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Uncertainty

Let action At = leave for airport t minutes before ight

Will At get me there on time?

Problems:

1) partial observability (road state, other drivers' plans, etc.)

2) noisy sensors (KCBS tra�c reports)

3) uncertainty in action outcomes (at tire, etc.)

4) immense complexity of modelling and predicting tra�c

Hence a purely logical approach either

1) risks falsehood: \A25 will get me there on time"

or 2) leads to conclusions that are too weak for decision making:

\A25 will get me there on time if there's no accident on the bridge

and it doesn't rain and my tires remain intact etc etc."

(A1440 might reasonably be said to get me there on time

but I'd have to stay overnight in the airport : : :)
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Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a at tire

Assume A25 works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

A25 7!0:3 get there on time

Sprinkler 7!0:99 WetGrass

WetGrass 7!0:7 Rain

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

Given the available evidence,

A25 will get me there on time with probability 0.04

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles degree of truth NOT uncertainty e.g.,

WetGrass is true to degree 0.2)
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Probability

Probabilistic assertions summarize e�ects of

laziness: failure to enumerate exceptions, quali�cations, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge

e.g., P (A25jno reported accidents) = 0:06

These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., P (A25jno reported accidents; 5 a.m.) = 0:15

(Analogous to logical entailment status KB j= �, not truth.)
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on timej : : :) = 0:04

P (A90 gets me there on timej : : :) = 0:70

P (A120 gets me there on timej : : :) = 0:95

P (A1440 gets me there on timej : : :) = 0:9999

Which action to choose?

Depends on my preferences for missing ight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Axioms of probability

For any propositions A, B

1. 0 � P (A) � 1

2. P (True) = 1 and P (False) = 0

3. P (A _B) = P (A) + P (B) � P (A ^B)

>A     B

True

A B

de Finetti (1931): an agent who bets according to probabilities that

violate these axioms can be forced to bet so as to lose money regardless

of outcome.
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Syntax

Similar to propositional logic: possible worlds de�ned by assignment of

values to random variables.

Propositional or Boolean random variables

e.g., Cavity (do I have a cavity?)

Include propositional logic expressions

e.g., :Burglary _ Earthquake

Multivalued random variables

e.g., Weather is one of hsunny; rain; cloudy; snowi

Values must be exhaustive and mutually exclusive

Proposition constructed by assignment of a value:

e.g., Weather= sunny; also Cavity= true for clarity
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Syntax contd.

Prior or unconditional probabilities of propositions

e.g., P (Cavity) = 0:1 and P (Weather= sunny) = 0:72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

P(Weather) = h0:72; 0:1; 0:08; 0:1i (normalized, i.e., sums to 1)

Joint probability distribution for a set of variables gives

values for each possible assignment to all the variables

P(Weather; Cavity) = a 4� 2 matrix of values:

Weather= sunny rain cloudy snow

Cavity= true

Cavity= false
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Syntax contd.

Conditional or posterior probabilities

e.g., P (CavityjToothache) = 0:8

i.e., given that Toothache is all I know

Notation for conditional distributions:

P(WeatherjEarthquake) = 2-element vector of 4-element vectors

If we know more, e.g., Cavity is also given, then we have

P (CavityjToothache; Cavity) = 1

Note: the less speci�c belief remains valid after more evidence arrives,

but is not always useful

New evidence may be irrelevant, allowing simpli�cation, e.g.,

P (CavityjToothache; 49ersWin) = P (CavityjToothache) = 0:8

This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional probability

De�nition of conditional probability:

P (AjB) =
P (A ^ B)

P (B)

if P (B) 6= 0

Product rule gives an alternative formulation:

P (A ^ B) = P (AjB)P (B) = P (BjA)P (A)

A general version holds for whole distributions, e.g.,

P(Weather; Cavity) = P(WeatherjCavity)P(Cavity)

(View as a 4� 2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:

P(X1; : : : ;Xn) = P(X1; : : : ;Xn�1) P(XnjX1; : : : ;Xn�1)

= P(X1; : : : ;Xn�2) P(Xn1jX1; : : : ; Xn�2) P(XnjX1; : : : ; Xn�1)

= : : :

= �
n

i=1P(XijX1; : : : ;Xi�1)
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Bayes' Rule

Product rule P (A ^B) = P (AjB)P (B) = P (BjA)P (A)

) Bayes' rule P (AjB) =
P (BjA)P (A)

P (B)

Why is this useful???

For assessing diagnostic probability from causal probability:

P (CausejEffect) =
P (EffectjCause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be sti� neck:

P (M jS) =
P (SjM)P (M)

P (S)

=
0:8� 0:0001

0:1

= 0:0008

Note: posterior probability of meningitis still very small!
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Normalization

Suppose we wish to compute a posterior distribution over A

given B= b, and suppose A has possible values a1 : : : am

We can apply Bayes' rule for each value of A:

P (A= a1jB= b) = P (B= bjA= a1)P (A= a1)=P (B= b)

: : :
P (A= amjB= b) = P (B= bjA= am)P (A= am)=P (B= b)

Adding these up, and noting that �iP (A= aijB= b) = 1:

1=P (B= b) = 1=�iP (B= bjA= ai)P (A= ai)

This is the normalization factor, constant w.r.t. i, denoted �:

P(AjB= b) = �P(B= bjA)P(A)

Typically compute an unnormalized distribution, normalize at end

e.g., suppose P(B= bjA)P(A) = h0:4; 0:2; 0:2i

thenP(AjB= b) = �h0:4; 0:2; 0:2i = h0:4;0:2;0:2i

0:4+0:2+0:2
= h0:5; 0:25; 0:25i
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Conditioning

Introducing a variable as an extra condition:

P (XjY ) = �zP (XjY; Z= z)P (Z = zjY )

Intuition: often easier to assess each speci�c circumstance, e.g.,

P (RunOverjCross)

= P (RunOverjCross; Light= green)P (Light= greenjCross)

+ P (RunOverjCross; Light= yellow)P (Light= yellowjCross)

+ P (RunOverjCross; Light= red)P (Light= redjCross)

When Y is absent, we have summing out or marginalization:

P (X) = �zP (XjZ = z)P (Z = z) = �zP (X;Z = z)

In general, given a joint distribution over a set of variables, the dis-

tribution over any subset (called a marginal distribution for historical

reasons) can be calculated by summing out the other variables.
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Full joint distributions

A complete probability model speci�es every entry in the joint distribu-

tion for all the variables X = X1; : : : ;Xn

I.e., a probability for each possible world X1=x1; : : : ; Xn= xn

(Cf. complete theories in logic.)

E.g., suppose Toothache and Cavity are the random variables:

Toothache= true Toothache= false

Cavity= true 0:04 0:06

Cavity= false 0:01 0:89

Possible worlds are mutually exclusive ) P (w1 ^ w2) = 0

Possible worlds are exhaustive ) w1 _ � � � _ wn is True

hence �iP (wi) = 1
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Full joint distributions contd.

1) For any proposition � de�ned on the random variables

�(wi) is true or false

2) � is equivalent to the disjunction of wis where �(wi) is true

Hence P (�) = �fwi: �(wi)gP (wi)

I.e., the unconditional probability of any proposition is computable as

the sum of entries from the full joint distribution

Conditional probabilities can be computed in the same way as a ratio:

P (�j�) =
P (� ^ �)

P (�)

E.g.,
P (CavityjToothache) =
P (Cavity ^ Toothache)

P (Toothache)

=

0:04

0:04 + 0:01
= 0:8
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Inference from joint distributions

Typically, we are interested in

the posterior joint distribution of the query variables Y

given speci�c values e for the evidence variables E

Let the hidden variables be H = X�Y�E

Then the required summation of joint entries is done by summing out

the hidden variables:

P(YjE= e) = �P(Y;E= e) = ��hP(Y;E= e;H=h)

The terms in the summation are joint entries because Y, E, and H

together exhaust the set of random variables

Obvious problems:

1) Worst-case time complexity O(dn) where d is the largest arity

2) Space complexity O(dn) to store the joint distribution

3) How to �nd the numbers for O(dn) entries???
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