

CS 184 Course Web Server

- All course information will be posted on line
- URL:
 - http://www.ics.uci.edu/~dbclass/ics184/index.html

Class Notes available before class on the Web.

Course Info

TAs

- Koushik Niyogi
 - Office and office Hours:
 - Monday and Wednesday : 2:00-3:00 PM
- Rajat Mathur
 - Office and office Hours: TBA

Instructor

- Office Hours:
- Tue 11-12 pm
- (send email)
- Email: sharad@ics.uci.edu
- to contact me urgently, send email and mark subject line as CS 184 URGENT

Desiderata

- Course Text: (either of following two books will suffice)
 - A First Course in Database Systems, Ullman and Widom
 - we will cover the entire book
 - Database Systems Concepts, Silberschatz, Korth, and Sudarshan
 - we will cover chapters 1-9
- Software:
 - Course will involve significant programming.
 - You will get exposure to database programming in DB2

Desiderata (cont.)

Course Requirements:

- Problem sets ~ approx. every week to 10 days.
 - Total not to exceed 8
- Midterm
- Final (comprehensive)
- Grades:
 - Problem sets 15%
 - Personal Database Assignment (project)
 15%
 - Midterm 30%
 - Final 40%

Policies

Late Assignments

- No grace period after due date.... except under exceptional circumstances
- job interviews, out of town trip, breaks etc do not qualify as exceptional circumstances!
- Working in Groups
 - do your homework problem sets in group size not to exceed 3
 - learn more
 - get better grades
 - get used to working in groups (important to employers)
 - Do exams individually!!

Material Covered in CS 184

Four aspects of studying DBMSs

- Modeling and design of databases
 - allows exploration of issues before committing to an implementation
- Programming: queries and DB operations like update.
 - SQL == "intergalactic dataspeak"
- DBMS implementation
- Effect of technology and application advances to database technology.

$$CS 214 == (3)$$

CS215 == (3) + (4)

Database Management Environment

user

Database: collection of interrelated information about world being modeled DBMS:general purpose software to define, create, modify, retrieve, delete and manipulate a database Vendors: Informix, Oracle, O2, Sybase, IBM, DEC

Traditional DBMS Goals

 Efficient management of (faster than files) large amounts of (gigabytes) of persistent (outlasts creator), reliable (outlasts crashes) shared information (multiple users).

DBMS Users:

- small and large corporations
 - E-commerce companies, banks, airlines, transportation companies, corporate databases, government agencies, defense.
 - Anyone you can think of!

Databases and File Systems

- DBMSs evolved from file systems.
- DBMSs provide many features that traditional file systems do not.
 - Support for concurrent access and data sharing. Data consistency in presence of concurrency
 - Reliability in presence of failures and system crashes.
 - Efficient associative access to very large amounts of data
 - A high level Query language (SQL) to define, create, access, and manipulate data. Support for unanticipated queries
 - support for multiple data views
 - security and authorization
 - data abstraction
 - prevention of data redundancy and inconsistencies

Data Abstraction

- program data independence:
 - ability to hide details of how data is stored and maintained from application programs
- program-operation independence:
 - ability to hide details of operation implementation from application programs (Object-Orientation)

Schemas and Instances

Instance:

- set of data currently instantiated in database
- changes frequently

Schema:

- overall design, structure, and constraints over the database
- referred to as metadata
- changes infrequently
- Example:

Schema

Tables

Emp (ename, dep#) Dept(dep#, dname, mgr)

Constraints

each department has a single manager

Instance

Emp

(John, 10), (Cindy, 15), (Martha, 10)

dept

(10, Toy, John), (15, Sales, Cindy)

Data Model

- Set of concepts and tools used to describe the database schema
 - Different schemas at different abstraction levels:
 - physical schema: describes physical organization of data
 - Iogical schema: describes data at conceptual level
 - sub schema: defines data at view level
- Different models used describe schemas at different abstraction levels

Types of Data Models

Object based Logical Models

- Used to describe schema at view and logical levels.
- Support abstract view of data as objects, relationships, constraints
- Example: Entity Relationship Model, Functional data Model, Semantic Model, Object Oriented Model like ODL

Types of Data Model (cont.)

Record-Based Logical Models

- Used to define data at view and logical levels.
- Provide a high level description of implementation
- Examples:Relational Model, Hierarchical Model, Network Model
- Physical Models
 - Used to describe data at implementation level.
 - Examples: Frame Memory Model, Unifying Model

Entity-Relationship Model

Example of schema in the entity-relationship model

Entity Relationship Model (Cont.)

E-R model of real world

- Entities (objects)
 - E.g. customers, accounts, bank branch
- Relationships between entities
 - E.g. Account A-101 is held by customer Johnson
 - Relationship set *depositor* associates customers with accounts
- Widely used for database design
 - Database design in E-R model usually converted to design in the relational model (coming up next) which is used for storage and processing

Relational Model

Example of tabular data in the relational model

Attributes

Customer-id	customer- name	customer- street	customer- city	account- number
192-83-7465	Johnson	Alma	Palo Alto	A-101
019-28-3746	Smith	North	Rye	A-215
192-83-7465	Johnson	Alma	Palo Alto	A-201
321-12-3123	Jones	Main	Harrison	A-217
019-28-3746	Smith	North	Rye	A-201

A Sample Relational Database

	customer-id	customer-name	customer-street	customer-city		
	192-83-7465	Johnson	12 Alma St.	Palo Alto		
	019-28-3746	Smith	4 North St.	Rye		
	677-89-9011	Hayes	3 Main St.	Harrison		
	182-73-6091	Turner	123 Putnam Ave.	Stamford		
	321-12-3123	Jones	100 Main St.	Harrison		
	336-66-9999	Lindsay	175 Park Ave.	Pittsfield		
	019-28-3746	Smith	72 North St.	Rye		
	(a) The <i>customer</i> table					
ac	count-number	balance	customer-id act	count-number		
ac	count-number A-101	<i>balance</i> 500	<i>customer-id act</i> 192-83-7465	A-101		
ac	Count-number A-101 A-215	<i>balance</i> 500 700	customer-id act 192-83-7465 192-83-7465 192-83-7465 019-28-3746	A-101 A-201 A-215		
ac	count-number A-101 A-215 A-102	<i>balance</i> 500 700 400	customer-id acc 192-83-7465 192-83-7465 192-83-7465 019-28-3746 677-89-9011 011	A-101 A-201 A-215 A-102		
ac	count-number A-101 A-215 A-102 A-305	<i>balance</i> 500 700 400 350	customer-id act 192-83-7465 192-83-7465 192-83-7465 019-28-3746 677-89-9011 182-73-6091	A-101 A-201 A-215 A-102 A-305		
ac	count-number A-101 A-215 A-102 A-305 A-201	<i>balance</i> 500 700 400 350 900	customer-id acc 192-83-7465 192-83-7465 192-83-7465 019-28-3746 677-89-9011 182-73-6091 321-12-3123 321-12-3123	Count-number A-101 A-201 A-215 A-102 A-305 A-217		
ac	count-number A-101 A-215 A-102 A-305 A-201 A-217	<i>balance</i> 500 700 400 350 900 750	customer-id acc 192-83-7465 192-83-7465 192-83-7465 019-28-3746 677-89-9011 182-73-6091 321-12-3123 336-66-9999	Count-number A-101 A-201 A-215 A-102 A-305 A-217 A-222		
ac	count-number A-101 A-215 A-102 A-305 A-201 A-217 A-222	<i>balance</i> 500 700 400 350 900 750 700	customer-idacc192-83-7465192-83-7465019-28-3746677-89-9011182-73-6091321-12-3123336-66-9999019-28-3746	Count-number A-101 A-201 A-215 A-102 A-305 A-217 A-222 A-201		

Classification of DBMSs based on Data Model

Relational DBMSs:

- modeling concept: tables and constraints on tables
- Query Language: SQL
- Applications: suited for traditional business processing applications

Object Oriented DBMSs

- modeling concepts: objects, classes, inheritance
- Query Language: object oriented OQL
- Applications: suited for CAD databases, CASE databases, office automation
- Object Relational DBMSs:
 - incorporate OO concepts into relational model
 - similar functionality as OODBMSs though different in implementations
 - Language extended to process objects.

DBMS Languages

Data Definition Language (DDL)

- DDL = the language used to describe a schema
- Data dictionary/directory = a compiled description of a schema

Data Manipulation Language (DML)

- DML= Language users use to ask questions about (query) the database, and to change the data in the database.
- Storage Definition Language (SDL)
 - SDL = language to define the internal schema
- View Definition Language (VDL)
 - VDL = view definition language

Data Definition Language (DDL)

- Specification notation for defining the database schema
 - E.g. create table account (account-number char(10), balance integer)
- DDL compiler generates a set of tables stored in a data dictionary
- Data dictionary contains metadata (i.e., data about data)
 - database schema
 - Data storage and definition language
 - language in which the storage structure and access methods used by the database system are specified
 - Usually an extension of the data definition language

Data Manipulation Language (DML)

- Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- Two classes of languages
 - Procedural user specifies what data is required and how to get those data
 - Nonprocedural user specifies what data is required without specifying how to get those data
- SQL is the most widely used query language

SQL

- SQL: widely used non-procedural language
 - E.g. find the name of the customer with customer-id 192-83-7465
 - select customer.customer-name from customer
 - where customer.customer-id = '192-83-7465'
 - Basic SQL has limited expressability
 - cannot implement any arbitrary function in SQL
- Application programs generally access databases through one of
 - Language extensions to allow embedded SQL
 - Application program interface (e.g. ODBC/JDBC) which allow SQL queries to be sent to a database

Application Architectures

DBMS Interface

- Provides users means to interact with database.
- Where we are today:
 - Menu driven interface, Graphical interface, Forms based interface, Natural Language Interface, WWW connectivity.
- Interface design is a tremendous challenge not only for DBMS researchers but to HCI and human cognition researchers.
- Future interfaces to databases:
 - virtual reality, immersive environments, speech, natural languages, gestures, handwriting, eye tracking brain waves, tactile interfaces, multimodal input and outputs -- combination of more than one modality.

People Involved with DBMSs

- DBMS designers and implementers
- tool designers
- database administrator (DBA)
 - DBA = 'super-user' for a database, similar to a system administrator.
 - DBA can define schemas, views, authorization, indexes, tuning parameters, etc.
- application programmers
- database designers
 - interact with users to define database at all levels
- database and system operators.
- end users
- large number of jobs available for each of the above tasks!!

DBMS Architecture

Key Database Technologies

Data Models

allow specification of database structure at all the levels of abstraction

Design tools

 that help in the database design process. These tools automates or facilitate some aspects of the design

Access Methods

data structures to support efficient access of data on disk

Query Optimization and Processing

efficient query processing techniques for good query performance.
 These techniques usually minimize the amount of disk I/O

Transaction processing techniques

to support concurrent access and reliability in the presence of failures

Need for Query Optimization

Consider two tables

- Employee(ename, salary, department)
 - say 1000 entries
- Manager(mname, department)
 - say 10 entries

Query:

 List the names of employees for the department of which Sharad is the manager

Strategies 1

For each entry M in Manager

- read record M
- For each entry E in employees
 - read Entry E
 - If (E.department == M.department) and (M.mname = "sharad") print E.ename
- Cost Analysis:
 - Outer loop 10 iterations. 1 read operation each time.
 - Inner loop 1000 iterations. 1 entry read each time.
 - total number of reads = 10 + 1000*10 = 10,010.

Strategy 2

- For each entry M in Manager
 - If M.mname = "sharad"
 - temp = M.department
- For each entry E in Employees
 - If E.department == temp print E.ename
- Cost Analysis:
 - first loop 10 iterations. 1 read operation each time.
 - Second loop 1000 iterations. 1 read operation each times.
 - Total number of reads = 1010.

Transaction Concept

Atomicity:

all or nothing execution.

Consistency:

 execution of a transaction leaves system state as well as the state of the real world consistent.

Isolation:

partial effects of a transaction are hidden from each other.

Durability:

 a successful transactions effects survives future system malfunctions.

Example of Transaction

- Withdraw \$100 checking account using an ATM.
- Atomicity:
 - account debited if and only if t user gets money from the ATM
- Consistency:
 - balance of account is always positive.
- Isolation:
 - concurrent execution of withdraw, deposit, transfers does not result in an incorrect balance of account.

Durability:

 After withdraw terminates, and the ATM dispenses money account reflects that \$100 withdrawn despite failures.

Motivation of Isolation

- Consider two transactions--
 - read account A, debit the value by \$100 and write the new value to A.
 - read account A, credit the value by \$200 and write the new value to A.
- Let initial value of A be \$1000.
- Final value should be \$1100.
- Consider the following execution if concurrency is permitted:
 - read1(A,1000) read2(A,1000) write2(A,1200) write1(A,900)
 - for the above execution the value of A is 900!

Importance of the Transactions

Transaction concept supports:

- simple failure semantics -- either all the effects of the transaction appear or none do-- all or nothing
- an isolated view of the world -- protection from partial effects of concurrently executing transactions

Makes application development easy

 complex, possibly distributed applications that share data and resources can be developed without explicitly dealing with synchronization and fault-tolerance. Transactions versus Other Concurrent Programming Environments

- concurrent programs prevalent in a variety of other areas in CS
 - operating systems, parallel programming, distributed systems.
- support Powerful Language Constructs:
 - to specify concurrent behavior of applications (programmers responsibility to deal with failures and concurrency issues).
- In contrast transactions relieve the application programmers of these tasks.