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Abstract

The paper investigates the behavior of iterative belief propagation

algorithm (IBP) in Bayesian networks with loops. In multiply-

connected network, IBP is only guaranteed to converge in linear

time to the correct posterior marginals when evidence nodes form

a loop-cutset. We propose an �-cutset criteria that IBP will con-

verge and compute posterior marginals close to correct when a

single value in the domain of each loop-cutset node receives very

strong support compared to other values thus producing an e�ect

similar to the observed loop-cutset. We investigate the support for

this criteria analytically and empirically and show that it is con-

sistent with previous observations of IBP performance in multiply-

connected networks.

1 Introduction

The paper investigates the correctness of iterative belief propagation (IBP) algo-

rithm in Bayesian networks with loops. Pearl [10] proposed iterative belief prop-

agation algorithm for singly connected Bayesian networks and demonstrated that

algorithm converges in the number of iterations equals to the diameter of the net-

work to the correct posterior values. Iterative belief propagation can be applied to

networks with loops to derive approximate inference where exact methods such as

bucket-elimination [2] and tree-clustering [9, 3] become impractical due to exponen-

tial growth in time and memory required as network width increases. In general, it

does not always converge and does not produce correct posterior values for Bayesian

networks with loops.



However, empirically it was demonstrated that IBP can be successfully applied to

several classes of Bayesian networks with loops used in practical applications, espe-

cially for coding networks [11, 8, 4]. where it was shown to outperform variational

decoder [4] and mini-bucket approximation algorithm [6]. It was also performs well

on noisy-or networks (used in diagnostics) and pyramid networks (used in image

recognition) [7].

We have only limited theoretical understanding of the behavior of IBP in networks

with loops. Most of the results refer to the Bayesian networks with a single loop.

Weiss [12] proved using the Markov network model that IBP always converges on a

single-loop networks and de�ned the error in posterior marginals obtained by IBP

as a function of eigenvalues of a matrix computed from the conditional probability

tables of all the variables in a loop. He also established the correlation between the

accuracy of posterior marginals computed by IBP and convergence rate. That is,

the faster IBP convergence, the more accurate the posterior marginals are.

We investigate the accuracy of IBP in directed Bayesian networks with binary nodes

as a function of loop size, CPT values, prior beliefs, and evidence support. Analyt-

ically, we derive an expression for the error value in the posterior belief of a sink

node in a single-loop Bayesian network without evidence (section 5) and then ex-

tend our conclusions empirically to several classes of loopy networks with evidence

(section 6). The general conclusion is that in a single-loop network accuracy of IBP

improves as:

1. Prior beliefs for a root node(s) approach boundary values of 0 and 1.

2. Size of the loop increases.

3. Conditional probabilities of an allowed loop node X for di�erent values of

its parent P (X = x0jPa(X)) and P (X = x0jPa(X) = 1) get closer.

For networks with multiple loops, we propose an �-cutset criteria that IBP will

converge and compute posterior marginals within speci�ed error limit � when �-

support is provided for loop-cutset nodes with a su�ciently small � (section 3).

2 Background

Definition 2.1 (graph concepts) A directed graph is a pair G = fV;Eg, where
V = fX1; :::; Xng is a set of nodes, or variables, and E = f(Xi; Xj)jXi; Xj 2 V g
is the set of edges. Given (Xi; Xj) 2 E, Xi is called a parent of Xj , and Xj is
called a child of Xi. The set of Xi's parents is denoted pa(Xi), or pai, while the
set of Xi's children is denoted ch(Xi), or chi. The family of Xi includes Xi and its
parents.

The underlying graph G of a directed graph D is the undirected graph formed by
ignoring the directions of the edges in D.

A node X in a directed graph D is called a root if no edges are directed into X. A
node X in a directed graph D is called a leaf if all of its adjacent edges are directed
into X. A cycle in G is a path whose two end-points coincide. A cycle-cutset of
undirected graph G is a set of vertices that contains at least one node in each cycle

in G. A loop in D is a subgraph of D whose underlying graph is a cycle. A vertex v



is a sink with respect to loop L if the two edges adjacent to v in L are directed into v.
A vertex that is not a sink with respect to a loop L is called an allowed vertex with
respect to L. A loop-cutset of a directed graph D is a set of vertices that contains
at least one allowed vertex with respect to each loop in D. (We borrowed loop-cutset
de�nition from [1]).

A directed graph is acyclic if it has no directed cycles. A graph is singly connected
(also called a polytree), if its underlying undirected graph has no cycles. Otherwise,
it is called multiply connected.

Definition 2.2 (belief networks) Let X = fX1; :::; Xng be a set of random vari-
ables over multi-valued domains D1; :::; Dn. A belief network (BN) is a pair (G;P )
where G is a directed acyclic graph on X and P = fP (Xijpai)ji = 1; :::; ng is
the set of conditional probability matrices associated with each Xi. An assignment
(X1 = x1; :::; Xn = xn) can be abbreviated as x = (x1; :::; xn). The BN represents
a joint probability distribution P (x1; ::::; xn) = �n

i=1P (xijxpa(Xi)), where xS is the
projection of vector x on a subset of variables S. An evidence E is an instantiated
subset of variables.

Definition 2.3 (d-separation) If X, Y, and Z are three disjoint subsets of nodes
in a DAG G, then Z is said to d-separate X from Y, denoted d(X;Z; Y )G, if and only
if there is not path from a node in X to a node in Y along which the following two
conditions hold: (1) every node with converging arrows either is or has a descendant
in Z, and (2) every other node is outside Z. A path satisfying the conditions above is
to be active; otherwise it is said to be blocked (by Z). By path we mean a sequence
of consecutive edges (of any directionality) in the DAG.

3 Iterative Belief Propagation Algorithm

Iterative Belief Propagation (IBP) computes belief BEL(x) = P (X = xjE), where
E is observed evidence, for every variable X in the network. It applies Pearl's

belief propagation algorithm [10], developed for singly-connected networks, to a

multiply-connected networks, ignoring cycles. Belief is propagated by sending mes-

sages between the nodes:

During each iteration (t+1), each node X sends causal support messages �
(t+1)

Yj
(x)

to each child Yj :

�
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Y

k 6=j

�
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In equations 1 and 2, � and � are normalization constants such that
P

ui
�X(ui) =

1 and
P

X
�Yj (X) = 1. Message �X (X) is introduced to incorporate evidence

information into the equation (similar to [7]). If node X is not observed, 8xk 2
DX ; �X(X = xk) = 1. If node X is observed and xe is the evidence value, then

8xk 2 Dx; xk 6= xe; �X(X = xk) = 0 and �X (x = xe) = 1.

The posterior belief is computed for each node X by combining �X(ui) messages

received from its parents ui and �Yj (X) messages received from its children:

BEL(x) = ��
(t)(X)�(t)(X) (5)

Causal supports from all parents and diagnostic support from all children are com-

bined into vectors �x and �x, respectively.

Normalization of � and � messages is recommended to avoid numerical underow

although it does not a�ect the computation of the posterior beliefs. We can show

that Pn(XjE) = K � Pun(XjE) where Pn(XjE) is a belief in X computed using

normalized messages, Pun(XjE) without normalizing � and � messages, and K is

constant independent on the value of X. The constant K is going to disappear after

we normalize the belief in X (see appendix 1).

An activation schedule (variable ordering) A speci�es the order in which the nodes

are processed (activated). After all nodes are processed, the next iteration of belief

propagation begins, updating the messages computed during the previous iteration.

Algorithm IBP(n) stops after n iterations.

4 IBP, loop-cutset and irrelevant subnetworks

In this section, we demonstrate that IBP automatically exploits conditional indepen-
dence introduced by observed nodes and automatically ignores irrelevant portions

of the network that contain no evidence.

Utilizing the notion of conditional independence, we can often reduce a seemingly

complex Bayesian network to a singly-connected one. It is well-known that if evi-

dence nodes form a loop-cutset, then we can transform multiply-connected Bayesian

network to an equivalent singly-connected network which can be solved by belief

propagation, leading to the loop-cutset conditioning method [10].

Also, unobserved nodes that have only unobserved descendents are irrelevant to the

beliefs of the remaining nodes and therefore, processing can be restricted to the

relevant subgraphs.

Combining the above two properties, it is clear that if evidence nodes constitute a

loop-cutset of a relevant subgraph of a query node X, then its posterior belief can

be computed by applying belief-propagation only to the relevant subgraph which

can be transformed into a singly-connected network.

We show in subsections 4.1 and 4.2 that IBP exploits the above two properties,

of observed and unobserved nodes, automatically, without requiring any outside

action for network transformation. As a result, the correctness and convergence of

IBP on node X in a multiply-connected Bayesian network will be determined by

the structure of the relevant subgraph of node X as opposed to the structure of a

complete network. If relevant subnetwork of node X is singly-connected, IBP will

converge to correct posterior marginals for node X.



While these conclusions are fairly straightforward, we belief they deserve to be

stated towards the understanding of IBP's boundaries as an approximate scheme.

In section 4.3, we discuss how strong support for one value of a node (for exam-

ple, from its observed children) may lead to the approximation of the conditional

independence e�ectively weakening dependence between the node's children and

parents. We further argue that in a multiply-connected Bayesian network, as each

loop-cutset node receives stronger support for one value, the closer the approxima-

tion of loop-cutset condition becomes leading to the improvements in IBP conver-

gence and accuracy.

4.1 Evidence nodes

An observed node X in a Bayesian network G blocks the path between its par-

ents and its children as de�ned in d-separation criteria. In other words, it creates

conditional independence between its parents and its children.

In this section we establish that IBP automatically exploits evidence nodes blocking

information ow between their parents and their children. Namely, messages that

observed node X sends to its children are independent from any messages that node

X receives. Message that observed node X sends to its parents are independent

from messages node X receives from its children.

Lemma 4.1 (Information ow blocking) Let X be an observed node in a
Bayesian network G. Then for any child Yj of node X, the BEL(Yj ) computed
by IBP is independent from the messages that X receives from its parents Ui or the
messages that node X receives from its other children Yk; k 6= j. 2

Lemma 4.1 allows us to understand fully the behavior of IBP in a Bayesian network

where observed nodes form a loop-cutset.

Theorem 4.1 (IBP on loop-cutset) If evidence nodes constitute a loop-cutset,
then IBP converges to the correct posteriors in linear time. 2

The proof for lemma 4.1 and theorem 4.1 is given in appendix 2.

4.2 Irrelevant nodes

Unobserved nodes that have only unobserved descendents are irrelevant to the be-

liefs of the remaining nodes and therefore, processing can be restricted to the rele-

vant subgraphs. In IBP, this property is expressed by the fact that irrelevant nodes

(that are not observed and do not have observed descendents) send diagnostic sup-

port messages that equally support each value in the domain of a parent and thus

do not a�ect the computation of marginal posteriors of its parents.

Lemma 4.2 Let X be a node in a loopy Bayesian network G such that it is not
observed and it does not have observed descendents and let G0 be a subnetwork
obtained by removing node X and its descendents from the network. Then for any
Y 2 G

0, the posterior belief of Y as computed by IBP over G is identical to the
posterior belief of Y computed by IBP applied to G

0 only. 2



We can immediately conclude that in a loopy network without evidence, IBP will

always converge after 1 iteration because only propagation of � messages a�ects

the computation of posterior beliefs and � messages do not change. Also in that

case, IBP converges to the correct marginals for any node whose parents do not

have common ancestors. This is because the relevant subnetwork that contains

only the node and its ancestors is singly-connected. Therefore, by lemma 4.2 they

are the same as the posterior marginals computed by applying IBP to the complete

network. In summary,

Theorem 4.2 (Irrelevant unobserved nodes) Let G be a Bayesian network
and let G' be a network obtained by recursively eliminating all its unobserved leaf
nodes. If observed nodes in G constitute a loop-cutset of G0, then for all the nodes in
G', IBP applied to G converges to the correct posterior marginals. For a node out-
side G0, IBP will converge (not necessarily to correct posteriors) only if it converges
for all of its parents. 2

Lemma 4.2 and theorem 4.2 are proved in appendix 2.

An interesting consequence of theorem 4.2 is that IBP is guaranteed to converge

for any Bayesian network that has no observed nodes or that has the observed root

nodes only.

4.3 �-cutset

In multiply-connected networks, IBP is only guaranteed to converge to correct pos-

terior marginals for all nodes if evidence nodes form a loop-cutset. An observed

loop-cutset node X e�ectively breaks the loop by stopping the ow information

between its parents and its children.

Now, assume that node X is not observed but receives very strong support for one

value in its domain, x0, from prior beliefs j1�P (X = x
0)j < � and/or support mes-

sages from its children j1� �Yk(X = x
0)j < � (assume that � has been normalized).

We will call it �-support. Then lim�!0�
t(X = x

0) ! 1 generating e�ect similar to

the observed nodes. Therefore, we make following proposition:

Proposition 1 (�-cutset) Let G be a multiply-connected Bayesian network. Let
Xi, i = 1; :::;m, form a loop-cutset in G. Then, there exists such value �0 2 (0; 1)

that if each loop-cutset node Xi receives an �0-support j1 � P (Xi = x
0
i
)j < �0 or

j1��Yk(Xi = x
0
i
)j < �0 for normalized �Yk(Xi), then IBP will converge and compute

posterior marginals within speci�ed error limit �. 2

Proposition 1 extends the loop-cutset evidence inuence on IBP to extreme but

probabilistic evidence nodes. We support this hypothesis by several theorems on

single loops (next section) and provide general validation empirically.

5 Single Loop Bayesian Network without Evidence

In this section, we will analyze the performance of belief propagation algorithm

in a single-loop Bayesian network with binary nodes as shown in �g 1. Without

evidence, the posterior marginals of all nodes except the sink node D will be com-

puted correctly due to theorem 4.2. Thus, we focus here on computing the error
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Figure 1: A single loop Bayesian network.

produced by IBP in the posterior marginal values of sink node D. Let G(D) be

correct posterior belief:

G(D) =
X

Bn;Cm

P (DjBn; Cm)
X

A

P (BnjA)P (CmjA)P (A) (6)

In a Bayesian network without observed nodes, all � messages sent from children

to parents provide same support for all parent values ( � will be vectors with all

values set to 1). Therefore, only � messages contribute to the computation of the

marginal beliefs. If we create activation schedule such that parents of a node are

processed �rst, then one iteration of belief propagation is su�cient for convergence.

The messages sent in future iterations would be identical to the messages sent during

�rst iteration. Then, it is easy to derivethe posterior marginals of node D G
�(D)

computed by IBP:

G
�(D) = �

X

Bn;Cm

P (DjBn; Cm)�(Bn)�(Cm) =

= �

X

Bn;Cm

P (DjBn; Cm)(
X

A

P (BnjA)P (A))(
X

A

P (CmjA)P (A)) (7)

where � is a normalization constant. We can show that � = 1 when neither D

nor any of its descendents are observed. In other words, G�(D) does not require

normalization.



Theorem 5.1 Let G be a single-loop Bayesian network as shown in �gure 1 Assume
all nodes are binary and there are no observed nodes in the loop. Let us de�ne:

P (A) = (�; 1� �)

�
i

0 = P (Bi = 0jBi�1 = 0); �i1 = P (Bi = 0jBi�1 = 1)


j

0 = P (Cj = 0jCj�1 = 0); 
j

1 = P (Cj = 0jCj�1 = 1)

Then the error � = G
�(D) � G(D) in the posterior marginals of node D computed

by Iterative Belief Propagation will be:

� = (�� �
2)((�1)Bn (�1)Cm

X

Bn;Cm

P (DjBn; Cm))

nY

i=1

(�i0 � �
i

1)

mY

j=1

(
j

0 � 
j

1) (8)

We prove this theorem in appendix 3. Let dij = P (D = 0jBn = i; Cm = j). Then,

for D=0:

� = �(1� �)(d00 � d01 � d10 + d11)
Y

i=1;n

(�i0 � �
i

1)
Y

j=1;m

(
j

0 � 
j

1) (9)

From equation 9, it is clear that the accuracy of IBP improves:

1. As prior beliefs for a root node(s) approach boundary values: lim�!0;1 � = 0

2. As � support messages from the children of allowed nodes in the loop ap-

proach boundary values: lim�(B);�(C);�(A)!0;1 � = 0

3. As number of nodes in a loop increases: limn!1;m!1 � = 0

4. As conditional probabilities for the same value of X in di�erent rows get

closer:

lim
�
k
0
��k

1
�>0;k

0
�k

1
�>0

� = 0 (10)

It is also easy to see that when one of the allowed nodes is observed, � = 0. When

node A is initialized, either � = 0 or (1� �) = 0. When one of the nodes Bi or Cj is

observed, it is equivalent to having �0(Bi) = �1(Bi) = 0j1 or 0(Cj) = 1(Cj) = 0j1
yielding � = 0.

6 Empirical Results

In this section, we empirically investigate accuracy and convergence of IBP in net-

works with loops. In all experiments, unless speci�ed otherwise, conditional prob-

abilities were represented by noisy-or:

P (Child = 0jParents) = e
��0�
P

i
�iParenti (11)

where �0, the 'leak' term was �xed at 0.005 and individual noise factors �i were

chosen uniformly from the range [0,1]. The number of iterations for approximate

inference was �xed at 20. All experimental results are consistent with conclusions

in section 5 and proposition 1.



Ave Error P(X|E)

0

0.00005

0.0001

0.00015

0.0002

0.00001 0.01 0.2 0.5 0.8 0.99 0.99999

prior

Root

B1

C1

B2

C2

Sink

Figure 2: Average error in P (XjE) is
plotted against P (A = 0).
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plotted against �Y2(C2).

6.1 Single Loop

Single loop networks (see �g 1) containing 4, 6, 8, and 10 nodes were constructed.

The child of a sink node was always observed. The average error value was averaged

over 1000 instances. As the loop size increased, the maximum average error value

decreased by the order of magnitude: 0.002 for a 4-node loop, 0.0002 for a 6-node

loop, 0.00002 for a 8-node loop, and 0.000002 for a 10-node loop.

For all nodes and all loop sizes, the average error value rapidly decreased as P (A)

was approaching 0 and 1 as predicted analytically in equation 9 (results for a 6-

node loop are presented in �g 2). For all nodes, except root node, the average

error value peaked at P (A) = 0:5, as expected, since � = 0:5 is the maximum of

the function f(�) = �(1 � �). The average error for a root node consistently had

a minimum at P (A) = 0:5 which we cannot explain analytically at this point and

plan to investigate in the future. For all nodes and all loop sizes, the average error

was approaching zero as �Ym(Cm) ! 0; 1 (results for a 6-node loop are presented

in �g 3).

6.2 2-layer noisy-or networks
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Figure 4: Average error in P (XjE) is
plotted against root node priors.
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We measured the accuracy and convergence of IBP in 2-layer noisy-or networks.



Number of root nodes m and total number of nodes n was �xed in each test set

(indexed m�n). Each leaf node Yj was added to the list of children of root node Ui
with probability 0.5. All leaf nodes were observed. Loop-cutset nodes were selected

from root nodes using mga algorithm [1]. Results (in �gures 4 and 5) were averaged

over 100 instances. We have observed in our experiments that initially, as priors

of loop-cutset nodes become lower, the convergence and accuracy of IBP worsen.

This e�ect was previously reported by Murphy, Weiss, and Jordan [7] for 2-layer

noisy-or networks with low root node priors. However, as priors of loop-cutset nodes

continue to approach 0 and 1, the average error value approaches 0 and the number

of converged nodes reaches 100%.

6.3 Random noisy-or networks
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Figure 6: Average error in P (XjE) is
plotted against �Yk(Xk).
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Figure 7: Percent of converged nodes

is plotted against �Yk(Xk).

Random m � n networks of size n were constructed by designating �rst m nodes

as roots, last m nodes as leaves, and then adding each node Xi, i > m, to the list

of children of node Xj , j > i, with probability 0.2. All leaf nodes were observed.

Loop-cutset nodes were selected using mga algorithm proposed in [1]. For each

loop-cutset node, an extra child node Yk was added with a symmetrical CPT. To

control �Yk(Xk) messages, P (Ykjpa(Yk)) was varied. Results were averaged over 100
instances. As results demonstrate (�gures 6 and 7), the average error approaches 0

and convergence of IBP reaches 100% as �Yj (X)! 0; 1.

7 Related work and conclusions

Empirical study of the performance of belief propagation algorithm [6, 4] in di�erent

types of coding networks including Humming codes, low-density parity check, and

turbocodes, demonstrated that accuracy of IBP is considerably better when noise

level � is low. Those results correlate very well with proposition 1 since lower

noise level means that code nodes receive stronger support for one value from their

observed children lim�!0 �(Ui)! 0; 1.

An investigation into the distribution of cycle lengths in coding networks has demon-

strated that a node has a low probability (less than 0.01) of being in a cycle of length

less than or equal to 10 [5]. Furthermore, the CPTs derived for edges with low Gaus-

sian noise � de�ne very strong correlation between parent/child node values. Thus,



observed child node will send quite strong support for the observed value to the par-

ent. Both of the above observations combined with our empirical �ndings, provide

an insight into excellent performance of IBP in coding networks. Coding networks

have good parameters for two di�erent factors inuencing convergence and accuracy

of IBP: large loop size and strong �-support.

The work presented here has two novelties. First, it provides a direct analytical

connection between loop size, root priors, and evidence support and the error in the

posterior marginals computed by IBP. We derived an exact expression for the error

value only for a special case of a node in a single-loop network without evidence.

However, the empirical evidence leads us to the same conclusions as our analytical

�ndings which indicates that the mechanics behind the performance of IBP in single-

loop network and multiple-loop networks with or without evidence is the same.

The second novelty is extending well-known loop-cutset criteria that guarantees con-

vergence and correctness of IBP in loopy networks when evidence nodes constitute

a loop-cutset to instances where loop-cutset nodes are not observed, but receive an

�-support. The proposed �-cutset criteria guarantees the convergence and certain

degree of accuracy when � is su�ciently small. The next step in our research is to

devise means of estimating the threshold � value that will guarantee the convergence

of IBP and desired degree of accuracy in posterior marginals computed by IBP.
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8 Appendix 1

As we mentioned previously, normalization is not required in computation of � and

� messages. Here, we will formally prove that posterior marginal beliefs computed

by IBP are the same whether messages sent between nodes are normalized or not.

Lemma 8.1 Let X be a node in a Bayesian network to which we apply IBP algo-

rithm. Let �
n(t)

j
(X) and �

(t)

j
(X) denote messages received by node X after iteration

t from its child Yj with and without normalization accordingly:

�
n(t)
j

(X) = �j�
(t)
j
(X)

Let �
n(t)

X
(Ui) and �

(t)

X
(Ui) denote messages received by node X during iteration t

from its parent Ui with and without normalization accordingly:

�
n(t)

X
(Ui) = �i�

(t)

X
(Ui)

Let �
(t+1)
X

(Ui) and �
(t+1)
j

(X) represent outgoing messages computed at node X from

�
(t)

j
(X) and �

(t)

X
(Ui) that were not normalized. Let �

n(t+1)

X
(Ui) and �

n(t+1)

j
(X)

represent outgoing messages computed at node X from normalized �
n(t)
j

(X) and

�
n(t)

X
(Ui). Then, following holds:

�
n(t+1)
X

(Ui) = ��
(t+1)
X

(Ui) (12)

�
n(t+1)
X

(Yj) = ��
(t+1)
X

(Yj) (13)

where � and � are constants independent from the values Ui and X. Let
BEL

n(t)(X) represent a belief in X computed during iteration t from normalized

messages. Let BEL(t)(X) represent a belief in X computed during iteration t from
messages that were not normalized. Then, after normalizing:

BEL
n(t)(X) = BEL

(t)(X) (14)

Proof.

Assume that �X(X) is always normalized. Let us compute a � message sent from

X to its parent Ui:

�
n(t+1)

X
(ui) =

X

X

�X(x)
Y

j

�
n(t)
j

(x)(
X

uk;k 6=i

P (xju)
Y

k;k 6=i

�
n(t)

X
(uk)) =



=
X

X

�X (x)
Y

j

�j�
(t)
j
(x)(
X

uk;k 6=i

P (xju)
Y

k;k 6=i

�k�
(t)

X
(uk)) =

=
Y

j

�j

Y

k 6=i

�k

X

X

�X (x)
Y

j

�
(t)
j
(x)(
X

uk;k 6=i

P (xju)
Y

k;k 6=i

�
(t)

X
(uk)) = ��

(t)

X
(ui)

where � is independent from the value ui:

� = (
Y

j

�j)(
Y

k 6=i

�k)

Now, let us compute a � message sent from X to its child Yj :

�
n(t)
j

(x) = �X (x)
Y

k 6=j

�
n(t)

k
(x)(
X

u

P (xju)
Y

i

�
n(t)

X
(ui))

= �X (x)
Y

k 6=j

�
(t)

k
�
(t)

k
(x)(
X

u

P (xju)
Y

i

�i�
(t)

X
(ui))

=
Y

k 6=j

�k

Y

i

�i�X(x)
Y

k 6=j

�
(t)

k
(x)(
X

u

P (xju)
Y

i

�
(t)

X
(ui)) = ��

(t)
j
(x)

where � is independent from the value of X:

� =
Y

k 6=j

�k

Y

i

�i

De�ne:

B
(t)(x) = �X (x)

Y

j

�
(t)
j
(x)(
X

u

P (xju)
Y

i

�
(t)
X
(ui))

B
n(t)(X) = �X (x)

Y

j

�
n(t)

j
(x)(
X

u

P (xju)
Y

i

�
n(t)

X
(ui))

=
Y

j

�j

Y

i

�i�X (x)
Y

j

�j�
(t)
j
(x)(
X

u

P (xju)
Y

i

�i�
(t)

X
(ui)) = kB

(t)(x)

where

k =
Y

j

�j

Y

i

�i

Belief in X computed during some iteration t:

BEL(t)(x) = �X (x)
Y

j

�j(x)(
X

u

P (xju)
Y

i

�X(ui)) = B(X)

where

 = (
X

X

B(X))(�1)

BEL
n(t)(x)n�X (x)

Y

j

�
n

j
(x)(
X

u

P (xju)
Y

i

�
n

X
(ui) = 

n
B
n(X)

where


n = (
X

X

B
n(X))(�1) = k

(�1)(
X

X

B(X))(�1) = k
(�1)



Then:

BEL
n(t)(x) = 

n
B
n(t)(X) = 

n
kB

(t)(x) = k
(�1)

k()(�1)BEL(t)(x) = BEL
(t)(x)

2



Theorem 8.1 (Normalization) Iterative belief propagation algorithm applied to
a Bayesian netowrk G computes the same posterior marginals at each iteration t
wheather � and � messages passed between the nodes are normalized or not.

Proof.

In lemma8.1 we proved that when incoming messages into node X di�er only within

constant factor, then outgoing message computed by node X will also di�er only

within a constant factor and computed beliefs will be the same after normalization.

Applying this consideration recursively starting at iteration 1, we can conclude that

messages sent to node X during iteration t in the algorithm where �s and �s are

never normalized are the same within constant factor as messages sent to node

X during iteration t where all or some of the �s and �s are normalized (as long

as activation order is the same). Therefore, posterior belief for node X computed

during iteration t is the same weather messages are normalized or not.

2

9 Appendix 2

Proof.[lemma 4.1]

Let X be an observed node in a Bayesian network G. Let xe be an evidence value

of X. Then, �X (xe) = 1 and �X(xi) = 0; xi 6= xe. From equation 2, it follows that

�
(
t)(xi) = 0; xi 6= xe.

From equation 1, �
(t)

Yj
(xi) = 0; xi 6= xe. After normalization,�

(t)

Yj
(xe) = 1. Thus, the

values of message �
(t)

Yj
(X) = 1 are constant and are independent from any messages

that node X receives from its neighbors.

From equation 2:

�
(

X
t)(ui) =

Y

j

�
(t�1)
j

(xe)
X

uk 6=ui

P (xeju)
Y

k

�
(t�1)

k
(uk)

= k

X

uk 6=ui

P (xeju)
Y

k

�
(t�1)

k
(uk)

where k is independent from value ui or any value �
(t�1)
j

(xe). Therefore, �
(

X
t)(ui)

does not depend on values of �
(t�1)
j

(X).

2

Proof.[theorem 4.1]

Let X be an observed node in a Bayesian network G. Let G' be network obtained

from G by creating a duplicate of node Xj for each child Yj and then removing all

edges between node X and its parents and replacing each edge (X;Yj) with (X
j
; Yj)

(Xj will also replace node X in the CPT of node Yj). Posterior beliefs computed



by IBP in G will be the same as posterior beliefs computed by IBP in G'due to

lemma 4.1.

If observed nodes form a loop-cutset in G, then Bayesian network G' obtained from

G by repeatedly applying procedure described above to each observed node X will

be singly-connected. Since IBP always converges and computes correct posterior

marginals in a singly-connected network, it will converge and compute correct pos-

terior marginals for all nodes in G'. Since posterior beliefs computed by IBP in G

will be the same as posterior beliefs computed by IBP in G' due to lemma 4.1, then

IBP will converge and compute correct posterior marginals for all nodes in G.

2

Proof.[lemma 4.2]

Let us consider a leaf node X that is not observed. Let � and � refer to the messages

sent by IBP applied to G.

Since node X is not observed and does not have any children, �(t)(X) = 1 for all

values of X. When IBP is applied to G, node X sends messages �X (ui) to each of

its parents ui:

�
(t+1)

X
(ui) = �

X

x

X

uk;k 6=i

P (xju)
Y

k 6=i

�
(t)
x
(uk) (15)

We can rewrite the equation above as:

�
(t+1)
X

(ui) = �

X

uk;k 6=i

(
X

x

P (xju))
Y

k 6=i

�
(t)
x
(uk) (16)

Since
P

x
P (xju) = 1:

�
(t+1)
X

(ui) = �

X

uk;k 6=i

Y

k 6=i

�
(t)
x
(uk) (17)

Since summation of the ui for each � message yields a constant 1 we get that all

values in the �X(ui) vector are 1.

If we remove node X from the network, belief propagation algorithm will compute

the same messages sent between remaining nodes in the network and will generate

the same posterior belief values. Node X is irrelevant to the computation of the

posterior for all remaining nodes in the network.

Applying the same argument recursively yields the desired conclusion.

2

Proof.[theorem 4.2]

Repetitively �nd unobserved leaf nodes and remove them from the network. In

the end, we will obtain a sub-network or a set of sub-networks G0 whose leaves are

observed. From Lemma 4.2, IBP applied to G is identical to IBP applied to G0 as

far as nodes in G
0 are concerned. If G0 is singly connected or its observed variables



constitute its loop cutset, IBP applied to G0 is guaranteed to converge to the correct

posterior marginals and therefore IBP applied to G computes the correct posterior

for nodes in G
0.

2

10 Appendix 3

Lemma 10.1 Let G be a single-loop Bayesian network as shown in �gure 1. Assume
all nodes are binary and there are no observed nodes in the loop. Let us de�ne:

S
k

0 (Bk) = P (BkjA = 0) =

k�1X

i=2

kY

i=2

P (BijBi1
)P (B1jA = 0) (18)

S
k

1 (Bk) = P (BkjA = 1) =

k�1X

i=2

kY

i=2

P (BijBi�1)P (B1jA = 1) (19)

Then:

diff
k

0 = S
k

0 (0)� S
k

1 (0) =

kY

i=1

(�i0 � �
i

1) (20)

diff
k

1 = S
k

0 (1)� S
k

1 (1) =

kY

i=1

(�i0 � �
i

1) (21)

Proof.

For k = 1:

S
1
0 (B1) = P (B1jA = 0)

S
1
1 (B1) = P (B1jA = 1)

S
1
0 (0)� S

1
1 (0) = P (B1 = 0jA = 0)� P (B1 = 0jA = 1) = �

1
0 � �

1
1

S
1
0 (1)� S

1
1(1) = P (B1 = 1jA = 0)� P (B1 = 1jA = 1) = (1� �

1
0)� (1� �

1
1 ) =

= �(�10 � �
1
1 )

Thus, diff10 = �
1
0 � �

1
1 and diff

1
1 = �(�10 � �

1
1).

For k = 2:

S
2
0 (B2) =

X

B1

P (B2jB1)P (B1jA = 0)

S
2
1 (B2) =

X

B1

P (B2jB1)P (B1jA = 1)

S
2
0 (B2)� S

2
1(B2) =

X

B1

P (B2jB1)(P (B1jA = 0)� P (B1jA = 1)) =

= P (B2jB1 = 0)(�10 � �
1
1 ) + P (B2jB1 = 1)((1� �

1
0) � (1� �

1
1)) =

= (�10 � �
1
1 )(P (B2jB1 = 0) � P (B2jB1 = 1))



S
2
0(0) � S

2
1 (0) = (�10 � �

1
1)(�

2
0 � �

2
1)

S
2
0(1)� S

2
1(1) = (�10 � �

1
1)((1 � �

2
0) � (1� �

2
1)) = �(�10 � �

1
1 )(�

2
0 � �

2
1)

Therefore, diff20 = (�10 � �
1
1 )(�

2
0 � �

2
1) and diff

2
1 = �(�10 � �

1
1)(�

2
0 � �

2
1 ).

Assume that claim is true for k:

diff
k

0 = S
k

0 (0)� S
k

1 (0) =

kY

i=1

(�i0 � �
i

1)

diff
k

1 = S
k

0 (1)� S
k

1 (1) = (�1)

kY

i=1

(�i0 � �
i

1)

Note that diffk0 = �diffk1 .

Let us compute diffk+10 and diff
k+1
1 :

S
k+1
0 (Bk+1)� S

k+1
1 (Bk+1) =

=

kX

i=1

k+1Y

i=2

P (BijBi�1)P (B1jA = 0)�

kX

i=1

k+1Y

i=2

P (BijBi�1)P (B1jA = 1) =

=
X

Bk

P (Bk+1jBk)S
k

0 (Bk) �
X

Bk

P (Bk+1jBk)S
k

1 (Bk) =

=
X

Bk

P (Bk+1jBk)(S
k

0 (Bk)� S
k

1 (Bk)) =

= P (Bk+1jBk = 0)(Sk0 (0) � S
k

1 (0)) + P (Bk+1jBk = 1)(Sk0 (1)� S
k

1 (1) =

= P (Bk+1jBk = 0)(Sk0 (0) � S
k

1 (0))� P (Bk+1jBk = 1)(Sk0 (0)� S
k

1 (0) =

= (P (Bk+1jBk = 0)� P (Bk+1jBk = 1))((Sk0 (0) � S
k

1 (0))) =

= (P (Bk+1jBk = 0)� P (Bk+1jBk = 1))

kY

i=1

(�i0 � �
i

1)

diff
k+1
0 = (�k+10 � �

k+1
1 )

kY

i=1

(�i0 � �
i

1) =

k+1Y

i=1

(�i0 � �
i

1) (22)

diff
k+1
1 = ((1� �

k+1
0 )� (1� �

k+1
1 ))

kY

i=1

(�i0 � �
i

1) = (�1)

k+1Y

i=1

(�i0 � �
i

1) (23)

By induction, proof is complete.

2

Theorem 10.1 Let G be a single-loop Bayesian network as shown in �gure 1.
Assume all nodes are binary and there are no observed nodes in the loop. Let
us de�ne:

P (A) = (�; 1� �)

�
i

0 = P (Bi = 0jBi�1 = 0); �i1 = P (Bi = 0jBi�1 = 1)




j

0 = P (Cj = 0jCj�1 = 0); 
j

1 = P (Cj = 0jCj�1 = 1)

Then the error � = G
�(D) � G(D) in the posterior marginals of node D computed

by Iterative Belief Propagation will be:

� = (�� �
2)((�1)Bn (�1)Cm

X

Bn;Cm

P (DjBn; Cm))

nY

i=1

(�i0 � �
i

1)

mY

j=1

(
j

0 � 
j

1) (24)

Proof.

Consider a single loop Bayesian network (�gure 1). Without evidence, all �(X) =

(1; 1). Let us make following de�nitions:

S0(Bn) = P (BnjA = 0) =
X

Bi

nY

i=2

P (BijBi�1)P (B1jA = 0) (25)

S1(Bn) = P (BnjA = 1) =
X

Bi

nY

i=2

P (BijBi�1)P (B1jA = 1) (26)

S0(Cm) = P (CmjA = 0) =
X

Cj

mY

j=2

P (CjjCj�1)P (C1jA = 0) (27)

S1(Cm) = P (CmjA = 1) =
X

Cj

mY

j=2

P (CjjCj�1)P (C1jA = 1) (28)

Let G(D) be exact posterior belief in D and G � (D) be a posterior belief computed

by IBP:

G(D) =
X

Bn;Cm

P (DjBn; Cm)
X

A

P (BnjA)P (CmjA)P (A) =

=
X

Bn;Cm

P (DjBn; Cm)
X

A

SA(Bn)SA(Cm)P (A) (29)

G � (D) =
X

Bn;Cm

P (DjBn; Cm)�Bn�Cm =

=
X

Bn ;Cm

P (DjBn; Cm)(
X

A

P (BnjA)P (A))(
X

A

P (CmjA)P (A)) =

=
X

Bn;Cm

P (DjBn; Cm)(
X

A

SA(Bn)P (A))(
X

A

SA(Cm)P (A)) (30)

Let us compute error in the posterior marginal of D:

� = G(D) �G � (D) =
X

Bn;Cm

P (DjBn; Cm)�

�(
X

A

SA(Bn)SA(Cm)P (A)� (
X

A

SA(Bn)P (A))(
X

A

SA(Cm)P (A))) =

=
X

Bn;Cm

P (DjBn; Cm)(�S0(Bn)S0(Cm)+(1��)S1(Bn)S1(Cm)��
2
S0(Bn)S0(Cm)+



+�(1� �)S0(Bn)S1(Cm) + �(1� �)S1(Bn)S0(Cm))� (1� �)2S1(Bn)S1(Cm)) =

=
X

Bn;Cm

P (DjBn; Cm)(�S0(Bn)S0(Cm) + S1(Bn)S1(Cm) � �S1(Bn)S1(Cm)�

��2S0(Bn)S0(Cm) + �S0(Bn)S1(Cm) � �
2
S0(Bn)S1(Cm) + �S1(Bn)S0(Cm)�

��2S1(Bn)S0(Cm)� S1(Bn)S1(Cm) + 2�S1(Bn)S1(Cm) � �
2
S1(Bn)S1(Cm)) =

=
X

Bn ;Cm

P (DjBn; Cm)�

�(�S0(Bn)S0(Cm) � �
2
S0(Bn)S0(Cm)� �S0(Bn)S1(Cm) + �

2
S0(Bn)S1(Cm)�

��S1(Bn)S0(Cm) + �
2
S1(Bn)S0(Cm) + �S1(Bn)S1(Cm) � �

2
S1(Bn)S1(Cm)) =

=
X

Bn;Cm

P (DjBn; Cm)((� � �
2)S0(Bn)S0(Cm)� (�� �

2)S0(Bn)S1(Cm)�

�(� � �
2)S1(Bn)S0(Cm) + (�� �

2)S1(Bn)S1(Cm)) =

= (�� �
2)
X

Bn;Cm

P (DjBn; Cm)�

�(S0(Bn)S0(Cm)� S0(Bn)S1(Cm)� S1(Bn)S0(Cm) + S1(Bn)S1(Cm)) =

= (� � �
2)
X

Bn;Cm

P (DjBn; Cm)(S0(Bn)� S1(Bn))(S0(Cm)� S1(Cm)) (31)

Using the result of lemma 10.1, we can rewrite the expression for the error:

� = (�� �
2)
X

Bn ;Cm

P (DjBn; Cm)(�1)
Bn

nY

i=1

(�i0 � �
i

1)(�1)
Cm

mY

j=1

(
j

0 � 
j

1)

= (� � �
2)((�1)Bn (�1)Cm

X

Bn;Cm

P (DjBn; Cm))

nY

i=1

(�i0 � �
i

1)

mY

j=1

(
j

0 � 
j

1) (32)

2


