
Requirements Engineering
Requirements engineering methods have many limitations
– Do not necessarily map well to design/code
– Do not translate well to acceptance tests
– Require additional work/effort/thought
– Are difficult for non-experts/other stakeholders to understand

Use cases attempt to bridge the understandability gap
– Describe system behavior, flows of events
– Describe user requests and system responses
– Useful in formulating test steps and verification points

Use Cases: Keep it Simple
Use cases are a simple and powerful way to
define requirements for software behavior

Withdraw moneyATM User Kiosk User Order tickets

Actor Use CaseActor Use Case

Example: ATM Use Case Diagram

Bank
System

ATM User Deposit Money

Withdraw Money

Transfer Money
(Between Accounts)

ATMATMATM

What is a Use Case (1)

Use cases are textual descriptions of
– Major functions the system will perform for its users
– Goals the system achieves for its users along the way

A use case describes a set of flows or scenarios
– Each scenario is a sequence of steps describing an

interaction between a “user” and a “system”
– The use case is a collection of scenarios that together

accomplish a specific user “goal”
– Each scenario corresponds to a single path or flow

through a use case

Example: Buy a Product
A scenario is a sequence of steps describing an
interaction between a user and a system
For an online store, we might use narrative text to
describe the following Buy a Product scenario*:
– “The customer browses the catalog and adds desired items to the

shopping basket. When the customer wishes to pay, the customer
describes the shipping and credit card information and confirms
the sale.

– The system checks the authorization on the credit card and
confirms the sale both immediately as well as with a follow-up
email.”

＊ Adapted from “UML Distilled” by Martin Fowler

Alternative Flows for Buy a Product
In our Buy a Product scenario things went well…
– It is the “happy day” scenario or Basic Flow

But things can go wrong…
– The credit card authorization might fail

» This would be a separate scenario or Alternative Flow
– You may not need to capture shipping and credit card information

for returning customers
» This is yet another scenario, a second alternative flow

A use case is a set of scenarios serving a common goal
– The user does not always succeed but the goal remains

What Is An Actor?

– Actors are not part of the system,
they represent roles a user of the
system can play

– An actor may actively interchange
information with the system

– An actor may be a provider of
information, receive information,
or both

– An actor can represent a human, a
machine or another system (for
example, software, hardware, DB)

Actor

Identifying Actors (1)

Actors are discovered
– in any documents describing system scope/definition
– by talking with customers and domain experts

Useful questions for identifying actors include:
• Who uses the system?
• Who installs the system?
• Who starts up the system?
• Who shuts down the system?
• What other devices and external systems work directly with

the system?

Identifying Actors (2)

Additional questions for identifying actors are:
• Who gets information from this system?
• Who provides information to the system?
• Does anything happen automatically at a preset time?
• Who is interested in a certain requirement?
• Where in the organization is the system used?
• Who will benefit from the use of the system?
• Who will support and maintain the system?
• Does the system use an external resource?
• Does one person play several different roles?
• Do several people play the same role?
• Does the system interact with a legacy system?

What is A Use Case? (2)

– A use case is a dialogue between
actors and the system

– A use case is initiated by an
actor to invoke a certain
functionality in the system

– A use case is a complete and
meaningful flow of events

– A use case captures the contract
or “guarantees” that will hold at
the conclusion of the use case

Use Case

Benefits of Use Cases
Use cases
– Capture the intended behavior of the system you are

developing
» Without having to specify how that behavior is implemented

– Allow developers to come to a common understanding
with your system’s end users and domain experts

– Realized by design and implementation elements
working together to carry out each use case

– Help verify and validate your design and
implementation features

» Against user goals and requested functions

A Variety of Readers

– Human Factors, Marketing & Clinical
Engineering -- Approve what the system
should do

– System Engineers – Ensure system
requirements are met by the use cases

– Reviewers --Examine the flow of events
– Software Developers -- Provide basis

for analysis, design and implementation
– System & Software Testers – Provide

basis for test cases
– Project Leads -- Project planning
– Technical Writers -- Writing the user’s

guide for the end users

Identifying Use Cases

Useful questions to identify use cases in a system:
• What functions will the actor want from the system?
• Does the system store information? What actors will create,

read, update, or delete that information?
• Does the system need to notify an actor about changes in its

internal state?
• Are there any external events the system must know about?

What actor informs the system about those events?
• What are the tasks of each actor?
• What use cases will support and maintain the system?
• Can all functional requirements be performed by the use

cases?

Use Case Flow Of Events
– Describe only the events needed to accomplish required

behavior of the use case
» Written in terms of what the system should do, not how it does it
» Written in terms the audience (customer/stakeholder/other) will

understand
» Written using business-domain terminology, not implementation

– The flow of events should describe
» When and how the use case starts and ends
» The interactions (in sequence) between use case and actors
» What data is needed by/exchanged during the use case
» The basic flow (normal sequence) of events for the use case
» Description of any alternative or exceptional flows of events

Example: Buy a Product
Level: Sea Level
Basic Flow (Main Success Scenario)
1. Customer browses catalog and selects items to buy
2. Customer goes to check out
3. Customer fills in shipping information
4. System presents full pricing information, including shipping
5. Customer fills in credit card information
6. System authorizes purchase
7. System confirms sale immediately
8. System sends confirmation email to customer
Alternative Flow
3a. Customer is regular (repeat) customer

1. System displays current shipping, pricing and billing information
2. Customer may accept or override defaults, returns to BF at step 6

Discussion (1)
Begin by describing the Basic Flow
– Main Success Scenario
– Sequence of numbered steps

Add variations
– Alternative Flows

» Still achieve the goal successfully
– Exception Flows

» Failure to achieve the goal
Each use case has a primary actor
– Has the goal the use case is trying to achieve
– There may be additional, secondary actors

Each step in the use case flow should be a clear simple statement
– Show who is engaged and involved in the step
– Show the intent of the actor, “what” the actor wants, not “how” the

system does it
– Therefore do not describe or include UI details in the text of the use case

step

Discussion (2)
Use case granularity or “level” is useful but challenging
– Cockburn* defines a hierarchy of use case levels
– Core use cases are at “sea level”

» An interaction with an actor toward a visible tangible goal
– Fish Level

» Use cases that are included by sea-level use cases
– Kite Level

» Show how sea-level use cases fir into larger business context
» Also called summary-level or business-level use cases

Establish your own conventions for levels for your project

Use Case “Includes”
One use case includes another use case in its entirety
– Analogous to a program calling another or a routine using a

subroutine
– The “call” is mandatory

» The calling/including use case must flow through the included use
case

– Often used for reuse
» Multiple use cases share the same functionality
» This functionality is placed in a separate use case
» Avoids repetition of the same information in multiple use cases

Examples
– Logon/logoff
– User Authentication/Authorization

Example: Equity Trading System

Trading
Manager

Set Limits

Analyze Risk

Trader

Capture Deal Salesperson

Price Deal

Value Deal

Update Accounts Accounting
System

<<includes>>

<<includes>>

Use Case “Extends”
An extends relationship is used to show:

• Optional behavior
• Behavior that is only run under certain conditions, such as

triggering an alarm
• Several different flows which may be run based on actor

selection
– For example, a use case that monitors the flow of packages on a

conveyer belt can be extended by a Trigger Alarm use case if the
packages jam

– An extends relationship is drawn as a directed (dashed) line with
an arrowhead at the end closest to the base use case

– Several differing schools of thought over “extends”
» For example, whether “extends” should return to the main flow

UC Diagram with Extends

Cellular network

User

Place conference callPlace phone call

Receive additional callReceive phone call

<<extends>>

<<extends>>

Use scheduler

Use Case Template
Use case name/title
Use case description
Revision History
Actors
System Scope
Goal
Level
Assumptions
Relationships

– Includes
– Extends
– Extension Points

Precondition
Trigger Events

Use Case Template (cont’d)
Basic flow 1 - Title

– Description (steps), etc.
Post Conditions
Alternative Flow 1 – Title

– Description (steps)
Alternative Flow 2 – Title

– Description (steps)
Alternative flow 3 – Title

– Description (steps), etc.
Exception Flow 1 – Title

– Description (steps), etc.
Activity Diagram
User Interface
Special Requirements

– Performance Requirements
– Reports
– Data Requirements

Outstanding Issues

Use Case Diagrams
A use case diagram is a graphical view of
– Some or all of the actors, use cases, and their interactions

identified for a system
Each system typically has a Main Use Case diagram
– A picture of the system boundary (actors) and the major

functionality provided by the system (use case packages)
– A Main use case diagram for each package

Other use case diagrams may be created as needed
– A diagram showing all the use cases for a selected actor
– A diagram showing all the use cases being implemented in an

iteration
– A diagram showing a use case and all of its relationships

Example Use Case Diagram (1)
A use case diagram for university course registration

Student

Register for Courses

Registrar

Maintain Professor Information

Maintain Student Information

Billing System

Example Use Case Diagram (2)
Credit Card Validation System

Corporate
customer

Individual
customer

Customer

Perform card transaction

Process customer bill Retail institution

Reconcile transactions

Manage customer account

Sponsoring
financial institution

What Is A Use-Case Model?
– A use-case model illustrates

» The system’s intended functions/behaviors (use cases)
» Its immediate surroundings (actors)
» Direct links between the system and its surroundings (diagrams)
» Other related requirements documents may be linked

Security, performance, reusability, maintainability, other “ilities”
UI, reports, messages, outstanding items, actions, other project
management/project tracking issues

– The same use-case model used in requirements
» Is used in analysis, design, and test
» Serves as a unifying thread throughout system development

The most important role of a use-case model is to communicate
the system’s functionality and behavior to the customer or end user

The most important role of a use-case model is to communicate
the system’s functionality and behavior to the customer or end user

Benefits Of A Use-Case Model
– The use case model can be

» used to communicate with the end users and domain experts
Provides buy-in at an early stage of system development
Insures a mutual understanding of the requirements

» used to identify
Who will interact with the system and what the system should do
What interfaces the system should have

» used to verify that
All behavioral (system-interaction) requirements have been
captured
Developers have understood the requirements

Use Cases: Not so Fast…
If you don’t fully understand the ins and outs of use cases
– It is easy to misuse them or turn them into “abuse cases”

Ellen Gottesdiener
– “Top Ten Ways Project Teams Misuse Use Cases – and How to Correct

Them.” The Rational Edge, June 2002 (Part I), July 2002 (Part II).
Martin Fowler
– “Use and Abuse Cases.” Distributed Computing, April 1998.

Doug Rosenberg
– “Top Ten Use Case Mistakes.” Software Development, February 2001.

Susan Lilly
– “How to Avoid Use Case Pitfalls.” Software Development, January 2000.

Kulak and Guiney
– “Use Cases: Requirements in Context.” Second Edition, Addison-Wesley

2003.

Ten Misguided Guidelines (Gottesdiener)

Don’t bother with any other requirements representations
– Use cases are the only requirements model you’ll need!
Stump readers about the goal of your use case
– Name use cases obtusely using vague verbs such as do or process
Be ambiguous about the scope of your use cases
– There will be scope creep anyway, so you can refactor your use

cases later
Include nonfunctional requirements and UI details in your use-
case text
Use lots of extends and includes in your initial use-case
diagrams
– This allows you to decompose use cases into itty bitty units of

work

Ten Misguided Guidelines (Cont’d)
Don’t be concerned with defining business rules
– you’ll probably remember some of them when you design and

code
Don’t involve subject matter experts in creating, reviewing, or
verifying use cases
– They’ll only raise questions!

If you involve users at all in use case definition, just “do it”
– Why bother to prepare for meetings with the users?

Write your first and only use case draft in excruciating detail
– Why bother iterating with end users when they don’t even know

what they want
Don’t validate or verify your use cases
– That will only cause you to make revisions and do more rework!

Summary
System behavior is documented in a use case model
– illustrates the system’s intended functions (use cases)
– its surroundings (actors)
– relationships between the use cases and actors (use case diagrams)

The most important role of a use case model is
– to communicate the system’s functionality and behavior

Written in concise, simple prose, use cases are understandable
by a wide range of stakeholders
Each use case contains a flow of events
– The flow of events is written in terms of what the system should do,

not how the system does it
A use case diagram is a graphical representation of some or all of

the actors, use cases, and their interactions for a system

Book Recommendations
1. Writing Effective Use Cases, by Alistair Cockburn, Addison Wesley, 2000
2. Use Case Modeling, by Kurt Bittner, Ian Spence, Addison Wesley, 2002
3. Managing Software Requirements: A Use Case Approach, by Dean

Leffingwell, Don Widrig, Addison Wesley, Second Edition, 2003
4. Applying Use Cases: A Practical Guide, by Geri Schneider, Jason P.

Winters, Addison Wesley, Second Edition, 2001
5. Use Cases: Requirements in Context, by Daryl Kulak, Eamonn Guiney,

Addison Wesley, Second Edition, 2003
6. Object Oriented Software Engineering: A Use Case Driven Approach, by

Ivar Jacobson, Addison Wesley, 1992
7. Aspect Oriented Software Development with Use Cases, by Ivar Jacobson,

Pan-Wei Ng, Addison Wesley, 2004

	Requirements Engineering
	Use Cases: Keep it Simple
	Example: ATM Use Case Diagram
	What is a Use Case (1)
	Example: Buy a Product
	Alternative Flows for Buy a Product
	What Is An Actor?
	Identifying Actors (1)
	Identifying Actors (2)
	What is A Use Case? (2)
	Benefits of Use Cases
	A Variety of Readers
	Identifying Use Cases
	Use Case Flow Of Events
	Example: Buy a Product
	Discussion (1)
	Discussion (2)
	Use Case “Includes”
	Example: Equity Trading System
	Use Case “Extends”
	UC Diagram with Extends
	Use Case Template
	Use Case Template (cont’d)
	Use Case Diagrams
	Example Use Case Diagram (1)
	Example Use Case Diagram (2)
	What Is A Use-Case Model?
	Benefits Of A Use-Case Model
	Use Cases: Not so Fast…
	Ten Misguided Guidelines (Gottesdiener)
	Ten Misguided Guidelines (Cont’d)
	Summary
	Book Recommendations

