
Inference in belief networks

Chapter 15.3{4 + new

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 1

Outline

} Exact inference by enumeration

} Exact inference by variable elimination

} Approximate inference by stochastic simulation

} Approximate inference by Markov chain Monte Carlo

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 2

Inference tasks

Simple queries: compute posterior marginal P(XijE= e)

e.g., P (NoGasjGauge= empty; Lights= on; Starts= false)

Conjunctive queries: P(Xi;XjjE= e) = P(XijE= e)P(XjjXi;E= e)

Optimal decisions: decision networks include utility information;

probabilistic inference required for P (outcomejaction; evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 3

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without ac-

tually constructing its explicit representation

Simple query on the burglary network:

P(BjJ = true;M = true)

= P(B; J = true;M = true)=P (J = true;M = true)

= �P(B; J = true;M = true)

= ��e�aP(B; e; a; J = true;M = true)

Rewrite full joint entries using product of CPT entries:

P (B= truejJ = true;M = true)

= ��e�aP (B= true)P (e)P (ajB = true; e)P (J = trueja)P (M = trueja)

= �P (B= true)�eP (e)�aP (ajB = true; e)P (J = trueja)P (M = trueja)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 4

Enumeration algorithm

Exhaustive depth-�rst enumeration: O(n) space, O(dn) time

EnumerationAsk(X,e,bn) returns a distribution over X

inputs: X, the query variable

e, evidence speci�ed as an event

bn, a belief network specifying joint distribution P(X1; : : : ;Xn)

Q(X) a distribution over X

for each value xi of X do

extend e with value xi for X

Q(xi) EnumerateAll(Vars[bn],e)

return Normalize(Q(X))

EnumerateAll(vars,e) returns a real number

if Empty?(vars) then return 1.0

else do

Y First(vars)

if Y has value y in e

then return P (y j Pa(Y)) � EnumerateAll(Rest(vars),e)

else return

P
y P (y j Pa(Y)) � EnumerateAll(Rest(vars),ey)

where ey is e extended with Y = y

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 5

Inference by variable elimination

Enumeration is ine�cient: repeated computation

e.g., computes P (J = trueja)P (M = trueja) for each value of e

Variable elimination: carry out summations right-to-left,

storing intermediate results (factors) to avoid recomputation

P(BjJ = true;M = true)

= �P(B)

| {z }

B

�eP (e)

| {z }

E

�aP(ajB; e)

| {z }

A

P (J = trueja)

| {z }

J

P (M = trueja)

| {z }

M

= �P(B)�eP (e)�aP(ajB; e)P (J = trueja)fM (a)

= �P(B)�eP (e)�aP(ajB; e)fJ(a)fM (a)

= �P(B)�eP (e)�afA(a; b; e)fJ(a)fM (a)

= �P(B)�eP (e)f �AJM(b; e) (sum out A)

= �P(B)f �E �AJM(b) (sum out E)

= �fB(b)� f �E �AJM(b)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 6

Variable elimination: Basic operations

Pointwise product of factors f1 and f2:

f1(x1; : : : ; xj; y1; : : : ; yk)� f2(y1; : : : ; yk; z1; : : : ; zl)

= f(x1; : : : ; xj; y1; : : : ; yk; z1; : : : ; zl)

E.g., f1(a; b)� f2(b; c) = f(a; b; c)

Summing out a variable from a product of factors: move any constant

factors outside the summation:

�xf1� � � � � fk = f1� � � � � fi�x fi+1� � � � � fk = f1� � � � � fi� f �X

assuming f1; : : : ; fi do not depend on X

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 7

Variable elimination algorithm

function EliminationAsk(X,e,bn) returns a distribution over X

inputs: X, the query variable

e, evidence speci�ed as an event

bn, a belief network specifying joint distribution P(X1; : : : ;Xn)

if X 2 e then return observed point distribution for X

factors []; vars Reverse(Vars[bn])

for each var in vars do

factors [MakeFactor(var ; e)jfactors]

if var is a hidden variable then factors SumOut(var,factors)

return Normalize(PointwiseProduct(factors))

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 8

Complexity of exact inference

Singly connected networks (or polytrees):

{ any two nodes are connected by at most one (undirected) path

{ time and space cost of variable elimination are O(dkn)

Multiply connected networks:

{ can reduce 3SAT to exact inference) NP-hard

{ equivalent to counting 3SAT models) #P-complete

A B C D

1 2 3

AND

1. A v B v C

2. C v D v ~A

3. B v C v ~D

0.5 0.50.50.5

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 9

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S

2) Compute an approximate posterior probability ^P

3) Show this converges to the true probability P

Outline:

{ Sampling from an empty network

{ Rejection sampling: reject samples disagreeing with evidence

{ Likelihood weighting: use evidence to weight samples

{ MCMC: sample from a stochastic process whose stationary

distribution is the true posterior

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 10

Sampling from an empty network

function PriorSample(bn) returns an event sampled from P(X1; : : : ;Xn) speci�ed by bn

x an event with n elements

for i = 1 to n do

xi a random sample from P(Xi j Parents(Xi))

return x

P(Cloudy) = h0:5; 0:5i

sample ! true

P(SprinklerjCloudy) = h0:1; 0:9i

sample ! false

P(RainjCloudy) = h0:8; 0:2i

sample ! true

P(WetGrassj:Sprinkler;Rain) = h0:9; 0:1i

sample ! true
P(C) = .5

C P(R)

T

F

.80

.20

C P(S)

T

F

.10

.50

S R P(W)

T T

T F

F T

F F

.90

.90

.00

.99

Cloudy

RainSprinkler

 Wet
Grass

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 11

Sampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 : : : xn) = �
n

i=1P (xijParents(Xi)) = P (x1 : : : xn)

i.e., the true prior probability

Let NPS(Y=y) be the number of samples generated for which Y=y,

for any set of variables Y.

Then ^P (Y=y) = NPS(Y=y)=N and

lim
N!1

^P (Y=y) = �hSPS(Y=y;H=h)

= �hP (Y=y;H=h)

= P (Y=y)

That is, estimates derived from PriorSample are consistent

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 12

Rejection sampling

^P(Xje) estimated from samples agreeing with e

function RejectionSampling(X,e,bn,N) returns an approximation to P (Xje)

N[X] a vector of counts over X, initially zero

for j = 1 to N do

x PriorSample(bn)

if x is consistent with e then

N[x] N[x]+1 where x is the value of X in x

return Normalize(N[X])

E.g., estimate P(RainjSprinkler= true) using 100 samples

27 samples have Sprinkler= true

Of these, 8 have Rain= true and 19 have Rain= false.

^P(RainjSprinkler= true) = Normalize(h8; 19i) = h0:296; 0:704i

Similar to a basic real-world empirical estimation procedure

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 13

Analysis of rejection sampling

^P(Xje) = �NPS(X; e) (algorithm defn.)

= NPS(X; e)=NPS(e) (normalized by NPS(e))

� P(X; e)=P (e) (property of PriorSample)

= P(Xje) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P (e) is small

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 14

Likelihood weighting

Idea: �x evidence variables, sample only nonevidence variables,

and weight each sample by the likelihood it accords the evidence

function WeightedSample(bn,e) returns an event and a weight

x an event with n elements; w 1

for i = 1 to n do

if Xi has a value xi in e

then w w � P (Xi = xi j Parents(Xi))

else xi a random sample from P(Xi j Parents(Xi))

return x, w

function LikelihoodWeighting(X,e,bn,N) returns an approximation to P (Xje)

W[X] a vector of weighted counts over X, initially zero

for j = 1 to N do

x,w WeightedSample(bn)

W[x] W[x] + w where x is the value of X in x

return Normalize(W[X])

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 15

Likelihood weighting example

Estimate P(RainjSprinkler= true;WetGrass= true)

P(C) = .5

C P(R)

T

F

.80

.20

C P(S)

T

F

.10

.50

S R P(W)

T T

T F

F T

F F

.90

.90

.00

.99

Cloudy

RainSprinkler

 Wet
Grass

true

true

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 16

LW example contd.

Sample generation process:

1. w 1:0

2. Sample P(Cloudy) = h0:5; 0:5i; say true

3. Sprinkler has value true, so

w w � P (Sprinkler= truejCloudy= true) = 0:1

4. Sample P(RainjCloudy= true) = h0:8; 0:2i; say true

5. WetGrass has value true, so

w w � P (WetGrass= truejSprinkler= true; Rain= true) = 0:099

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 17

Likelihood weighting analysis

Sampling probability for WeightedSample is

SWS(y; e) = �
l

i=1P (yijParents(Yi))

Note: pays attention to evidence in ancestors only

) somewhere \in between" prior and posterior distribution

Weight for a given sample y; e is

w(y; e) = �
m

i=1P (eijParents(Ei))

Weighted sampling probability is

SWS(y; e)w(y; e)

= �
l

i=1P (yijParents(Yi)) �
m

i=1P (eijParents(Ei))

= P (y; e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates

but performance still degrades with many evidence variables

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 18

Approximate inference using MCMC

\State" of network = current assignment to all variables

Generate next state by sampling one variable given Markov blanket

Sample each variable in turn, keeping evidence �xed

function MCMC-Ask(X,e,bn,N) returns an approximation to P (Xje)

local variables: N[X], a vector of counts over X, initially zero

Y, the nonevidence variables in bn

x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y

for j = 1 to N do

N[x] N[x] + 1 where x is the value of X in x

for each Yi in Y do

sample the value of Yi in x from P(YijMB(Yi)) given the values of MB(Yi) in x

return Normalize(N[X])

Approaches stationary distribution: long-run fraction of time spent in

each state is exactly proportional to its posterior probability

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 19

M
C
M
C

E
x
a
m
p
le

E
st
im
a
te
P
(R
a
in
jS
p
r
in
k
le
r
=
tr
u
e;
W
et
G
r
a
ss
=
tr
u
e)

S
a
m
p
le
C
lo
u
d
y
th
en
R
a
in
,
re
p
ea
t.

C
o
u
n
t
n
u
m
b
er
o
f
ti
m
es
R
a
in
is
tr
u
e
a
n
d
fa
ls
e
in
th
e
sa
m
p
le
s.

M
ar
ko
v
b
la
n
ke
t
o
f
C
lo
u
d
y
is
S
p
r
in
k
le
r
a
n
d
R
a
in

M
ar
ko
v
b
la
n
ke
t
o
f
R
a
in
is
C
lo
u
d
y
,
S
p
r
in
k
le
r
,
a
n
d
W
et
G
r
a
ss

P(
C

)
=

 .5

C
P(

R
)

T F

.8
0

.2
0

C
P(

S)

T F

.1
0

.5
0

S
R

P(
W

)

T
T

T
F

F
T

F
F

.9
0

.9
0

.0
0

.9
9

C
lo

ud
y

R
ai

n
S

pr
in

kl
er

 W
et

G
ra

ss

tr
u

e

tr
u

e

A
IM
A

S
li
d
e
s
c

S
tu
a
rt
R
u
ss
e
ll
a
n
d
P
e
te
r
N
o
rv
ig
,
1
9
9
8

C
h
a
p
te
r
1
5
.3
{
4
+

n
e
w

2
0

MCMC example contd.

Random initial state: Cloudy= true and Rain= false

1. P(CloudyjMB(Cloudy)) = P(CloudyjSprinkler;:Rain)

sample ! false

2. P(RainjMB(Rain)) = P(Rainj:Cloudy; Sprinkler;WetGrass)

sample ! true

Visit 100 states

31 have Rain= true, 69 have Rain= false

^P(RainjSprinkler= true;WetGrass= true)

= Normalize(h31; 69i) = h0:31; 0:69i

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 21

MCMC analysis: Outline

Transition probability q(y! y0)

Occupancy probability �t(y) at time t

Equilibrium condition on �t de�nes stationary distribution �(y)

Note: stationary distribution depends on choice of q(y ! y0)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:

sample each variable given current values of all others

) detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to

sampling conditioned on each variable's Markov blanket

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 22

Stationary distribution

�t(y) = probability in state y at time t

�t+1(y
0) = probability in state y0 at time t+ 1

�t+1 in terms of �t and q(y! y0)

�t+1(y
0) = �y�t(y)q(y ! y0)

Stationary distribution: �t = �t+1 = �

�(y0) = �y�(y)q(y ! y0) for all y0

If � exists, it is unique (speci�c to q(y! y0))

In equilibrium, expected \out
ow" = expected \in
ow"

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 23

Detailed balance

\Out
ow" = \in
ow" for each pair of states:

�(y)q(y! y0) = �(y0)q(y0 ! y) for all y; y0

Detailed balance) stationarity:

�y�(y)q(y ! y0) = �y�(y
0)q(y0 ! y)

= �(y0)�yq(y
0 ! y)

= �(y0)

MCMC algorithms typically constructed by designing a transition

probability q that is in detailed balance with desired �

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 24

Gibbs sampling

Sample each variable in turn, given all other variables

Sampling Yi, let �Yi be all other nonevidence variables

Current values are yi and �yi; e is �xed

Transition probability is given by

q(y! y0) = q(yi; �yi ! y0i; �yi) = P (y0ij �yi; e)

This gives detailed balance with true posterior P (yje):

�(y)q(y! y0) = P (yje)P (y0ij �yi; e) = P (yi; �yije)P (y
0

ij �yi; e)

= P (yij �yi; e)P (�yije)P (y
0

ij �yi; e) (chain rule)

= P (yij �yi; e)P (y
0

i; �yije) (chain rule backwards)

= q(y0 ! y)�(y0) = �(y0)q(y0 ! y)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 25

Markov blanket sampling

A variable is independent of all others given its Markov blanket:

P (y0ij �yi; e) = P (y0ijMB(Yi))

Probability given the Markov blanket is calculated as follows:

P (y0ijMB(Yi)) = P (y0ijParents(Yi))�Zj2Children(Yi)P (zjjParents(Zj))

Hence computing the sampling distribution over Yi for each
ip requires

just cd multiplications if Yi has c children and d values; can cache it if

c not too large.

Main computational problems:

1) Di�cult to tell if convergence has been achieved

2) Can be wasteful if Markov blanket is large:

P (YijMB(Yi)) won't change much (law of large numbers)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 26

Performance of approximation algorithms

Absolute approximation: jP (Xje)� ^P (Xje)j � �

Relative approximation: jP (Xje)� ^P (Xje)j

P (Xje) � �

Relative) absolute since 0 � P � 1 (may be O(2�n))

Randomized algorithms may fail with probability at most �

Polytime approximation: poly(n; ��1; log ��1)

Theorem (Dagum and Luby, 1993): both absolute and relative

approximation for either deterministic or randomized algorithms

are NP-hard for any �; � < 0:5

(Absolute approximation polytime with no evidence|Cherno� bounds)

AIMA Slides c
Stuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 27

