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Independence

Two random variables A B are (absolutely) independent i�

P (AjB) = P (A)

or P (A;B) = P (AjB)P (B) = P (A)P (B)

e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is

P(X1; : : : ;Xn) = �iP(Xi)

hence can be speci�ed by just n numbers

Absolute independence is a very strong requirement, seldom met

AIMA Slides cStuart Russell and Peter Norvig, 1998 Chapter 15.1{2 3



Conditional independence

Consider the dentist problem with three random variables:

Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 23 � 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn't

depend on whether I have a toothache:

(1) P (CatchjToothache; Cavity) = P (CatchjCavity)

i.e., Catch is conditionally independent of Toothache given Cavity

The same independence holds if I haven't got a cavity:

(2) P (CatchjToothache;:Cavity) = P (Catchj:Cavity)
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Conditional independence contd.

Equivalent statements to (1)

(1a) P (ToothachejCatch; Cavity) = P (ToothachejCavity) Why??

(1b) P (Toothache;CatchjCavity) = P (ToothachejCavity)P (CatchjCavity)

Why??

Full joint distribution can now be written as

P(Toothache;Catch; Cavity) = P(Toothache;CatchjCavity)P(Cavity)

= P(ToothachejCavity)P(CatchjCavity)P(Cavity)

i.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Conditional independence contd.

Equivalent statements to (1)

(1a) P (ToothachejCatch; Cavity) = P (ToothachejCavity) Why??

P (ToothachejCatch; Cavity)

= P (CatchjToothache; Cavity)P (ToothachejCavity)=P (CatchjCavity)

= P (CatchjCavity)P (ToothachejCavity)=P (CatchjCavity) (from 1)

= P (ToothachejCavity)

(1b) P (Toothache;CatchjCavity) = P (ToothachejCavity)P (CatchjCavity)

Why??

P (Toothache; CatchjCavity)

= P (ToothachejCatch; Cavity)P (CatchjCavity) (product rule)

= P (ToothachejCavity)P (CatchjCavity) (from 1a)
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Belief networks

A simple, graphical notation for conditional independence assertions

and hence for compact speci�cation of full joint distributions

Syntax:

a set of nodes, one per variable

a directed, acyclic graph (link � \directly inuences")

a conditional distribution for each node given its parents:

P(XijParents(Xi))

In the simplest case, conditional distribution represented as

a conditional probability table (CPT)
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor

Mary doesn't call. Sometimes it's set o� by minor earthquakes. Is there

a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reects \causal" knowledge:

B

T
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T
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P(A)
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.29

.001

.001

P(B)
.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

T
F

.90

.05

A P(M)

T
F

.70

.01

.94

Note: � k parents ) O(dkn) numbers vs. O(dn)
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Semantics

\Global" semantics de�nes the full joint distribution as

the product of the local conditional distributions:

P(X1; : : : ; Xn) = �
n

i=1P(XijParents(Xi))

e.g., P (J ^M ^ A ^ :B ^ :E) is given by??

=
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Semantics

\Global" semantics de�nes the full joint distribution as

the product of the local conditional distributions:

P(X1; : : : ; Xn) = �
n

i=1P(XijParents(Xi))

e.g., P (J ^M ^ A ^ :B ^ :E) is given by??

= P (:B)P (:E)P (Aj:B ^ :E)P (J jA)P (M jA)

\Local" semantics: each node is conditionally independent

of its nondescendants given its parents

Theorem: Local semantics , global semantics
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Markov blanket

Each node is conditionally independent of all others given its

Markov blanket: parents + children + children's parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Constructing belief networks

Need a method such that a series of locally testable assertions of

conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1; : : : ;Xn

2. For i = 1 to n

add Xi to the network

select parents from X1; : : : ;Xi�1 such that

P(XijParents(Xi)) = P(XijX1; : : : ; Xi�1)

This choice of parents guarantees the global semantics:

P(X1; : : : ;Xn) = �
n

i=1P(XijX1; : : : ; Xi�1) (chain rule)

= �
n

i=1P(XijParents(Xi)) by construction

AIMA Slides cStuart Russell and Peter Norvig, 1998 Chapter 15.1{2 12



Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls

P (J jM) = P (J)?
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.

Alarm

. No

P (AjJ;M) = P (AjJ)? P (AjJ;M) = P (A)?
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.

Burglary

.
. No

P (BjA; J;M) = P (BjA)?

P (BjA; J;M) = P (B)?
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.

Earthquake

.
.

. Yes

. No

P (EjB;A; J;M) = P (EjA)?

P (EjB;A; J;M) = P (EjA;B)?
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.
.

.
.

.
. No

. Yes
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Example: Car diagnosis

Initial evidence: engine won't start

Testable variables (thin ovals), diagnosis variables (thick ovals)

Hidden variables (shaded) ensure sparse structure, reduce parameters

lights

no oil no gas
starter
broken

battery age alternator
  broken

fanbelt
broken

battery
  dead no charging

battery
    flat

engine won’t
       start

gas gauge

fuel line
blocked

oil light
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Example: Car insurance

Predict claim costs (medical, liability, property)

given data on application form (other unshaded nodes)

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft
OwnDamage

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

OtherCost OwnCost
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Compact conditional distributions

CPT grows exponentially with no. of parents

CPT becomes in�nite with continuous-valued parent or child

Solution: canonical distributions that are de�ned compactly

Deterministic nodes are the simplest case:

X = f(Parents(X)) for some function f

E.g., Boolean functions

NorthAmerican , Canadian _ US _Mexican

E.g., numerical relationships among continuous variables

@Level

@t

= inow + precipation - outow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents U1 : : : Uk include all causes (can add leak node)

2) Independent failure probability qi for each cause alone

) P (XjU1 : : : Uj;:Uj+1 : : ::Uk) = 1��
j

i=1qi

Cold F lu Malaria P (Fever) P (:Fever)

F F F 0.0 1:0

F F T 0:9 0.1

F T F 0:8 0.2

F T T 0:98 0:02 = 0:2� 0:1

T F F 0:4 0.6

T F T 0:94 0:06 = 0:6� 0:1

T T F 0:88 0:12 = 0:6� 0:2

T T T 0:988 0:012 = 0:6� 0:2� 0:1

Number of parameters linear in number of parents
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Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Buys?

HarvestSubsidy?

Cost

Option 1: discretization|possibly large errors, large CPTs

Option 2: �nitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)

2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous child variables

Need one conditional density function for child variable given continuous

parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P (Cost= cjHarvest=h;Subsidy?= true)

= N(ath+ bt; �t)(c)

=

1
�t
p

2�
exp

0
BBB@�
1

2
0

BB@
c� (ath+ bt)

�t

1
CCA
2
1

CCCA

Mean Cost varies linearly with Harvest, variance is �xed

Linear variation is unreasonable over the full range

but works OK if the likely range of Harvest is narrow
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Continuous child variables
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All-continuous network with LG distributions

) full joint is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e.,

a multivariate Gaussian over all continuous variables for each combina-

tion of discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a \soft" threshold:
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Probit distribution uses integral of Gaussian:

�(x) =
R

�1

xN(0; 1)(x)dx

P (Buys?= true j Cost= c) = �((�c + �)=�)

Can view as hard threshold whose location is subject to noise
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P (Buys?= true j Cost= c) =

1

1 + exp(�2�c+�

�

)

Sigmoid has similar shape to probit but much longer tails:
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