�ned over sub-

set Qp, and �1; ::::�j are the probability functions

whose union of scopes is Sp, we compute: �P =P
fxpj�xQ2m(
P )g

Q
i
�i whose scope is Up = Qp [ Sp �

fXpg. A brute force computation of this expression

is O(exp(jUpj + 1)). Since jUpj is bounded by w�(d)

of the augmented graph, along d, the complexity of

Elim-CPE is O(n � exp(w�(d))).

To capture the simpli�cation associated with observed

variables or unit clauses, we connect only parents

of each non-observed variable when generating the

induced graph. The adjusted induced width is the

width of this adjusted induced-graph. For details see

[Dechter and Larkin, 2001]. In summary,

Theorem 4.4 Given a CNF ' and an ordering o,

the complexity of Elim-CPE is time and space O(n �
exp(w�(o))), where w�(o) is the induced width along

o of the augmented graph adjusted relative to the ob-

served variables and unit clauses generated by unit-

resolution, in '. 2



4.2 Bucket-elimination with hidden variables

Consider now the alternative of modeling clauses

as CPTs. It requires expressing each clause as a

CPT with a new hidden variable and the addition

of evidence to the hidden nodes. Subsequently we

can apply a regular variable elimination algorithm

([Dechter, 1996, N. L. Zhang and Poole, 1994]). We

call the resulting algorithm Elim-Hidden.

There is no substantial di�erence between Elim-CPE

and Elim-Hidden in terms of worst-case complexity.

Processing the hidden variables creates tables that cor-

responds to the clauses which are placed in the same

buckets that the original clauses occupy in Elim-CPE;

producing just a linear overhead. Subsequently, when

computing the function's bucket, Elim-Hidden uses

multiplication to factor out non-models and Elim-CPE

uses summation over models. In example 4.3, Elim-

Hidden is far inferior, unable to recognize unit clauses.

4.3 Elim-CPE with constraint propagation

Constraint propagation can, in principle, improve

Elim-CPE by inferring new unit clauses beyond

the power of unit-resolution. Furthermore, inferred

clauses correspond to infered conditional probabilities

that are either \0" or \1".

One form of constraint propagation is bounded reso-

lution [Rish and Dechter, 2000]. It applies pair-wise

resolution to any two clauses in the CNF theory i�

the resolvent does not exceed a bounding parameter,

i. Bounded-resolution algorithms can be applied until

quiesence or in a directional manner, called BDR(i).

After partitioning the clauses into ordered buckets,

each is processed by resolution with bound i.

We extend Elim-CPE into a parameterized family of

algorithms Elim-CPE(i) that incorporates BDR(i) .

The added operation in bucketp is: (If the bucket does

not have an observed variable)

For each pair f(� _ Qi); (� _ :Qi)g � bucketi. If the

resolvent 
 = � [ � contains no more than i proposi-

tions, place the resolvents in the bucket of its highest

index variable. Higher levels of propagation may in-

fer more unit-clauses and general nogoods but require

more computation. It is hard to assess in advance the

right balance of constraint propagation. It is known

that the complexity of BDR(i) is O(exp(i)). There-

fore, for small levels of i the computation in non-unit

buckets is likely to be dominated by generating the

probabilistic function rather than by BDR(i).

5 Empirical Evaluation

There were four algorithms to be compared empiri-

cally: Elim-CPE (which is the same as Elim-CPE(0)),

Algorithm Time mf C. U.

Elim-CPE: 18 18 18 2
Elim-Hidden: 33 19 0 0

Figure 5: 50 test instances, network parameters of <

50; 5; 0> and query parameters < 50; 15 >

Algorithm Time mf C. U.

Elim-CPE: 5 16 22 3
Elim-Hidden: 18 18 0 0

Figure 6: Averages over 35 test instances, network

parameters of < 40; 5; 0 > and query parameters

< 60; 10 >

Elim-CPE(i), Elim-Hidden, and Elim-CPE-D. Some

random networks were tested, as well as two realistic

networks, the hail�nder and insurance networks. We

report only some of the results for space reasons. For

more information see [Dechter and Larkin, 2001].

The random generator. The test generator is di-

vided into two parts. The �rst creates a random be-

lief network using a tuple < n; f; d > as a parameter,

where n is the number of variables, f is the maximum

family size, and d is the fraction of deterministic en-

tries in CPTs. Parents are chosen at random from

the preceding variables in a �xed ordering. The en-

tries of the CPT's are �lled in randomly. The second

part generates a 3-CNF query, using a pair of param-

eters < c; e > where c is the number of 3-CNF clauses

(clauses are randomly chosen and each is given a ran-

dom truth value) and e is the number of observations.

All algorithms use min-degree order, computed by re-

peatedly removing the node with the lowest degree

from the graph and connecting all its neighbors.

Results on Random networks.

Elim-CPE vs Elim-Hidden. We report �rst some of

our results on Elim-CPE vs Elim-Hidden with two

sets of random networks generated with parameters

< 50; 5; 0 > and < 40; 4; 0 >. The results of those

runs are summarized in Figures 5 and 6 respectively.

In the tables, the time is given in seconds, C stands

for derived Clauses, U stands for derived Unit clauses,

and mf is the arity of the largest function created by

the algorithm. Clearly mf � w�.

We see that Elim-CPE-Hidden is slower than Elim-

CPE by a factor of 2 on the average. This is expected

because of Elim-CPE's constraint propagation, which

creates more unit variables.

Testing Elim-CPE(i). The purpose in testing Elim-

CPE(i) was to evaluate the e�ect of di�erent levels of

bounded i-resolution. Higher values of i may produce



Algorithm Time mf C. U.

Elim-CPE(n): 22 17 23 2
Elim-CPE(3): 21 17 20 2
Elim-CPE(2): 20 17 17 2
Elim-CPE(1): 18 17 15 2

Figure 7: Averages over 30 test instances with network

parameters of < 50; 5; 0 > and query parameters <

50; 15 >

Algorithm O. Time mf C. U. F.

Elim-CPE-D: 10 32 8 299 3 351
Elim-CPE(0): 10 60 16 0 0 0

Elim-CPE-D: 15 10 7 272 3 350
Elim-CPE(0): 15 33 15 0 0 0

Figure 8: Averages of 50 instances with network pa-

rameters < 80; 4; 0:75> and varied number of evidence

more clauses, especially unit clauses, which should

speed up the computation. We ran the algorithm on

networks generated by parameters of < 50; 5; 0 > and

with query parameters < 50; 15 >. The results are

summarized in Figure 7. As we see in these tests,

higher levels of constraint propagation were not suc-

cessful in creating more unit clauses. It appears that

larger and harder CNF queries are necessary to make

stronger constraint propagation cost-e�ective.

Testing Elim-CPE-D. Figure 8 shows some tests of

Elim-CPE-D vs. Elim-CPE on random networks. The

di�erence is that Elim-CPE-D extracts deterministic

information from CPT's. O. stands for the number

of observed variables and F . stands for the number

of clauses extracted from CPT's. We see that Elim-

CPE-D was generally superior. The results for 10 unit

clauses are also shown in the scatter diagram in Figure

9.

Realistic Benchmarks

Tests on Insurance network. Next we tested the insur-
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Figure 9: 48 test instances with network parameters

< 80; 4; 0:75> and query parameters < 0; 10 >

Algorithm Time mf C. U. F.

Elim-CPE-D: 48 8 210 1 302
Elim-CPE(15): 64 9 12 1 0
Elim-CPE(0): 61 9 6 0 0
Elim-Hidden: 104 10 0 0 0

Figure 10: 50 test instances of the insurance network

(27 variables), with query parameters < 20; 5 >

Algorithm Time mf C. U. F.

Elim-CPE-D: 4 4 269 1 501
Elim-CPE(15): 16 6 7 1 0
Elim-CPE(0): 16 6 7 1 0
Elim-Hidden: 33 7 0 0 0

Figure 11: 50 test instances of the hail�nder network

(56 variables) with query parameters < 15; 15 >
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Figure 12: 50 test instances of the insurance network

with query parameters < 15; 5 >

ance network which is a realistic network for evaluating

car insurance risks that contains deterministic infor-

mation. It has 27 variables. In the experiments re-

ported in Figure 10, Elim-CPE-D outperformed Elim-

CPE substantially. Figure 12 contrasts Elim-CPE

with Elim-Hidden on the insurance network.

Testing on Hail�nder network. Finally we tested the

hail�nder network, another benchmark network that

has 56 variables and includes deterministic informa-

tion. It is a normative system that forecasts severe

summer hail in northeast Colorado. The results are

reported in Figure 11. Here again the results are con-

sistent with earlier observations that Elim-CPE-D was

the most e�cient. In both of these networks we have

determinism created by the network and the query.

6 Discussion and related work

The most relevant work is that of Poole [Poole, 1997]

providing a rule-based description of the conditional

probability tables, and a variable elimination algo-

rithm for exploiting this rule-based representation.



When the information is deterministic, those rules are

simple clauses, and their processing may reduce to sim-

ple resolution. I An area that uses heavily both deter-

ministic and probabilistic information is planning un-

der uncertainty. Most relevant is a recent stochastic

planner called MAXPLAN [Majercik and Littman, ]

which shows how stochastic planning can be trans-

formed into an MAJSAT description and then solved

by a search-based conditioning algorithm. It would be

interesting to exploit our algorithm in the context of

these works.

The paper presents a variable elimination algorithm

called Elim-CPE, for answering Boolean CNF queries

over a belief network. The algorithm is applicable to

hybrid belief networks and to belief updating given

partial information.

The nice property of the bucket-elimination algorithms

is that their complexity is not dependent on the num-

ber of models in the CNF formula. Clearly, all the

tasks addressed here could also be solved by condi-

tioning search or by some combination of search and

inference, and should be explored further. They avoid

the space complexity of bucket elimination and may

work well in practice.

The empirical results demonstrated that the proposed

algorithmElim-CPE, is far more e�ective than a brute

force embedding of the CNF query into the belief net-

work (i.e., Elim-Hidden) by a factor of 2 on the aver-

age, depending on the size of the CNF formula. When

applying a variant of this algorthm to hybrid net-

works (i.e., Elim-CPE-D) we observed impressive im-

provement that were more signi�cant as the portion of

the deterministic information increased. Those results

were consistent for randomly generated networks and

some real benchmarks. Our experiments with stronger

levels of constraint propagation (Elim-CPE(i)) how-

ever, were not cost-e�ective. Larger and harder net-

works are may be necessary to make stronger levels of

resolution cost-e�ective.
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