
Object Definition Language

CORBA

ODMG

ODL
(design

OQL
(queries

ODL
Relational design

OODMBS input

� Design language derived from the OO community:
� Can be used like E/R as a preliminary design for a

relational DB.

ODL
� Class Declarations

� interface < name > {elements = attributes, relationships,
methods }

� Element Declarations
� attribute < type > < name > ;
� relationship < rangetype > < name > ;

� Method Example
� float gpa(in: Student) raises(noGrades)

� float = return type.
� in: indicates Student argument is read-only.

� Other options: out, inout.

� noGrades is an exception that can be raised by method gpa.

Banking Example 1

customer loans

branch

borrower

Belongs-to

Customer-of

Ss# name amount loandid

branchid location

type
address

� Keys: ss#, loanid, branchid

� Cardinality constraint: each loan belongs to a single branch

Banking Example (II)
� interface Customer {

attribute string name; attribute integer ss#;
 attribute Struct Addr {string street, string city, int

 zip} address;
relationship Set<Loans> borrowed

inverse Loans::borrower;
relationship Set<Branch> has-account-at

inverse Branch:patrons;
key(ss#)

}
� Structured types have names and bracketed lists of field-type

pairs.
� Relationships have inverses.
� An element from another class is indicated by < class > ::
� Form a set type with Set<type>.

Loans Example (III)
� interface loans {

attribute real amount;
attribute int loanid;

attribute Enum loanType {house, car, general} type;
relationship Branch belongs-to
inverse Branch::loans-granted;
relationship Set<Customer> borrower
inverse Customer::borrowed;
key(loanid)

}

� Enumerated types have names and bracketed lists of values.

Bank Example (IV)
� interface Branch {

attribute integer branchid;
attribute Struct Customer::Addr location;
relationship Set<Loans> loans-granted

inverse Loans::belongs-to;
relationship Set<Customer> patrons

inverse Customer::has-account-at;
key(branchid);

}
� Note reuse of Addr type.

ODL Type System
� Basic types: int, real/ float, string,

enumerated types, and classes.
� Type constructors: Struct for structures and

four collection types: Set, Bag, List, and
Array.

Limitations on Nesting

Relationship

class collection

Attribute

collectionstructBasic,
no class

ER versus ODL
� E/R: arrow pointing to “one.
� ODL: don't use a collection type for relationship in the

“many" class.
� Collection type remains in “one.”

� E/R: arrows in both directions.
� ODL: omit collection types in both directions

� ODL only supports binary relationship.
� Convert multi-way relationships to binary and then

represent in ODL
� create a new connecting entity set to represent the rows in the

relationship set.
� Problems handling cardinality constraints properly!!

Roles in ODL
� No problem; names of relationships handle roles.”

interface employee {
attribute string name;
relationship Set<Employee> manager

inverse Employee::worker;
relationship Set<Employee> worker

inverse Employee::manager
}

employee works for

manager

worker

Subclasses in ODL
� Subclass = special case = fewer

entities/objects = more properties.
� Example: Faculty and Staff are subclasses of

Employee. Faculty have academic year (9
month salaries) but staff has a full-year (12
month salary).

ODL Subclasses
� Follow name of subclass by colon and its superclass.
� interface Faculty:Employee {

attribute real academic-year-salary;
}

� Objects of the Faculty class acquire all the attributes
and relationships of the Employee class.

� Inheritance in ODL and ER model differ in a subtle way
� in ODL an object must be member of exactly one class
� in ER an object can be member of more than one class

Keys in ODL
� Indicate with key(s) following the class name,

and a list of attributes forming the key.
� Several lists may be used to indicate several alternative keys.
� Parentheses group members of a key, and also group key to

the declared keys.
� Thus, (key(a1; a2; : : : ; an)) = “one key consisting of all n

attributes." (key a1; a2; : : : ; an) =“each ai is a key by itself.

� Keys are not necessary for ODL. Object identity and not
keys differentiates objects

