Searching, Sorting, and Lower Bounds

Searching

- Sequential search
- Binary search
- Interpolation search

Sorting and Lower Bounds

- Insertion sorts
- Lower bounds on sorting
- Heapsort
- Distribution sorts
- Lower bounds on selection
Sequential Search of an Ordered List

Problem definition

Input: x, and $a_1 < \ldots < a_n$

a_0 defined to be $-\infty$ and a_{n+1} defined to be $+\infty$

Output: i such that $x = a_i$, 0 if no such i exists

Sequential Search

\[
i \leftarrow 1
\]
\[
\text{while } (i < n) \text{ and } (x > a_i) \text{ do } i \leftarrow i + 1
\]
\[
\text{if } x \neq a_i \text{ then } i \leftarrow 0
\]

\[
\text{return } i
\]

- Where are *element comparisons* performed?

- What is the fewest number of element comp’s when $n = 3$? 2

 What is the worst-case number of element comp’s when $n = 3$? 3

 What is the worst-case number of element comp’s for general n?
Sequential search of an Ordered list

Average-Case Analysis

\[i \leftarrow 1 \]
\[\text{while } (i < n \text{ and } (x > a_i)) \text{ do } i \leftarrow i + 1 \]
\[\text{if } x \neq a_i \text{ then } i \leftarrow 0 \]
\[\text{return } i \]

- Case 1: \(x \) is in the list
 - AVG = \(\sum_{i=1}^{n} \text{Prob}(x = a_i) \times (\# \text{ of comp's to find } x) \)

 - Assume \(x \) equally likely to be any of the \(a \)'s
 - so \(\text{Prob}(x = a_i) = \frac{1}{n} \)

 - if \(x = a_i \), then the \(\# \text{ of comparisons to find } x \) is
 \(i + 1 \) (when \(i < n \)) and \(n \) (when \(i = n \))

 - AVG = \(\frac{1}{n} \sum_{i=1}^{n-1} (i + 1) + \frac{1}{n} n \)
 \[= \frac{1}{n} \left(\frac{n(n+1)}{2} - 1 \right) + 1 \]
 \[= \frac{n}{2} + \frac{3}{2} - \frac{1}{n} \]

©2016 D. S. Hirschberg
Sequential search of an Ordered list

Average-Case Analysis

\[i \leftarrow 1 \]
while \((i < n)\) and \((x > a_i)\) do \(i \leftarrow i + 1\)
if \(x \neq a_i\) then \(i \leftarrow 0\)
return \(i\)

- Case 2: \(x\) is not in the list
 \[\text{AVG} = \sum_{i=1}^{n+1} \text{Prob}(a_{i-1} < x < a_i) \times (\# \text{ of comp's to find } x) \]
 Assume \(x\) equally likely to be in each of the \(n + 1\) intervals
 so \(\text{Prob}(a_{i-1} < x < a_i) = \frac{1}{n+1}\)
 if \(a_{i-1} < x < a_i\), then the \# of comp's to find \(x\) is
 \(i + 1\) (when \(i < n\)) and \(n\) (when \(i \geq n\))
 \[\text{AVG} = \frac{1}{n+1} \sum_{i=1}^{n-1} (i + 1) + \frac{1}{n+1} \sum_{i=n}^{n+1} (n) \]
 \[= \frac{1}{n+1} \left(\frac{n(n+1)}{2} - 1 \right) + \frac{2n}{n+1} \]
 \[= \frac{n}{2} + 2 - \frac{3}{n+1} \]
Sequential search of an Ordered list

Average-Case Analysis

\[
i ← 1
\]

\[
\text{while } (i < n) \text{ and } (x > a_i) \text{ do } i ← i + 1
\]

\[
\text{if } x ≠ a_i \text{ then } i ← 0
\]

\[
\text{return } i
\]

- Case 3: 50% case 1 and 50% case 2
 - \(\text{AVG} = \frac{1}{2}\left(\frac{n}{2} + \frac{3}{2} - \frac{1}{n}\right) + \frac{1}{2}\left(\frac{n}{2} + 2 - \frac{3}{n+1}\right) \)
 - \(= \frac{n}{2} + \frac{7}{4} - O\left(\frac{1}{n}\right) \)
Binary Search of an Ordered List

Problem definition

Input: x, and $a_1 < \ldots < a_n$

x_0 defined to be $-\infty$ and a_{n+1} defined to be $+\infty$

Output: i such that $x = a_i$, 0 if no such i exists

Binary Search

$i \leftarrow 1$

$j \leftarrow n$

while $i < j$ do

$m \leftarrow \left\lfloor \frac{i+j}{2} \right\rfloor$

if $x > a_m$ then

$i \leftarrow m + 1$

else

$j \leftarrow m$

if $x \neq a_i$ then

$i \leftarrow 0$

return i

Worst-Case Analysis

◮ $C(1) = 1$
◮ $C(2) = 2$
◮ $C(n) = 1 + C(\left\lceil \frac{n}{2} \right\rceil)$

$= 2 + C(\left\lceil \frac{n}{2^2} \right\rceil)$

\ldots

$= \lceil \lg n \rceil + C(1)$

$= \lceil \lg n \rceil + 1$
Binary Search of an Ordered List

Average-Case Analysis
Let \(n = 2^k + r, \ 0 \leq r < 2^k \) \ ((r < n/2)

Example: \(n = 2^3 + 2 \)

- Case 1: \(x \) is in the list (equal distribution)
 - Always do \(k \) iterations; sometimes \((\frac{2r}{n} \) of the time) one more
 and one final check for equality
 - \(\bar{C} = k + \frac{2r}{n} + 1 \), where \(k = \lfloor \lg n \rfloor \)
- Case 2: \(x \) is not in the list \((n + 1 \) intervals equally likely)
 - Each interval goes with the succeeding list member
 (The last interval goes with the last list member)
 The last list member never requires an extra iteration
 - \(\bar{C} = k + \frac{2r}{n+1} + 1 \), where \(k = \lfloor \lg n \rfloor \)
Interpolation Search

• Assumption: values \(\{a_i\} \) are distributed relatively uniformly

Example: To look up `cat` in a dictionary, expect to find `cat` near beginning

\[
i \leftarrow 1; \quad j \leftarrow n
\]

\[
L0 \leftarrow a_i; \quad HI \leftarrow a_j
\]

if \(x < L0 \) then return 0

if \(x \geq HI \) then \(i \leftarrow j \) \hspace{1cm} // \text{loop invariant: } x \geq L0 \text{ and } x < HI

while \(i < j \) do

\[
m \leftarrow \left\lfloor i + (j - i) \frac{x - L0}{HI - L0} \right\rfloor
\]

// loop invariant: \(m \geq i \text{ and } m < j \)

\[
MID \leftarrow a_{m+1}
\]

if \(x < MID \) then

\[
j \leftarrow m; \quad HI \leftarrow MID
\]

else

\[
i \leftarrow m + 1; \quad L0 \leftarrow MID
\]

if \(x \neq a_i \) then \(i \leftarrow 0 \)

return \(i \)

• Average case complexity \(O(\lg \lg n) \)

• Worst case complexity \(O(n) \)

Example: 1, 2, 3, 4, 5, \ldots, 999, 1000, 10^9

Look for 1000
Straight Insertion Sort

for $j \leftarrow 2$ to n do
 $i \leftarrow j - 1$
 $K \leftarrow K_j$
 while ($i \geq 1$) and ($K < K_i$) do
 $K_{i+1} \leftarrow K_i$
 $i \leftarrow i - 1$
 $K_{i+1} \leftarrow K$

- $C =$ WC # of comp’s = $\sum_{j=2}^{n}(j - 1) = \frac{n(n-1)}{2} = \theta(n^2)$
- $\bar{C} =$ avg # of comp’s $\approx \frac{1}{2}C$
- $M =$ # of record moves = $\theta(n^2)$
- $T =$ WC total time = $\theta(n^2)$
- $S =$ space other than I/O = $\theta(1)$

Binary Insertion Sort Use binary search to find correct place

- $O(\lg j)$ comp’s for j-th insertion, but still $\theta(j)$ record moves
- $C, \bar{C} \in \theta(n \lg n), M, T \in \theta(n^2)$
- can use linked lists to avoid $O(j)$ record moves
 but then cannot use binary search!
Shellsort [Knuth Vol 3, pp.84-95; Baase pp.197-200]

- δ-sort: Divide input records into δ tables, and sort each table by straight insertion

\[
\text{for table } \leftarrow 1 \text{ to } \delta \text{ do} \\
\quad j \leftarrow \text{table } + \delta \\
\quad \text{while } j \leq n \text{ do} \\
\quad \quad i \leftarrow j - \delta \\
\quad \quad K \leftarrow K_j \\
\quad \quad \text{while } (i \geq 1) \text{ and } (K < K_i) \text{ do} \\
\quad \quad \quad K_{i+\delta} \leftarrow K_i \\
\quad \quad \quad i \leftarrow i - \delta \\
\quad \quad K_{i+\delta} \leftarrow K \\
\quad j \leftarrow j + \delta
\]

- Do δ-sort for a decreasing sequence of δ-values, with last value $= 1$

 If $\delta = \{2^i - 1\}$ then $T = \theta(n^{3/2})$

 Example: for $n = 40$, $\{\delta\} = \{31,15,7,3,1\}$

 If $\delta = \{2^p3^q\}$ then $T = \theta(n \lg^2 n)$

 Example: for $n = 40$, $\{\delta\} = \{36,32,27,24,18,16,12,9,8,6,4,3,2,1\}$
Lower Bounds for Sorting – Inversions

An inversion within a sequence of values is a pair of values that are "out of order" relative to each other.

Example: for sequence (3,14,1,5,9), the pair (3,1) is an inversion.

Theorem. Any sorting algorithm, that removes at most one inversion after each step, requires at least \(\frac{n(n-1)}{2}\) steps in the worst case and at least \(\frac{n(n-1)}{4}\) steps on average.

Proof.

- Consider the \(n!\) sequences containing integers \(I = \{1, 2, \ldots, n\}\).
- Define reverse of \(A = (a_1, a_2, \ldots, a_n)\) to be \(A^R = (a_n, a_{n-1}, \ldots, a_1)\).
 Note: \(A\) is the reverse of \(A^R\) and, when \(n > 1\), no sequence is its own reverse.
- So the \(n!\) sequences can be partitioned into \(\frac{n!}{2}\) sequence pairs, each pair consisting of a sequence and its reverse.
- There are \(\frac{n(n-1)}{2}\) value-pairs \((i, j)\) such that \(i > j\) and \(i, j \in I\).
 For each such value-pair \((i, j)\) and for each sequence-pair \(\{A, A^R\}\), \((i, j)\) will be an inversion in exactly one of \(\{A, A^R\}\).
- So, total # of inversions among both \(A\) and \(A^R\) is exactly \(\frac{n(n-1)}{2}\) and the average number of inversions is exactly \(\frac{n(n-1)}{4}\).
Theorem. During a sorting process, the sum of the distances travelled by the records of a random permutation is \((n^2 - 1)/3\).

- Therefore, any sorting algorithm which moves records only a constant number of positions in one step requires \(\Omega(n^2)\) steps.

Proof.

- Let \(A = (a_1, a_2, ..., a_n)\) be a random permutation of \((1, 2, ..., n)\).
- Then \(|a_j - j|\) is the distance travelled by record \(j\) during sorting.
- \(a_j\) can equally likely be any of \(\{1, 2, ..., n\}\), so the expected value, \(E\), of \(|a_j - j|\) is:
 \[
 E = \frac{1}{n}(|1 - j| + |2 - j| + \ldots + |j - j| + \ldots + |n - j|)
 \]
 \[
 = \frac{1}{n}(\sum_{i=1}^{j-1} i + \sum_{i=1}^{n-j} i)
 = \frac{1}{n}\left(\frac{(j-1)j}{2} + \frac{(n-j)(n-j+1)}{2}\right)
 \]
- The sum, \(S\), of the distances travelled by the records during sorting is:
 \[
 S = \sum_{j=1}^{n} |a_j - j| = \frac{1}{n}\sum_{j=1}^{n}\left(\frac{(j-1)j}{2} + \frac{(n-j)(n-j+1)}{2}\right)
 \]
 (Note that the terms are the same for complementary values of \(j\))
 \[
 = \frac{1}{n}\sum_{j=1}^{n}(j - 1)j = \frac{1}{n}\sum_{j=1}^{n}(j^2 - j)
 \]
 \[
 = \frac{1}{n}\left(n(n+1)(2n+1) - n(n+1)\right) = \frac{n^2-1}{3}
 \]
Theorem. Any algorithm for sorting \(n \) elements by comparisons requires \(\Omega(n \log n) \) comparisons.

Proof.
- Any such algorithm, \(A \), can be modeled by a decision tree, \(T \).
- \(T \) has at least \(n! \) leaves, because the result of sorting \(n \) elements can be any of the \(n! \) permutations of the elements.
- An easy proof by induction (HW??) shows that a binary tree (in which each non-leaf has two sons) of height \(h \) has \(\leq 2^h \) leaves.

 Therefore, height(\(T \)) \(\geq \lg(n!) \).

- Since \(n! \geq n(n-1)\ldots\left\lceil \frac{n}{2} \right\rceil \geq \left(\frac{n}{2} \right)^{\frac{n}{2}} \)

 Therefore, \(\lg(n!) \geq \frac{n}{2} \lg \left(\frac{n}{2} \right) = 0.5n \lg n - 0.5n \), which is \(\Omega(n \log n) \).

- Note: Stirling’s approximation gives \(\lg(n!) \approx n \lg n - 1.44n \).
Heapsort

- A file \((K_1, \ldots, K_n)\) is a maxheap if,
 for \(1 < j \leq n\), \(K_{\lfloor j/2 \rfloor} \geq K_j\) (the heap criteria)
- Therefore, \(K_1 = \max\{K_i\}\)
- A heap can be thought of as the level-order traversal of an almost complete b.t. where each father has value \(\geq\) that of his sons

Example:

```
            16
           / \   \
          11  9
         /   / \
        10 5 6 8
```

corresponds to: \((16,11,9,10,5,6,8,1,2,4)\)

Heapsort algorithm:

1. Transform arbitrary input file to become a maxheap
 (biggest \# now first)
2. Exchange the first and last cells (biggest \# now in correct place)
3. Fix up rest of the file to become a (smaller) heap and iterate
Heapsort – Heapify and Buildheap

Transform Input File to Become a Maxheap

- Initially, nodes at the lowest height (0) satisfy heap criteria
- Iterate rearranging nodes so each node X at next height, h, also satisfies heap criteria (X’s value \geq that of X’s sons)
 - If it is, then subtree headed by X satisfies the heap criteria
 - If not, exchange X with larger of X’s sons
 - If this messes up subtree (of height $h - 1$) then fix subtree

HEAPIFY(i, n) assumes $i + 1, \ldots, n$ are okay; makes i, \ldots, n okay
\[
j \leftarrow i \\
\text{while } j \leq n/2 \text{ do} \\
\text{the sons of } j \text{ are } 2j \text{ and } 2j + 1 \quad // \text{only one son if } n = 2j \\
k \leftarrow \text{son of } j \text{ with larger value} \\
\text{if } A[k] > A[j] \text{ then} \\
\quad A[k] \leftrightarrow A[j] \\
\quad j \leftarrow k \\
\text{else} \\
\quad j \leftarrow n
\]

BUILDHEAP(n) transforms input into heap
\[
\text{for } i \leftarrow n \text{ downto } 1 \text{ do} \\
\quad \text{HEAPIFY}(i, n)
\]
Heapsort – Heapify and Buildheap

Time Analysis:

- For heap of height h:

 HEAPIFY takes $T_H(h) \leq T_H(h - 1) + c$, so $T_H(h) = O(h)$

- BUILDHEAP calls HEAPIFY once for each node

- $N_h = \# \text{ nodes of height } h \leq \lceil \frac{n}{2^h} \rceil \leq 2\frac{n}{2^h}$

- So,

 $T_B(n) \leq \sum_{h=1}^{\lfloor \lg n \rfloor} T_H(h)N_h \leq \sum_{h=1}^{\lfloor \lg n \rfloor} (c \cdot h)2 \frac{n}{2^h}$

 $< 2cn \sum_{h=1}^{\infty} \frac{h}{2^h}$

 $= O(n)$
Heapsort

Heapsort Algorithm:

\[
\text{HEAPSORT}(n)
\]

\begin{align*}
\text{BUILDHEAP}(n) \\
\text{for size} & \leftarrow n \text{ downto } 2 \text{ do} \\
& \quad \text{exchange } A[1] \leftrightarrow A[\text{size}] \\
& \quad \text{HEAPIFY}(1, \text{size} - 1)
\end{align*}

Time Analysis:

- Time for HEAPIFY(1, size) is \(O(\lg \text{ size}) \leq O(\lg n)\)
- Time for Heapsort is \(O(n \lg n)\)

\[
\begin{align*}
C & = \theta(n \lg n) \\
M & = \theta(n \lg n) \\
S & = \theta(1) \\
T & = \theta(n \lg n)
\end{align*}
\]
Distribution Sorts – Bucket Sort

Not based on comparisons between keys, but on their representation.

Bucket Sort assumes key values are in known range $[1 : m]$

```
for j ← 1 to m:   L_j ← ∅
for i ← 1 to n:   append K_i to end of L_{K_i}
L ← ∅
for j ← 1 to m:   concatenate L_j to end of L
```

- $T = \theta(m + n)$
- $S = \theta(m + n)$

Example: $2_a, 7, 1, 8, 2_b$

1 → 1
2 → $2_a → 2_b$ (stable, see next slide)
3 →
4 →
5 →
6 →
7 → 7
8 → 8
9 →
Distribution Sorts – Bucket Sort \(^{(8)}\)

Not based on comparisons between keys, but on their representation

Bucket Sort assumes key values are in known range \([1 : m]\)

- \(T = \theta(m + n)\)
- \(S = \theta(m + n)\)

A sorting algorithm is **stable** if equal-valued keys retain their order after being sorted

- If input record \(R_i\) has key value \(K_i\) and \(R_j\) has key \(K_j\), with \(i < j\) and \(K_i = K_j\)
- and, after sorting, record \(R_i\) is in location \(i'\) and \(R_j\) in location \(j'\)
- then it is guaranteed that \(i' < j'\)
Not based on comparisons between keys, but on their representation

Bucket Sort assumes key values are in known range \([1 : m]\)

- \(T = \theta(m + n)\)
- \(S = \theta(m + n)\)

- A sorting algorithm is **stable** if equal-valued keys retain their order after being sorted
 - If input record \(R_i\) has key value \(K_i\) and \(R_j\) has key \(K_j\), with \(i < j\) and \(K_i = K_j\)
 - and, after sorting, record \(R_i\) is in location \(i'\) and \(R_j\) in location \(j'\)
 - then it is guaranteed that \(i' < j'\)

- Bucket Sort is a stable sorting algorithm (if implemented carefully)

- Maybe not very useful – **Example**: phone numbers
 - 100 students, 10-digit phone numbers \(\Rightarrow 10^{10} + 100 \approx 10^{10}\)
Distribution Sorts – Lexicographic (Radix) Sort

Approach

- Let keys be K_1, \ldots, K_n where $K_i = d_{i,1}, \ldots, d_{i,r}$ expressed in base M
- Do a bucket sort on the least significant digit of the keys keeping those with equal digits in the same order
- Iterate on the next significant digit, etc.

Implementation

\[
\begin{align*}
Q &\leftarrow \Lambda \\
\text{for } j &\leftarrow 0 \text{ to } M - 1 \text{ do: } \quad Q_j \leftarrow \Lambda \\
Q &\leftarrow K_1, \ldots, K_n \\
\text{for } t &\leftarrow r \text{ downto } 1 \text{ do} \\
&\quad \text{while } Q \neq \Lambda \text{ do // distribution phase} \\
&\quad \quad K_i \leftarrow Q \\
&\quad \quad Q_{d_{i,t}} \leftarrow K_i \\
&\quad \quad \text{for } j \leftarrow 0 \text{ to } M - 1 \text{ do // collecting phase} \\
&\quad \quad Q \leftarrow Q \{ Q_j \} \\
&\quad \quad Q_j \leftarrow \Lambda \\
\end{align*}
\]

- $T = \theta(r(M + n))$
- $S = \theta(M + n)$
- **Example:** phone numbers
 - 100 students, 10-digit phone numbers $\Rightarrow 10(10 + 100) \approx 10^3$
Radix Sort Example

- Keys: 3, 14, 1, 5, 9, 2, 6
- Expressed in base 3
- Collect buckets in order

| Bucket 0: | 001, 002, 010, 012, 020 |
| Bucket 1: | 100, 112 |
| Bucket 2: |
Bounds for Selection – MaxMin

Upper bound for selecting MaxMin
Algorithm to determine Max and Min of \(\{x_1, \ldots, x_n\} \)
- find Max (takes \(n - 1 \) comp’s)
- then find Min of rest (\(n - 2 \) comp’s)
- so \(2n - 3 \) is an upper bound

Lower bound for selecting MaxMin use an adversary argument
- Assume \(n \) distinct values, then \(n(n - 1) \) possible answers
- Outcome of each comparison by an algorithm
 \(\Rightarrow \) fewer answers remain possible
- Adversary gives outcomes to comparisons, consistent with previous outcomes, trying to delay resolution of the problem
- Analyze the effects
Bounds for Selection – MaxMin

Lower bound for selecting MaxMin adversary argument

- Need \(n-1 \) keys to **lose** at least one comparison (the \(n \)th key is Max)
- Similarly, need \(n-1 \) keys to **win** at least one comparison
- Each first Loss and each first Win is a **Unit** of information
 so we need \(2n-2 \) Units
- The adversary gives outcomes that minimize Units given

Example: compare \(x : y \), if \(x \) prev lost a comp then ok to let \(x \) lose

- **Type-A comp** (2 keys never in any prev comp) gives 2 Units
- **Type-B comp** (any other comp) can be limited to give \(\leq 1 \) Unit
- Making \(a \) Type-A comps and \(b \) Type-B comps \(\Rightarrow \) get \(\leq 2a + b \) Units
- Fastest way to get Units is to use Type-A comps
- Impossible to use more than \(X = \left\lfloor \frac{n}{2} \right\rfloor \) Type-A comps, (why??)
- To get \(2n-2 \) Units,
 best to use \(X \) Type-A comps and \(2n-2-2X \) Type-B comps
- So, total number of comps is
 \[
 C \geq (X) + (2n-2-2X) = 2n-2 - X = 2n-2 - \left\lfloor \frac{n}{2} \right\rfloor
 \]
- Therefore lower bound is \(LB = 2n-2 - \left\lfloor \frac{n}{2} \right\rfloor \geq \frac{3n}{2} - 2 \)
- \(UB = 2n-3 \), so there is a gap between upper and lower bounds
 (gap will be addressed later)
Upper bounds for selecting Second Largest

- **Simple algorithm:**
 - find Max (takes \(n - 1\) comp’s)
 - then find Max of rest (\(n - 2\) comp’s)
 - so \(2n - 3\) is an upper bound

- **Tournament algorithm:**
 - pair off all keys, iterate pairing winners of previous rounds
 - Max is determined using \(n - 1\) comparisons, why??
 - \(\leq \lceil \lg n \rceil\) keys lost to Max (one per level)
 - any other key, \(k\), lost to some key (not Max), so \(k\) is not Second
 - find max of \(\lceil \lg n \rceil\) keys using \(\lceil \lg n \rceil - 1\) comp’s
 - total of \(\leq n + \lceil \lg n \rceil - 2\) comp’s (a better upper bound)
Lower bound for selecting Second Largest

- Assume distinct values, use adversary argument
- Define the adversary as follows:
 - Give all keys a weight (fictitious value used by adversary)
 - Initially, for all keys k, $wt(k) \leftarrow 1$
 - When comparing keys $x : y$
 - if $wt(x) > wt(y)$ or $wt(x) = wt(y) > 0$
 - then
 - $wt(x) \leftarrow wt(x) + wt(y)$
 - $wt(y) \leftarrow 0$
 - return outcome $x > y$
 - otherwise give answer consistent with previous replies

- To find second largest, must determine largest — why??
 So at least $n - 1$ comparisons resulting in new losers
- Will prove $\exists \geq \lceil \lg n \rceil$ distinct keys that lose directly against Max
 Bounds for Selection – Second Largest

- Proving $\exists \geq \lceil \lg n \rceil$ distinct keys that lose directly against Max
 1. $\text{wt}(x) = 0$ iff x has lost a comparison
 2. $\text{wt}(x) \neq 0 \implies x$ could still be Max
 3. $\sum_{1}^{n} \text{wt}(i) = n$ (total weight is preserved)
 4. When finished, only one key x^* has non-zero weight (else ≥ 2 possible answers) and so x^* is Max
 5. x^* has directly won against $\geq \lceil \lg n \rceil$ distinct keys
 - $\text{wt}(x^*) = n$ when algorithm finished
 - Let $W_k = \text{wt}(x^*)$ just after kth comp of x^* against a prev undefeated key
 - $W_{k-1} \geq \text{wt}(\text{that } k\text{th key})$
 - $W_k = W_{k-1} + \text{wt}(\text{that } k\text{th key})$
 $\leq 2W_{k-1}$
 - $n = W_k \leq 2W_{k-1} \leq 2^2W_{k-2} \leq \ldots \leq 2^kW_0 = 2^k$
 - So, $k \geq \lg n$, but k is integer and so $k \geq \lceil \lg n \rceil$

- So $\exists(n - 1)$ distinct losers and $\exists \lceil \lg n \rceil$ keys lost to Max
- All but one of those $\lceil \lg n \rceil$ keys must lose again
- Gives lower bound $n - 1 + \lceil \lg n \rceil - 1 = n + \lceil \lg n \rceil - 2$
Bounds for Selection – Median

[Blum, Floyd, Pratt, Rivest, Tarjan]

Lower bound for selecting Median

- Let X^* be the median ($\lceil \frac{n}{2} \rceil$-th smallest value)
- To know that X^* is the median, must have $n - 1$ crucial comp’s that ensure, for each x, it is known which of $x < X^*$ or $X^* < x$ holds
- Equivalently, must have a DAG of comp’s (where edge $x \rightarrow y$ means that a comp determined that $x < y$) with a path $x \sim X^*$ for elements for which can conclude $x < X^*$ and a path $X^* \sim x$ for elements for which can conclude $X^* < x$
- All other comp’s (not used in this crucial DAG) are non-crucial
Bounds for Selection – Median

- Definition of the adversary
 - Partition elements into categories Small, Medium, and Large
 - Initially, all elements are Medium
 - When comparing $a : b$
 - a, b in different categories ⇒ answer accordingly (comparison might be crucial)
 - a, b both in Small or both in Large ⇒ answer consistently (comparison might be crucial)
 - If a, b both in Medium and are the last 2 in Medium ⇒ give answer $a < b$ and place a in Small and b in Medium (comparison might be crucial)
 - If a, b both in Medium and at least 3 in Medium ⇒ answer that $a < b$ and place a in Small and b in Large (comparison is non-crucial)
- n odd ⇒ there are $\geq \frac{n-1}{2}$ non-crucial comp’s
- n even ⇒ there are $\geq \frac{n-2}{2}$ non-crucial comp’s
Bounds for Selection – Median

- Definition of the adversary
 - Partition elements into categories Small, Medium, and Large
 - Initially, all elements are Medium
 - When comparing $a : b$
 - a, b in different categories ⇒ answer accordingly
 (comparison might be crucial)
 - a, b both in Small or both in Large ⇒ answer consistently
 (comparison might be crucial)
 - If a, b both in Medium and are the last 2 in Medium
 ⇒ give answer $a < b$ and place a in Small and b in Medium
 (comparison might be crucial)
 - If a, b both in Medium and at least 3 in Medium
 ⇒ answer that $a < b$ and place a in Small and b in Large
 (comparison is non-crucial)
- n odd ⇒ there are $\geq \frac{n-1}{2}$ non-crucial comp’s
- n even ⇒ there are $\geq \frac{n-2}{2}$ non-crucial comp’s
- Thus, always $\geq \lfloor \frac{n-1}{2} \rfloor$ non-crucial comp’s
- Adding the $n - 1$ crucial comp’s
 ⇒ $LB = n - 1 + \lfloor \frac{n-1}{2} \rfloor$ comp’s