SEARCHING A DICTIONARY
WITHIN TIGHTER TIME BOUNDS

D. S. Hirschberg

January 1979

Abstract:
An algorithm is given that determines whether a word is a member of a lexicographically ordered dictionary. This algorithm, an extension of both linear and binary search, has worst case time bounds that, depending upon the length of the words involved, may be less than half that of binary search.

Key Words: dictionary, searching, binary search, vector, complexity

CR Categories: 3.74, 5.25

Research supported by NSF grant MCS-76-07683. Author's current address: Department of Electrical Engineering, Rice University, Houston Texas 77001.
We consider the problem of searching a dictionary, each word consisting of at most \(k \) letters. It is assumed that the alphabet is ordered and that the dictionary is in lexicographic order.

Two letters can be compared (to determine which has lower rank in the alphabet) in unit time. Our goal is to exhibit an algorithm for searching the dictionary that has minimal worst case time complexity.

We denote the ordered set of words (k-vectors) by \(\mathbb{K} \) and refer to the \(i \)-th word (vector) by \(\mathbf{v}_i \). Let \(|\mathbb{K}| = n-1\). We wish to determine if the vector \(\mathbf{v}_i \) is in \(\mathbb{K} \).

Let \(\mathbf{v}_0 \) be a vector lexicographically less than \(\mathbf{v}_1 \) whose first \(x \) components were found to equal the corresponding components of \(\mathbf{v}_1 \) and, analogously, \(\mathbf{v}_n \) has had its first \(y \) components found equal to the corresponding components in \(\mathbf{v}_1 \). \(x \) and \(y \) are 0 initially.

Note that for all \(1 \leq i \leq n \) we need not compare \(a_j \) for \(j = \min(x,y) \) since the result must be "equal" from the results of previous comparisons and the fact that \(\mathbf{v}_0 \) is in lexicographic order.

Let \(T(x,y,n) \) be the minimum number of comparisons required, in the worst case, to search the \(n-1 \) vectors with \(x \) and \(y \) as defined above, using the following "quicksearch" algorithm.
function QUICKSEARCH(low, high, x, y)
 n <-- high - low
 if n ≥ n_0 (defined below) then use linear search [33]:
 j <-- low
 i <-- x + 1
 while j < high AND i ≤ k
 do compare a_i : b_i
 if = then i <-- i + 1
 else if > then j <-- j + 1
 else return 0
 od
 if j = high then return 0
 if a_i = b_i for all i ∈ {y+1, ..., k-1}
 then return j
 else return 0
 else evaluate p (as described below) and:
 i <-- min(x, y) + 1
 while i < k AND a_i = b_i do i <-- i + 1
 compare a_i : b_i
 if = then return p
 else if < then return QUICKSEARCH(low, p, x, i-1)
 else return QUICKSEARCH(p+1, high, i-1, y)
 end.

 If linear search is used, T(x, y, n) = 2k + n-3 - x - y.
 Otherwise, z = min(x, y) and
 if A = p then T(x, y, n) = k - z
 if A < p then T(x, y, n) = i - z + T(x, i-1, p)
 if i > 3 then T(x, y, n) = i - z + T(i-1, y, n-p).
 T(x, y, n) will be bound by the maximum of these cases.

 Note that binary search is quicksearch with p = n/2 (and
 n_0 = 1) and that modified binary search (described in [40]) is
quicksearch with \(p = n/4 \).

Assume that \(T(x, y, n) = C(n) - x - y \). Thus,

\[
C(n) \leq \max(C(p) + 1 + y - z, C(n-p) + 1 + x - z)
\]

To minimize the maximum (employing the technique of balancing [1]), we should endeavor to cause both possibilities to have equal complexity. Assuming \(C(n) = (k/\log k) \log n^* \) [this assumption will be borne out], if \(y \geq x \) we should choose \(p = n/(1 + 2(y-x)/(\log k)/k) \). However, since \(T(x, y, n) \) with \(k \) implicit is the same as \(T(0, y-x, n) \) with \(x-x \) implicit, we suggest choosing \(p = n/(1 + 2(y-x)\log(k-x)/(k-x)) \). A similar result will hold if \(y < x \). In particular, if \(y = x \) then \(p = n/2 \), i.e., binary search.

What is a good cutoff value \(n_0 \)? When should we use linear search? The worst case of quicksearch is better than that of binary search. Using binary search and then linear search results in

\[
C(n) \leq C(n/2) + 1 + y - x \leq C(n/2) + k
\]

\[
\leq 3k - 3 + n/2
\]

whereas using linear search directly results in

\[
C(n) \leq 2k + n - 3.
\]

Thus, linear search should not be used if \(n > 2k \). A more detailed analysis would indicate a tighter cutoff. Empirical results indicate that \(n_0 = 1.5k \) is a good choice.

Unless specified otherwise, logarithms are base 2.
Using values of $k=6$ and 20, we have obtained results indicating savings of over 25 and 50 percent respectively on the number of comparisons required in the worst case as compared to binary search.

We also ran simulation experiments to compare these algorithms for "average case" behavior. Assuming all strings in the dictionary have equal probability of being queried, the following percentage savings were observed for average observed case and worst observed case number of comparisons (obtained by using quicksearch as opposed to binary search), for a dictionary containing the sequence of all binary strings of length 14, 53.1 and 26.5; for the sequence of all quaternary strings of length 7, 46.1 and 27.4; for the sequence of every 4th string in the set of quaternary strings of length 10, 45.9 and 25.9.

In running these experiments, rather than compute complicated logarithms and exponentials, we used the approximation $p = \text{low} + \frac{n}{1 + \Delta}$, where \(\Delta = \max(1.4, y-x) \) when \(y \geq x \) and \(\Delta = 1 \) when \(y = x \). When \(y < x \), \(p = \text{high} - \frac{n}{1 + \Delta} \) using an analogous computation of \(\Delta \).

The complexity of this algorithm is \(O(k \log n) \), as can be verified by substitution in the recurrence equations, and compares favorably to the \(k \log n \) comparisons required by
binary search \cite{2}. Detailed analysis to obtain the exact coefficients is left as an open problem.
References

