Inference in belielf networks

CHAPTER 15.3-4 4+ NEW
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Outline

> Exact inference by enumeration
> Exact inference by variable elimination
¢ Approximate inference by stochastic simulation

¢ Approximate inference by Markov chain Monte Carlo
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Inference tasks

Simple queries: compute posterior marginal P(X;|E =e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(XZ,X]|EIG> = P<X1|EIG>P<XJ|XZ,EIG>

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 15.3-4 + new 3



Inference by enumeration

Slightly intelligent way to sum out variables from the joint without ac-
tually constructing its explicit representation

Simple query on the burglary network:

P(B|J =true, M =true)

= P(B, J =true, M =true)/P(J =true, M =true)
= aP(B, J =true, M = true)

= 2.2, P(B, e, a, J =true, M = true)

Rewrite full joint entries using product of CPT entries:

P(B =true|J =true, M =true)

= a2, 2., P(B =true)P(e)P(a|B =true, e)P(J = true|a) P(M = true|a)
= aP(B =true)X.P(e)X,P(a|B =true, e)P(J = true|a) P(M = true|a)
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Enumeration algorithm

Exhaustive depth-first enumeration: O(n) space, O(d") time

ENUMERATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(Xy,..., X,)

Q(x) « a distribution over X
for each value z; of X do

extend e with value x; for X

Q(x;) <~ ENUMERATEALL(VARS[bn],e)
return NORMALIZE(Q(X))

ENUMERATEALL(vars,e) returns a real number
if EMPTY?(wars) then return 1.0
else do
Y+ FIRsT(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATEALL(REST(vars),e)
else return >, P(y | Pa(Y)) x ENUMERATEALL(REST(vars).e,)
where e, is e extended with Y = y
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Inference by variable elimination

Enumeration is inefficient: repeated computation
e.g., computes P(J =truela)P(M =truela) for each value of e

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|J =true, M =true)
= aP( B) 2., P( ) 22, P(a|B, e) P(J=true|la) P(M = true|a)
5 b A 7 M
e

= oaP(B)X.P(e)2,P(a|B, e)P(J =true|a) fi(a)
= O‘P<B>26P<€>Ea (a|B,e)fr(a)fr(a)

= aP(B)%.P(e) 2 fala,b,e) f1(a) fr(a)

= aP(B)X.P(e)fi(b, e) (sum out A)

= aP(B)fzi71(b) (sum out F)

= afp(b) X fp17(b)
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Variable elimination: Basic operations

Pointwise product of factors f; and fs:
filzy, ooz yn, o) X folyn, ooy Yy 215 - - -5 21)
= f(@1, . T YLy Yky 21y - ey 21)
E-g-1 fl(aa b) X f2<b7 C) — f(CL, b7 C)

Summing out a variable from a product of factors: move any constant
factors outside the summation:

2ipfix e X fo=fix o X fidiy fap < X fy=fix o X fix fx

assuming fi,..., f; do not depend on X
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Variable elimination algorithm

function ELIMINATIONASK(X,e,bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(Xy,..., X,)

if X € e then return observed point distribution for X
factors<+[]; vars < REVERSE(VARS[bn])
for each var in vars do

factors <+ [MAKEFACTOR(var, e)|factors]

if var is a hidden variable then factors<« SUMOUT(var,factors)
return NORMALIZE(POINTWISEPRODUCT (factors))
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBv C
2. CvDv ~-A
3. Bv Cv ~D
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution .S
2) Compute an approximate posterior probability P
3) Show this converges to the true probability P

Outline:
— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
— MCMC: sample from a stochastic process whose stationary
distribution is the true posterior
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Sampling from an empty network

function PRIORSAMPLE(bn) returns an event sampled from P(X;, ..., X,,) specified by bn
X < an event with n elements
for: = 1tondo
x; «—a random sample from P(X; | Parents(X;))
return x

P(Cloudy) = (0.5,0.5)

_|
_|

sample — true c[ m c| PR
P(Sprinkler|Cloudy) = (0.1,0.9) 1 i
sample — false
P(Rain|Cloudy) = (0.8,0.2)
sample — true

P(WetGrass|—Sprinkler, Rain) = (0.9,0.1) !
sample — true F

M4 T 4|
(e}
o

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 15.3-4 + new 11



Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(x1...2,) = II._ P(x;|Parents(X;)) = P(xy...x,)
I.e., the true prior probability

Let Nps(Y =y) be the number of samples generated for which Y =1y,
for any set of variables Y.

Then P(Y =y) = Nps(Y=y)/N and
lm P(Y=y) = 2pSps(Y=y,H=h)
= Y ,P(Y=y,H=h)

= P(Y=Yy)
That is, estimates derived from PRIORSAMPLE are consistent
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Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTIONSAMPLING(X,e,bn,N) returns an approximation to P(X|e)
N[X] « a vector of counts over X, initially zero
for y=1to N do
X < PRIORSAMPLE(bn)
if x is consistent with e then
N[z] <~ N[z]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain =true and 19 have Rain = false.

A

P(Rain|Sprinkler =true) = NORMALIZE((8, 19)) = (0.296,0.704)

Similar to a basic real-world empirical estimation procedure
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Analysis of rejection sampling

P(Xl|e) = aNpg(X, e) (algorithm defn.)

= Nps(X,e)/Nps(e) (normalized by Npg(e))
P(X,e)/P(e) (property of PRIORSAMPLE)
P(X|e) (defn. of conditional probability)

Q

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P(e) is small
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Likelihood weighting

|dea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function WEIGHTEDSAMPLE(bn,e) returns an event and a weight
X ¢ an event with n elements; w1
for 1 =1 to n do
if X; has a value z; in e
then w+ w x P(X;= z; | Parents(X;))
else x; + a random sample from P(X; | Parents(X;))
return x. w

function LIKELIHOODWEIGHTING(X,e,bn,N) returns an approximation to P(X|e)
W][X] « a vector of weighted counts over X, initially zero
for y=1to N do
X,w < WEIGHTEDSAMPLE(bn)
W]z] + W][z] + w where z is the value of X in x
return NORMALIZE(W[X])
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Likelihood weighting example

Estimate P(Rain|Sprinkler =true, WetGrass = true)

P(C)= 5

c| PO C| PR
HCO NG
F 50 true F| .20

_|
_|

S R | PW)
T T .99
T F .90
F T .90
F F .00

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 15.3-4 + new 16



LW example contd.

Sample generation process:
1. w<+ 1.0
2. Sample P(Cloudy) = (0.5,0.5); say true
3. Sprinkler has value true, so
w — w X P(Sprinkler =true|Cloudy = true) = 0.1
4. Sample P(Rain|Cloudy = true) = (0.8,0.2); say true
5. WetGrass has value true, so
w — w X P(WetGrass =true|Sprinkler =true, Rain = true) = 0.099
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Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE is
Sws(y,e) = HizlP(yﬂParents(Yi))
Note: pays attention to evidence in ancestors only
= somewhere “in between” prior and posterior distribution

Weight for a given sample y, e is
w(y,e) = II._  P(e;|Parents(E;))

Weighted sampling probability is
SWS(Y? e>w<Y7 e)
= Hi.:lP(yﬂParents(Yi)) II;_, P(e;|Parents(E;))
= P(y,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
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Approximate inference using MCMC

“State” of network = current assignment to all variables

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e,bn,N) returns an approximation to P(X|e)
local variables: N[X], a vector of counts over X, initially zero
Y, the nonevidence variables in bn
x, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for y=1to N do
N[z] + N[z] + 1 where z is the value of X in x
for each Y; in Y do
sample the value of Y; in x from P(Y;|M B(Y;)) given the values of M B(Y;) in x
return NORMALIZE(IN[X])

Approaches stationary distribution: long-run fraction of time spent in
each state is exactly proportional to its posterior probability
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MCMC example contd.

Random initial state: C'loudy =true and Rain = false

1. P(Cloudy|M B(Cloudy)) = P(Cloudy|Sprinkler, ~Rain)
sample — false

2. P(Rain|M B(Rain)) = P(Rain|-Cloudy, Sprinkler, W etGrass)
sample — true

Visit 100 states
31 have Rain =true, 69 have Rain = false

A

P(Rain|Sprinkler =true, WetGrass = true)
= NORMALIZE((31,69)) = (0.31, 0.69)

AIMA Slides ©Stuart Russell and Peter Norvig, 1998 Chapter 15.3-4 + new 21



MCMUC analysis: Outline

Transition probability ¢(y — y')
Occupancy probability m;(y) at time ¢

Equilibrium condition on 7; defines stationary distribution 7 (y)
Note: stationary distribution depends on choice of ¢(y — y')

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others
= detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable's Markov blanket
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Stationary distribution

m:(y) = probability in state y at time ¢
m:41(y’) = probability in state y' at time ¢t + 1

741 in terms of m; and ¢y — y')
T1(y) = 2ym(y)aly = ¥)
Stationary distribution: m;, = m 1 =7
m(y') = Xyn(y)g(y = y')  forally’
If 7 exists, it is unique (specific to ¢(y — y’))

In equilibrium, expected “outflow” = expected “inflow”
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Detailed balance

“Outflow” = “inflow” for each pair of states:

T(y)aly = y)=7(y)ly —=y) foraly, y

Detailed balance =- stationarity:

ym(y)aly =y = ZLyn(y)a(y' =)
m(y) Lya(y' = y)
= 7(y')

/

MCMC algorithms typically constructed by designing a transition
probability ¢ that is in detailed balance with desired 7
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Gibbs sampling

Sample each variable in turn, given all other vartables

Sampling Y;, let Y; be all other nonevidence variables
Current values are y; and y;; e is fixed
Transition probability is given by

oy =) =ayi, ¥, = v, ¥:) = Pylyi, e)
This gives detailed balance with true posterior P(yle):
m(y)aly =y') = Plyle)P(yilyi, e) = P(yi.yile) P(yily; e)

= P(ly.,e) P e)P(yly,e) (chain rule)
P(yily;,e)P(y., y;|e) (chain rule backwards)

= q(y = y)r(y) =7(y)aly — y)
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Markov blanket sampling

A variable is independent of all others given its Markov blanket:
P(yily; e) = P(y;| M B(Y;))

Probability given the Markov blanket is calculated as follows:
P(y|MB(Y;)) = P(yg|Parent3(YZ-))szeghildren(mP(zj|Parents(Zj))

Hence computing the sampling distribution over Y; for each flip requires
just cd multiplications if Y; has ¢ children and d values; can cache it if
¢ not too large.

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(Y;|M B(Y;)) won't change much (law of large numbers)
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Performance of approximation algorithms

Absolute approximation: |P(X|e) — P(Xle)| < ¢

Relative approximation: |P(X|]§();(|Z()X|e)| <

€

Relative = absolute since 0 < P <1 (may be O(27"))
Randomized algorithms may fail with probability at most ¢
Polytime approximation: poly(n, et logd—1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any €,6 < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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