
A Comparison of Annealing Techniques for
Academic Course Scheduling

M. A. Saleh Elmohamed1, Paul Coddington2, and Geoffrey Fox1

1 Northeast Parallel Architectures Center
Syracuse University, Syracuse, NY 13244, USA

{saleh, gcf}@npac.syr.edu
2 Department of Computer Science

University of Adelaide, S.A. 5005, Australia
paulc@cs.adelaide.edu.au

Abstract. In this study we have tackled the NP-hard problem of aca-
demic class scheduling (or timetabling) at the university level. We have
investigated a variety of approaches based on simulated annealing, in-
cluding mean-field annealing, simulated annealing with three different
cooling schedules, and the use of a rule-based preprocessor to provide a
good initial solution for annealing. The best results were obtained using
simulated annealing with adaptive cooling and reheating as a function of
cost, and a rule-based preprocessor. This approach enabled us to obtain
valid schedules for the timetabling problem for a large university, using
a complex cost function that includes student preferences. None of the
other methods were able to provide a complete valid schedule.

1 Introduction

The primary objective of this study is to derive an approximate solution to
the problem of university class scheduling, or timetabling, which can be sum-
marized as follows: given data sets of classes and their days, enrollments, and
instructors; rooms and their capacities, types, and locations; distances between
buildings; priorities of each building for different departments; and students and
their class preferences; the problem is to construct a feasible class schedule satis-
fying all the hard constraints and minimizing the medium and soft constraints.
Hard constraints are space and time constraints that must be satisfied, such as
scheduling only one class at a time for any teacher, student, or classroom. Me-
dium and soft constraints are student and teacher preferences that should be
satisfied if possible.

The timetabling problem (TTP) is a high-dimensional, non-Euclidean, multi-
constraint combinatorial optimization problem, and is consequently very difficult
to solve. This problem has been tackled by many researchers, mostly in the field
of operations research. A number of different heuristics have been tried on diffe-
rent instances of the problem, from high school to university course scheduling
(see the reviews by de Werra [5] and Shaerf [30] and the papers collected in
Ref. [4]). For small to medium size problems, such as exam scheduling, high

E. Burke, M. Carter (Eds.): PATAT’97, LNCS 1408, pp. 92–112, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



A Comparison of Annealing Techniques for Academic Course Scheduling 93

school scheduling, or course scheduling for a university department, many of
these methods work well. However no particular method has yet been shown
to produce good results for real-world problems on a much larger scale, such as
scheduling all courses for a large university, which we address in this paper. Also,
we are not aware of any large scale study that takes into account constraints due
to student preferences, as we have done.

We have used data for classes at Syracuse University. Currently this problem
is handled by the university scheduling department in a semi-automated fashion.
A scheduling program is used to find a partial solution, and substantial manual
effort is required to iterate towards a final solution. Also, when scheduling a
certain semester (e.g. fall 1996), a template of a previous semester (e.g. fall
1995) is used as part of the input data.

We have applied the following optimization techniques to this problem:

1. A rule-based expert system.
2. Mean-field annealing.
3. Simulated annealing with geometric cooling.
4. Simulated annealing with adaptive cooling.
5. Simulated annealing with adaptive cooling and reheating as a function of

cost.
6. Simulated annealing (using each of the three different cooling schedules) with

a rule-based preprocessor to provide a good initial solution.

The best results were obtained using simulated annealing with adaptive coo-
ling and reheating as a function of cost, and with a rule-based preprocessor to
provide a good initial solution. Using this method, and with careful selection of
parameters and update moves, we were able to generate solutions to the class
scheduling problem using real data for a large university. None of the other
methods were able to provide a complete valid solution.

2 The Timetabling Problem

Timetabling is the assignment of time slots to a set of events, subject to con-
straints on these assignments. The NP-complete professors and classes timeta-
bling problem [7,13,14] is a constraint satisfaction problem that can be briefly
stated as follows:

For a certain school with Np professors, Nq classes, Nx classrooms and lecture
halls, and Ns students, it is required to schedule Nl professor-class pairs within
a time limit of Nt time slots producing a legal schedule. A legal schedule needs
to be found such that no professor, class, or student is in more than one place
at a time, and no room is expected to accommodate more than one lesson at a
time or more students than its capacity.

The constraints for this problem can be hard, medium or soft. The medium
and soft constraints have an associated cost (or penalty), and if they are not
satisfied, the goal is to minimize this cost. Soft constraints have a lower priority
(and thus lower cost) than medium constraints. The hard constraints must be



94 M.A.S. Elmohamed, P. Coddington, and G. Fox

satisfied, so their associated cost must be reduced to zero. A feasible schedule is
one that satisfies all the hard constraints.
Hard constraints are usually constraints that physically cannot be violated.
This includes events that must not overlap in time, such as:

– classes taught by the same professor,
– classes held in the same room,
– a class and a recitation or a lab of the same class.

Another examples are space or room constraints:

– A class cannot be assigned to a particular room unless the capacity of the
room is greater than or equal to the class enrollment.

– Some classes, such as laboratories, require a certain type of room.

Medium constraints are usually considered to be those constraints that fall
into the gray area between the hard and soft constraints [9]. In our implemen-
tation, we define medium constraints to be constraints such as time and space
conflicts which, like hard constraints, cannot physically be violated (for example,
it is not possible for one person to be in two different classes at the same time).
However we consider these constraints to be medium rather than hard if they
can be avoided by making adjustments to the specification of the problem. The
primary example is student preferences. We cannot expect to be able to satisfy
all student class preferences, in some cases, certain students will have to adjust
their preferences since certain classes will clash, or will be oversubscribed.

Medium constraints have a high penalty attached to them, although not
as high as that associated with the hard constraints. In the final schedule the
penalty of these constraints should be minimized and preferably reduced to zero.
Some examples of medium constraints are:

– Avoid time conflicts for classes with students in common.
– Eligibility criteria for the class must be met.
– Do not enroll athletes in classes that conflict with their sport practice time

(of course, depending on the sport).

Soft constraints are preferences that do not deal with time conflicts, and have
a lower penalty (or cost) associated with them. We aim to minimize the cost,
but do not expect to be able to reduce it to zero. Some examples are:

– For each student, balance the three-day (Mon, Wed, Fri) as well as the two-
day (Tue, Thu) schedules.

– Balance or spread out the lectures over the week.
– Classes may request contiguous time slots.
– Balance enrollment in multi-section classes.
– Lunch and other break times may be specified.
– Professors may request periods in which their classes are not taught.
– Professors may have preferences for specific rooms or types of rooms.
– Minimize the distance between the room where the class is assigned and the

building housing its home department.



A Comparison of Annealing Techniques for Academic Course Scheduling 95

Some soft constraints may have higher priority (and thus higher cost) than
others. For example, preferences involving teachers will have higher priority than
the preferences of students.

The cost function measures the quality of the current schedule and gene-
rally involves the weighted sum of penalties associated with different types of
constraint violations. The aim of the optimization technique is to minimize the
cost function.

3 Mean-Field Annealing

One of the potential drawbacks of using simulated annealing for hard optimiza-
tion problems is that finding a good solution can often take an unacceptably long
time. Mean-field annealing (MFA) attempts to avoid this problem by using a de-
terministic approximation to simulated annealing, by attempting to average over
the statistics of the annealing process. The result is improved execution speed
at the expense of solution quality. Although not strictly a continuous descent
technique, MFA is closely related to the Hopfield neural network [15,17].

Mean-field annealing has been successfully applied to high school class sche-
duling [14]. For scheduling, it is advantageous to use a Potts neural encoding to
specify discrete neural variables (or neurons) for the problem. This is defined in
its simplest form as a mapping of events onto space-time slots, for example an
event i, in this case a professor-class pair (p, q), is mapped onto a space-time slot
a, in this case a classroom-timeslot pair (x, t). Now, the Potts neurons Sia are
defined to be 1 if event i takes place in space-time slot a, and 0 otherwise. In
this way, the constraints involved can be embedded in the neural net in terms
of the weights wi,j of the neural network, which encode a Potts normalization
condition such as

∑
a Sia = 1.

For a full derivation of the mean-field annealing algorithm from its roots
in statistical physics, see Hertz et al. [15] or Peterson et al. [29]. Here we will
just give a brief overview of the method. The basic idea is that it is possible to
approximate the actual cost or energy function E, which is a function of discrete
neural variables Sia, by an effective energy function E

′
that can be represented

in terms of continuous variables Uia and Via. These are known as mean field
variables, since Via is an approximation to the average value of Sia at a given
temperature T .

This approach effectively smooths out the energy function and makes it ea-
sier to find the minimum value, which is obtained by solving the saddle point
equations ∂E

′

∂Via
= 0 and ∂E

′

∂Uia
= 0, which generate a set of self-consistent mean

field theory (MFT) equations in terms of the mean field variables U and V :

Uia = − 1
T

∂E

∂Via
(1)

Via =
eUia

∑
b eUib

. (2)



96 M.A.S. Elmohamed, P. Coddington, and G. Fox

The MFA algorithm involves solving equations 1 and 2 at a series of progres-
sively lower temperatures T : this process is known as temperature annealing.
The critical temperature Tc, which sets the scale of T , is estimated by expan-
ding equation 2 around the trivial fixed-point [13,14] V

(0)
ia = 1

Na
, where Na is the

number of possible states of each of the network neurons. For example, for the
events defined by professor-class pairs (p, q) mapped onto classroom-timeslots
(x, t), we have NpNq neurons, each of which has NxNt possible states, in which
case V

(0)
pq;xt = 1

NxNt
.

Equations 1 and 2 can be solved iteratively using either synchronous or serial
updating. The iterative dynamics to evolve the mean field variables toward a self-
consistent solution is explained in detail by Peterson et al. [28]. The solutions
correspond to stable states of the Hopfield network [17]. Observe from equation
2 that any solution to the MF equations respects a continuous version of the
Potts condition

∑

a

Via = 1 ∀ i. (3)

3.1 The Mean-Field Annealing Algorithm

The generic MFA algorithm appears in Figure 1. At high temperatures T , the
mean-field solutions will be states near the fixed-point symmetrical maximum
entropy state Via = 1/Na. At low temperatures, finding a mean-field solution will
be equivalent to using the Hopfield model, which is highly sensitive to the initial
conditions and known to be ineffective for hard problems [17]. MFA improves
over the Hopfield model by using annealing to slowly decrease the temperature
in order to sidestep these problems.

These characteristics are similar to those of simulated annealing, which is no
surprise since both it and the mean-field method compute thermal averages over
Gibbs distributions of discrete states, the former stochastically and the latter
through a deterministic approximation. It is therefore natural to couple the
mean-field method with the concept of annealing from high to low temperatures.

In addition to the structure of the energy function, there are three major
interdependent issues which arise in completely specifying a mean-field annealing
algorithm for a timetabling problem:

– The values of the coefficients of terms in the energy function.
– The types of dynamics used to find solutions of the MFT equations at each

T .
– The annealing schedule details, i.e. the initial temperature T (0), the rules for

deciding when to reduce T and by how much, and the termination criteria.

Peterson et al. [14] introduced a quantity called saturation, Σ, defined as

Σ =
1
Ni

∑

ia

V 2
ia , (4)



A Comparison of Annealing Techniques for Academic Course Scheduling 97

where Ni is the number of events (in this case the number of professor-class
pairs). This characterizes the degree of clustering of events in time and/or space,
Σmin = 1

Na
corresponds to high temperature, whereas Σmax = 1 means that all

the Via have converged to 0 or 1 values, indicating that each event has been
assigned to a space-time slot.

1. Choose a problem and encode the constraints into weights {wij}.
2. Find the approximate phase transition temperature by linearizing equation (2).
3. Add a self-coupling β-term if necessary. In a neural net, this corresponds to a

feedback connection from a neuron to itself.
4. Initialize the neurons Via to high temperature values 1

Na
plus a small random term

such as rand[−1, 1] × 0.001; and set T (0) = Tc.
5. Until (Σ ≥ 0.99) do:

– At each T (n), update all Uia and Via by iterating to a solution of the mean
field equations.

– T (n + 1) = αT (n), we chose α = 0.9
6. The discrete values Sia that specify the schedule are obtained by rounding the

mean field values Via to the nearest integer (0 or 1).
7. Perform greedy heuristics if needed to account for possible imbalances or rule vio-

lations.

Fig. 1. The Generic Mean-Field Annealing Algorithm

The first step of Figure 1 is to map the constraints of the problem into the
neural net connection weights. In our implementation, at each Tn the MFA algo-
rithm (Figure 1) performs one update per neural variable (defined as one sweep)
with sequential updating using equations 1 and 2. After reaching a saturation
value close to 1 (we chose Σ = 0.99) we check whether the obtained solutions
are valid, i.e. Ehard = 0. If this is not the case the network is re-initialized and
is allowed to resettle. We repeat this procedure a number of times until the best
solution is found. A similar procedure was carried out on high school scheduling
by Peterson et al. [14].

The MFA implementation was a little more complicated than the implemen-
tation of simulated annealing and the expert system, since it had many more
parameters to handle, and it was often more difficult to find optimal values for
these parameters. For example, one complication is the computation of the criti-
cal temperature Tc, which involved an iterative procedure of a linearized dynamic
system. On the other hand, we observed that the convergence time was indeed
much less than any of the convergence times of the simulated annealing using the
three annealing schedules studied. For more details on our MFA implementation,
see Ref. [10].



98 M.A.S. Elmohamed, P. Coddington, and G. Fox

4 The Rule-Based System

We have implemented a fairly complex rule-based expert system for solving the
timetabling problem, for three reasons. Firstly, it gives us a benchmark as to
how well other methods do in comparison to this standard technique. Secondly,
a simplified version of the rule-based system is used to provide sensible choices
for moves in the simulated annealing algorithm, rather than choosing swaps
completely at random, and this greatly improves the proportion of moves that
are accepted. Thirdly, we have used this system as a preprocessor for simulated
annealing, in order to provide a good initial solution.

Simulated annealing is a very time-consuming, computationally intensive pro-
cedure. Using an expert system as a preprocessor is a way of quickly providing
a good starting point for the annealing algorithm, which reduces the time taken
in the annealing procedure, and improves the quality of the result. Our results
clearly support this rationale for the case of academic scheduling.

The rule-based expert system consists of a number of rules (or heuristics)
and conventional recursion to assist in carrying out class assignments. We have
developed this system specifically for the problem of academic scheduling. The
basic data structures or components of the system are:

1. Distance matrix of values between each academic department and every
other building under use for scheduling.

2. Class data structure of each class scheduled anywhere in campus. These
structures are capable of linking with each other.

3. Room data structure of each room (regardless of type) involved in the sche-
duling process. Like classes, room structures are also linked with each other.

4. Data structures for time periods to keep track of which hour or time slot
was occupied and which was not.

5. Department inclusion data structure giving department inclusion within
other larger departments or colleges.

6. Students structures indicating classes of various degree of requirements and
preferences for each student.

The basic function of the system is as follows: given data files of classes, rooms
and buildings, department-to-building distance matrix, students data, and the
inclusion data, using the abovementioned data structures, the system builds an
internal database which in turn is used in carrying out the scheduling process.
This process involves a number of essential sub-processes such as checking the
distances between buildings, checking building, room type and hours occupied,
checking and comparing time slots for any conflicts, checking rooms for any space
conflict, and keeping track of and updating the hours already scheduled.

The rule-based system uses an iterative approach. The basic procedure for
each iteration is as follows. The scheduling of classes is done by department,
so each iteration consists of a loop over all departments. The departments are
chosen in order of size, with those having the most classes being scheduled first.
The system first loops over all the currently unscheduled classes, and attempts
to assign them to the first unoccupied room and timeslot that satisfies all the



A Comparison of Annealing Techniques for Academic Course Scheduling 99

rules governing the constraints. Since constraints involving capacity of rooms
are very difficult to satisfy, larger classes are scheduled first, to try to avoid not
having large enough rooms later for those class sections with large enrollments.

In some cases the only rooms and timeslots that satisfy all the rules will
already be occupied by previously scheduled classes. In that case, the system
attempts to move one of these classes into a free room and timeslot, to allow the
unscheduled class to be scheduled.

Next, the system searches through all the scheduled classes, and selects those
that have a high cost, by checking the medium and soft constraints such as how
closely the room size matches the class size, how many students have time con-
flicts, whether the class is in a preferred time period or a preferred building, and
so on. Selecting threshold values for defining what is considered a “high” cost in
each case is a subjective procedure, but it is straightforward to choose reasona-
ble values. When a poorly scheduled class is identified, the system searches for
a class to swap it with, so that the hard constraints are still satisfied, but the
overall cost of the medium and soft constraints is reduced.

This process of swapping rooms continues provided all the rules are satisfied
and no “cycling” (swapping of the same classes) occurs. Once all the departments
have been considered, this completes one iteration. The system continues to
follow this iterative procedure until a complete iteration produces no changes to
the schedule.

There are many rules dealing with space and hours, type of room, and priority
of room. Many are quite complex, but some of the basic rules, such as those
implementing the hard constraints, can be quite straightforward – for example,
the following is the basic rule for dealing with time and space conflicts for a
room:

IF [room(capacity) > class(space-requested)] and [no time conflict in this
room] THEN assign the room to the class.

When the rule-based system is used as a preprocessor, it produces a partial
schedule as an output, since it is usually unable to assign all of the given classes to
rooms and times slots. The output is divided into two parts: the first consists of
classes, with their associated professors and students, assigned to various rooms;
and the second is a list of classes that could not be assigned due to constraint
conflicts.

5 Simulated Annealing

Simulated annealing (SA) has been widely used for tackling different combinato-
rial optimization problems, particularly academic scheduling [35,7,8]. The basic
algorithm is described in Figure 2. The results obtained depend heavily on the
cooling schedule used. We initially used the most commonly known and used
schedule, which is the geometric cooling, but later tried adaptive cooling, as well
as the method of geometric reheating based on cost [3].



100 M.A.S. Elmohamed, P. Coddington, and G. Fox

A comprehensive discussion of the theoretical and practical details of SA is
given in [1,27,32,34]. It suffices here to say that the elementary operation in
the Metropolis method for a combinatorial problem such as scheduling is the
generation of some new candidate configuration, which is then automatically
accepted if it lowers the cost (C), or accepted with probability exp(−∆C/T ),
where T is the temperature, if it would increase the cost by ∆(C). Also, in
Figure 2, s is the current schedule and s

′
is a neighboring schedule obtained from

the current neighborhood space (Ns) by swapping two classes in time and/or
space.

Thus the technique is essentially a generalization of the local optimization
strategy, where, at non-zero temperatures, thermal excitations can facilitate es-
cape from local minima.

1. Generate an initial schedule s.
2. Set the initial best schedule s∗ = s.
3. Compute cost of s : C(s).
4. Compute initial temperature T0.
5. Set the temperature T = T0.
6. While stop criterion is not satisfied do:

a) Repeat Markov chain length (M) times:
i. Select a random neighbor s

′
to the current schedule, (s

′ ⊂ Ns) .
ii. Set ∆(C) = C(s

′
) − C(s) .

iii. If (∆(C) ≤ 0 {downhill move}):
– Set s = s

′
.

– If C(s) < C(s∗) then set s∗ = s.
iv. If (∆(C) > 0 {uphill move}):

– Choose a random number r uniformly from [0, 1].
– If r < e−∆(C)/T then set s = s

′
.

b) Reduce (or update) temperature T .
7. Return the schedule s∗.

Fig. 2. The Simulated Annealing Algorithm

The SA algorithm has advantages and disadvantages compared to other glo-
bal optimization techniques. Among its advantages are the relative ease of imple-
mentation, the applicability to almost any combinatorial optimization problem,
the ability to provide reasonably good solutions for most problems (depending
on the cooling schedule and update moves used), and the ease with which it can
be combined with other heuristics, such as expert systems, forming quite useful
hybrid methods for tackling a range of complex problems. SA is a robust techni-
que, however, it does have some drawbacks. To obtain good results the update
moves and the various tunable parameters used (such as the cooling rate) need
to be carefully chosen, the runs often require a great deal of computer time, and
many runs may be required.



A Comparison of Annealing Techniques for Academic Course Scheduling 101

Depending on the problem to which it is applied, SA appears competitive
with many of the best heuristics, as shown in the work of Johnson et al. [21].

5.1 Timetabling Using the Annealing Algorithm

The most obvious mapping of the timetabling problem into the SA algorithm
involves the following constructs:

1. a state is a timetable containing the following sets:
– P : a set of professors.
– C: a set of classes.
– S: a set of students.
– R: a set of classrooms.
– I: a set of time intervals.

2. a cost or “energy” E(P, C, S, R, I) such that:
– E(P ): is the cost of assigning more than maximum number of allowed

classes Mp to the same professor, plus scheduling one or more classes
that cause a conflict in the professor’s schedule.

– E(C): is the cost of scheduling certain classes at/within the same time
period in violation of the exclusion constraint, for example.

– E(S): is the cost of having two or more classes conflict in time; plus cost
of having in the schedule one or more classes that really don’t meet the
student’s major, class requested, or class requirements; plus the cost of
not having the classes evenly spread out over the week, etc.

– E(R): is the cost resulting from assigning room(s) of the wrong size
and/or type to a certain class.

– E(I): is the cost of having more or less time periods than required, plus
cost of an imbalanced class assignments (a certain period will have more
classes assigned to than others, etc.).

3. A swap (or a move) is the exchange of one or more of the following: class ci

with class cj in the set C with respect to time periods Ii and Ij , and/or with
respect to classroom Ri and Rj , respectively. Generally, this step is referred
to as class swapping.

Along with all of the necessary constraints, the simulated annealing algorithm
also takes as input data the following: the preprocessor output in the form of
lists of scheduled and non-scheduled classes and their associated professors and
room types, a list of rooms provided by the registrar’s office, a department to
building distance matrix, a list of students and their class preferences, and a list
of classes that are not allowed to be scheduled simultaneously.

To use simulated annealing effectively, it is crucial to use a good cooling sche-
dule, and a good method for choosing new trial schedules, in order to efficiently
sample the search space. We have experimented with both these areas, which
are discussed in the following sections.



102 M.A.S. Elmohamed, P. Coddington, and G. Fox

5.2 The Annealing Schedules

Three annealing schedules have been used in our experiments to update the
temperature of the SA algorithm in Figure 2: geometric cooling, adaptive cooling,
and adaptive reheating as a function of cost.

The first schedule we have used is geometric cooling, where the new tem-
perature (T

′
) of the SA algorithm is computed using

T
′
= αT , (5)

where α (0 < α < 1) denotes the cooling factor. Typically the value of α is chosen
in the range 0.90 to 0.99. This cooling schedule has the advantage of being well
understood, having a solid theoretical foundation, and being the most widely
used annealing schedule. Our results obtained from using this standard cooling
schedule will be used as a baseline for comparison with those using the other
two schedules, which allow the rate of cooling to be varied.

The second annealing schedule we used is the method of reheating as a
function of cost (RFC), which was used for timetabling by Abramson et al. [3],
but the ideas behind it are due to Kirkpatrick et al. [22,23] and White [36].
Before introducing this schedule we first summarize a few relevant points on
the concept of specific heat (CH). Specific heat is a measure of the variance
of the cost (or energy) values of states at a given temperature. The higher the
variance, the longer it presumably takes to reach equilibrium, and so the longer
one should spend at the temperature, or alternatively, the slower one should
lower the temperature.

Generally, in combinatorial optimization problems, phase transitions [16,26]
can be observed as sub-parts of the problem are resolved. In some of the work
dealing with the traveling salesman problem using annealing [24], the authors
often observe that the resolution of the overall structure of the solution occurs at
high temperatures, and at low temperatures the fine details of the solution are
resolved. As reported in [3], applying a reheating type procedure, depending on
the phase, would allow the algorithm to spend more time in the low temperature
phases, thus reducing the total amount of time required to solve a given problem.

In order to calculate the temperature at which a phase transition occurs, it is
necessary to compute the specific heat of the system. A phase transition occurs
at a temperature T (Cmax

H ) when the specific heat is maximal (Cmax
H ), and this

triggers the change in the state ordering. If the best solution found to date has a
high energy or cost then the super-structure may require re-arrangement. This
can be done by raising the temperature to a level which is higher than the phase
transition temperature T (Cmax

H ). Generally, the higher the current best cost,
the higher the temperature which is required to escape the local minimum. To
compute the aforementioned maximum specific heat, we employ the following
steps [3,34,27].

At each temperature T , the annealing algorithm generates a set of configu-
rations C(T ). Let Ci denote the cost of configuration i, C(T ) is the average cost
at temperature T , and σ(T ) is the standard deviation of the cost at T .



A Comparison of Annealing Techniques for Academic Course Scheduling 103

At temperature T , the probability distribution for configurations is:

Pi(T ) =
e

−Ci
kT

∑
j e

−Cj
kT

. (6)

The average cost is computed as:

< C(T ) >=
∑

i∈C
CiPi(T ) . (7)

Therefore, the average square cost is:

< C2(T ) >=
∑

i∈C
C2

i Pi(T ) . (8)

The variance of the cost is:

σ2(T ) =< C2(T ) > − < C(T ) >2 . (9)

Now, the specific heat is defined as:

CH(T ) =
σ2(T )

T 2 . (10)

The temperature T (Cmax
H ) at which the maximum specific heat occurs, or at

which the system undergoes a phase transition, can thus be found.
Reheating sets the new temperature to be

T = K · Cb + T (Cmax
H ) , (11)

where K is a tunable parameter and Cb is the current best cost. Reheating
is done when the temperature drops below the phase transition (the point of
maximum specific heat) and there has been no decrease in cost for a specified
number of iterations, i.e. the system gets stuck in a local minimum. Reheating
increases the temperature above the phase transition (see equation 11), in order
to produce enough of a change in the configuration to allow it to explore other
minima when the temperature is reduced again.

The third cooling schedule we have tried is adaptive cooling. In this case,
a new temperature is computed based on the specific heat, i.e. the standard
deviation of all costs obtained at the current T . The idea here is to keep the
system close to equilibrium, by cooling slower close to the phase transition, where
the specific heat is large. There are many different ways of implementing this
idea, we have chosen the approach taken by Huang et al. [18], which was shown
to yield an efficient cooling schedule. Let Tj denote the current temperature, at
step j of the annealing schedule. After calculating σ(Tj) from equation 9, the
new temperature Tj+1 is computed as follows:

Tj+1 = Tj · e
− aTj

σ̄(Tj) , (12)



104 M.A.S. Elmohamed, P. Coddington, and G. Fox

where a is a tunable parameter. Following suggestions by Otten and van
Ginneken [27] and Diekmann et al. [6], σ(Tj) is smoothed out in order to avoid
any dependencies of the temperature decrement on large changes in the standard
deviation σ. We used the following standard method to provide a smoothed
standard deviation σ̄:

σ̄(Tj+1) = (1 − ω)σ(Tj+1) + ωσ(Tj)
Tj+1

Tj
(13)

and set ω to 0.95. This smoothing function is used because it follows (from
the form of the Boltzmann distribution, see [32,36]) that it preserves the key
relationship:

d

dT
C(T ) =

σ̄2(T )
T 2 = CH (14)

Note that reheating can be used in conjunction with any cooling schedule.
We have used it with adaptive cooling.

5.3 The Choice of Moves

The performance of any application of simulated annealing is highly dependent
on the method used to select a new trial configuration of the system for the
Metropolis update. In order for the annealing algorithm to work well, it must
be able to effectively sample the parameter space, which can only be done with
efficient moves.

The simplest method for choosing a move is to swap the rooms or timeslots of
two randomly selected classes. However this is extremely inefficient, since most
of the time random swapping of classes will increase the overall cost, especially if
we are already close to obtaining a valid solution (i.e. at low temperature), and
will likely be rejected in the Metropolis procedure. This low acceptance of the
moves means this simple method is very inefficient, since a lot of computation
is required to compute the change in cost and do the Metropolis step, only to
reject the move.

What is needed is a strategy for choosing moves that are more likely to be
accepted. A simple example is in the choice of room. If we randomly choose a
new room from the list of all rooms, it will most likely be rejected, since it may
be too small for the class, or an auditorium when, for example, a laboratory is
needed. One possibility is to create a subset of all the rooms which fulfill the
hard constraints on the room for that particular class, such as the size and type
of room. Now we just make a random selection for a room for that class only
from this subset of feasible rooms, with an acceptance probability that is sure to
be much higher. In addition, each class in our data set comes with a “type-of-
space-needed” tag which is used along with other information to assign the class
to the right room. This effectively separates the updates into independent sets
based on room type, so for example, laboratories are scheduled separately from
lectures. In our method we carry out the scheduling of lectures first, followed by
scheduling of laboratories making sure that during the course of this process no
lecture and its associated laboratory are scheduled in the same time period.



A Comparison of Annealing Techniques for Academic Course Scheduling 105

In effect, we have embedded a simple expert system into the annealing algo-
rithm in order to improve the choice of moves, as well as using a more complex
expert system as a preprocessor for the annealing step. When used to choose the
moves for annealing, the main function of the rule-based system is to ensure that
all the trial moves satisfy the hard constraints. Many of the rules dealing with
the medium and soft constraints are softened or eliminated, since reducing the
cost of these constraints is done using the Metropolis update in the annealing
algorithm.

Another of the modifications to the rule-based system is that while the ver-
sion used in the preprocessor is completely deterministic, the version used in
choosing the moves for annealing selects at random from multiple possibilities
that satisfy the rules equally well. This extra freedom in choosing new schedules,
plus the extra degree of randomness inherent in the annealing update, helps pre-
vent the system from getting trapped in a local minimum before it can reach a
valid schedule, which is the problem with the standard deterministic rule-based
system.

To improve further on the move strategy, we can take the subset of possible
move choices that we have created for each class, and choose from them proba-
bilistically rather than randomly. There may be certain kinds of moves that are
more likely to be effective, so our move strategy is to select these moves with
a higher probability. For example, swapping a higher level class (e.g. graduate)
with a lower level class (e.g. a first or a second year type) generally has a higher
acceptance, since there is little overlap between students taking these classes.
Furthermore, we have experimented with two kinds of swaps, those that only
involve classes offered by the same department or college and the second, swaps
between classes of different departments and colleges.

Generally, the swap methods we have taken here can be considered as heuri-
stics for pruning the neighborhood or narrowing the search space, which provides
much more efficient moves and in turn an overall improvement in the results.

6 Experimental Results

Our computations were done with a number of goals in mind. The main objective
was to provide a schedule which satisfied all hard constraints and minimized
the cost of medium and soft constraints, using real-life data sets for a large
university. We also aimed to find an acceptable set of annealing parameters and
move strategies for general timetabling problems of this kind, and to study the
effect of using a preprocessor to provide the annealing program with a good
starting point. Finally, we wanted to make a comparison of the performance of
the three different cooling schedules, geometric cooling, adaptive cooling, and
reheating based on cost.

We spent quite some time finding optimal values for the various parameters
for the annealing schedule, such as the initial temperature, the parameters con-
trolling the rate of cooling (α for geometric cooling, a for adaptive cooling) and
reheating (K), and the number of iterations at each temperature (for more de-



106 M.A.S. Elmohamed, P. Coddington, and G. Fox

tails, see Ref. [11]). Johnson et al. [21] noted in their SA implementation for the
traveling salesman problem (TSP) that the number of steps at each temperature
(or the size of the Markov chain) needed to be at least proportional to the “neig-
hborhood” size in order to maintain a high-quality result. From our experiments
we found the same to be true for the scheduling problem, even though it is very
different from the TSP. Furthermore, in a few tests for one semester we fixed
the number of classes and professors but varied the number of rooms and time
slots, and found that the final result improves as the number of iterations in the
Markov chain becomes proportional to a combination of the number of classes,
rooms and time slots. We also observed the same behavior when we fixed the
number of rooms and time slots but varied number of classes.

Our study case involved real scheduling data covering three semesters at Sy-
racuse University. The size and type of the three-semester data is shown in Ta-
ble 1. Nine types of rooms were used: auditoriums, classrooms, computer clusters,
conference rooms, seminar rooms, studios, laboratories, theaters, and unspecified
types. Staff and teaching assistants are considered part of the set of professors.
Third semester (summer) data was much smaller than other semesters, howe-
ver, there were additional space and time constraints and fewer available rooms.
Our data was quite large in comparison to data used by other researchers. For
example, high school data used by Peterson and colleagues [13,14] consists of ap-
proximately 1000 students, 20 different possible majors, and an overall periodic
school schedule (over weeks). In the case of Abramson et al. [2], their data set
was created randomly and was relatively small, and they stated that problems
involving more than 300 tuples were very difficult to solve.

Table 1 lists all major components of the data we have used. Timetabling
problems can be characterized by their sparseness. After the required number of
lessons Nl have been scheduled, there will be Nsp = (NxNt − Nl) spare space-
time slots, hence, the sparseness ratio of the problem is defined as the ratio
Nsp/(NxNt). The denser the problem, the lower the sparseness ratio, and the
harder the problem is to solve. Also, for dense problems, there is an additional
correlation involving the problem size. Table 2 shows the sparseness of the three-
semester data. For university scheduling, the sparseness ratio generally decreases
as the data size (particularly the number of classes) increases, so the problem
becomes harder to solve. Including student preferences makes the problem much
harder, but these are viewed as medium constraints and thus are not necessarily
satisfied in a valid solution.

Our overall results are shown in Tables 3 and 4. These tables show the percen-
tage of classes that could be scheduled in accordance with the hard constraints.
In each case (apart from the expert system, which is purely deterministic), we
have done 10 runs (with the same parameters, just different random numbers),
and the tables show the average of the 10 runs, as well as the best and worst
results. The MFA results are different only due to having different initial con-
ditions. Each simulated annealing run takes about 10 to 20 hours on a Unix
workstation, while a single MFA run takes approximately an hour and an expert
system run takes close to two hours.



A Comparison of Annealing Techniques for Academic Course Scheduling 107

Table 1. Size of the data set for each of the three semesters.

First Semester Second Semester Third Semester

Rooms 509 509 120
Classes 3839 3590 687
Professors 1190 1200 334
Students 13653 13653 2600
Buildings 43 43 11
Schools and/or Colleges 20 21 17
Departments or 143 141 108
Course Prefixes
Areas of Study (majors) 200 200 200

Table 2. The sparseness ratios of the problem for the data sets for each of the three
semesters. Lower values indicate a harder problem.

Academic Sparseness
Time Period ratio

First Semester 0.50
Second Semester 0.53
Third Semester 0.62

Table 3. Percentage of classes scheduled using the different methods. The averages
and highest and lowest values were obtained using 10 independent runs for simulated
annealing (SA) and mean-field annealing (MFA). The expert system (ES) is determi-
nistic so the results are from a single run. No preprocessor was used with the three
methods.

Academic Algorithm Scheduled Highest Lowest
Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 65.00 67.50 56.80
SA (adaptive) 67.80 70.15 61.20
SA (cost-based) 70.20 72.28 68.80
ES 76.65 76.65 76.65
MFA 65.60 71.00 61.00

Second Semester SA (geometric) 65.65 68.00 57.10
SA (adaptive) 68.50 70.10 60.77
SA (cost-based) 75.14 77.68 70.82
ES 79.00 79.00 79.00
MFA 67.20 75.00 65.00

Third Semester SA (geometric) 83.10 86.44 68.50
SA (adaptive) 85.80 89.00 70.75
SA (cost-based) 91.20 95.18 85.00
ES 96.80 96.80 96.80
MFA 88.00 95.00 82.00



108 M.A.S. Elmohamed, P. Coddington, and G. Fox

Table 4. Percentage of scheduled classes, averaged over 10 runs of the same initial
temperature and other parameters, for three terms using simulated annealing with an
expert system as preprocessor.

Academic Algorithm Scheduled Highest Lowest
Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 93.90 95.12 85.20
SA (adaptive) 98.80 99.20 95.00
SA (cost-based) 100.0 100.0 100.0

Second Semester SA (geometric) 95.00 98.95 89.40
SA (adaptive) 99.00 99.50 98.50
SA (cost-based) 100.0 100.0 100.0

Third Semester SA (geometric) 97.60 98.88 90.90
SA (adaptive) 100.0 100.0 100.0
SA (cost-based) 100.0 100.0 100.0

As expected, each of the methods did much better for the third (summer)
semester data, which has a higher sparseness ratio. Our results also confirm what
we expected for the different cooling schedules for simulated annealing, in that
adaptive cooling performs better than geometric cooling, and reheating improves
the result even further.

When a random initial configuration is used, simulated annealing performs
very poorly, even worse than the expert system (ES). However, there is a drama-
tic improvement in performance when a preprocessor is used to provide a good
starting point for the annealing. In that case, using the best cooling schedule of
adaptive cooling with reheating as a function of cost, we are able to find a valid
class schedule every time.

In the case of mean-field annealing, the overall results are generally below
those of SA and ES. In addition, we have found in the implementation of this
method that the results were quite sensitive to the size of the data as well the
type of constraints involved. If we confine ourselves to the set of hard constraints,
the results are as good as or even better than the other methods. However if
we take into account the medium and soft constraints, that is, the overall cost
function, this method does not perform as well.

Student preferences are included only as medium constraints in our imple-
mentation, meaning that these do not have to be satisfied for a valid solution,
but they have a high priority. For the valid schedules we have produced, appro-
ximately 75% of the student preferences were satisfied. This is reasonably good
(particularly since other approaches do not deal with student preferences at all),
but we are working to improve upon this result.



A Comparison of Annealing Techniques for Academic Course Scheduling 109

7 Conclusions

We have successfully applied simulated annealing to the difficult problem of aca-
demic scheduling for a large university. Feasible schedules were obtained for real
data sets, including student preferences, without requiring enormous computa-
tional effort.

Mean-field annealing works well for small scheduling problems, but does not
appear to scale well to large problems with many complex constraints. For this
problem, both simulated annealing and the rule-based system were more effec-
tive than MFA. It is more difficult to tune the parameters for MFA than for
simulated annealing, and because of the complexity and size of the Potts neural
encoding, there seems to be no clear way of preserving the state of a good initial
configuration provided by a preprocessor when using MFA.

Using a preprocessor to provide a good initial state greatly improved the
quality of the results for simulated annealing. In theory, using a good initial
state should not be necessary, and any initial state should give a good result,
however in practice, we do not have an ideal cooling schedule for annealing, or an
ideal method for choosing trial moves and efficiently exploring the search space,
and there are restrictions on how long the simulation can take. In general, for
very hard problems with large parameter spaces that can be difficult to search
efficiently, and for which very slow cooling would be much too time-consuming,
we might expect that a good initial solution would be helpful. We used a fairly
complex rule-based expert system for the preprocessor, however the type of
preprocessor may not be crucial. Other fast heuristics could possibly be used,
for example a graph coloring approach [25], or it may be possible to just utilize
the schedule from the same semester for the previous year. A modified version
of the rule-based system was used to choose the trial moves for the simulated
annealing, and the high acceptance rate provided by this system was crucial to
obtaining good results.

As expected, for the simulated annealing, adaptive cooling performed better
than geometric cooling, and using reheating improved the results even further.
The best results were obtained using simulated annealing with adaptive cooling
and reheating as a function of cost, and with a rule-based preprocessor to provide
a good initial solution. Using this method, and with careful selection of parame-
ters and update steps, we were able to generate solutions to the class scheduling
problem using real data for a large university. None of the other methods were
able to provide a complete solution.

Our main conclusion from this work is that simulated annealing, with a
good cooling schedule, optimized parameters, carefully selected update moves,
and a good initial solution provided by a preprocessor, can be used to solve the
academic scheduling problem at a large university, including student preferences.
Similar approaches should prove fruitful for other difficult scheduling problems.



110 M.A.S. Elmohamed, P. Coddington, and G. Fox

Acknowledgments

The first author is very grateful for the valuable discussion and help of Robert
Irwin in converting and formatting the registration data prior to the scheduling
process. We also would like to thank Andrew Gee and Martin Simmen for the
useful comments and suggestions, and Carsten Peterson for the pointers and
comments about his papers. Many thanks go to Karen Bedard for providing us
with the data and answering so many questions we had about it, Meg Cortese for
providing us with a set of building constraints for various departments, and Prof.
Ben Ware, Vice President for Research and Computing at Syracuse University,
for his support and encouragement.

References

1. Aarts, E. H., J. Korst, and P. J. van Laarhoven, “Simulated annealing,” in Local
Search in Combinatorial Optimization, E. H. Aarts and J. K. Lenstra (eds.), John
Wiley and Sons, 1997.

2. Abramson, D., “Constructing school timetables using simulated annealing: sequen-
tial and parallel algorithms,” Management Science 37(1), 98-113, 1991.

3. Abramson, D., H. Dang, and M. Krishnamoorthy, “An Empirical Study of Simula-
ted Annealing Cooling Schedules,” Griffith Univ. report, Nathan, Qld, Aus. 1994;
“Simulated Annealing Cooling Schedules for the School Timetabling Problem,”
submitted to Asia Pacific Journal of Operations Research, 1996.

4. Burke, E., and P. Ross, eds., Practice and Theory of Automated Timetabling, First
International Conference, Edinburgh, 1995 : Selected Papers, Lecture Notes in
Computer Science no. 1153, Springer, New York, 1996.

5. de Werra, D., “An introduction to timetabling,” European Journal of Operational
Research 19, 151-162, 1985.

6. Diekmann, R., R. Lüling, and J. Simon, “Problem independent distributed simu-
lated annealing and its applications,” in Applied Simulated Annealing, R. V. Vidal
ed., Lecture Notes in Economics and Mathematical Systems, no. 396, Springer-
Verlag, 1993.

7. Dowsland, K., “Using Simulated Annealing for Efficient Allocation of Students to
Practical Classes”, Working Paper, Statistics and OR Group, European Business
Management School, University College of Swansea, UK, 1994.

8. Dowsland, K. and J. Thompson, “Variants of Simulated Annealing for the Exami-
nation Timetabling Problem,” Working Paper, Statistics and OR Group, European
Business Management School, University College of Swansea, UK, 1994.

9. Eiselt H. A., and G. Laporte, “Combinatorial Optimization Problems with Soft and
Hard Requirements,” J. Operational Research Society, vol. 38, No. 9, pp. 785-795,
1987.

10. Elmohamed, S., G. C. Fox, P. Coddington, “Course Scheduling using Mean-Field
Annealing, Part I: algorithm and Part II: implementation,” Northeast Parallel
Architectures Center technical report SCCS-782, Syracuse University, Syracuse,
NY, 1996.

11. Elmohamed, S., P. Coddington, G.C. Fox, “Academic Scheduling using Simula-
ted Annealing with a Rule-Based Preprocessor”, Northeast Parallel Architectures
Center technical report SCCS-781, Syracuse University, Syracuse, NY, 1997.



A Comparison of Annealing Techniques for Academic Course Scheduling 111

12. Gee, Andrew, private communication.
13. Gislén, L., B. Söderberg, C. Peterson, “Teachers and Classes with Neural Nets,”

International Journal of Neural Systems 1, 167 (1989).
14. Gislén, L., B. Söderberg, C. Peterson, “Complex scheduling with Potts neural

networks,” Neural Computation, 4, 805-831, 1992.
15. Hertz, J., A. Krogh and R. Palmer, Introduction to the Theory of Neural Compu-

tation, Addison-Wesley, Redwood City, CA, 1991.
16. Hogg, T., B. Huberman, and C. Williams (editors), Artificial Intelligence, special

issue on Phase transitions and the search space, p. 81, 1996.
17. Hopfield, J. J., and D. W. Tank, “Neural Computation of Decisions in Optimization

Problems,” Biological Cybernetics 52, 141 (1985).
18. Huang, M., F. Romeo, and A. Sangiovanni-Vincentelli, “An efficient general cooling

schedule for simulated annealing,” Proc. of the IEEE International Conference on
Computer Aided Design (ICCAD), pp. 381-384, 1986.

19. Johnson, D., C. Aragon, L. McGeoch, and C. Schevon, “Optimization by Simulated
Annealing: an Experimental Evaluation, Part I (Graph Partitioning),” Operations
Research 37, 865-892 (1989).

20. Johnson, D., C. Aragon, L. McGeoch, and C. Schevon, “Optimization by Simula-
ted Annealing: an Experimental Evaluation, Part II (Graph Coloring and number
partitioning),” Operations Research 39, No. 3, 865-892 (1991).

21. Johnson, D., and L. McGeoch, “The Traveling Salesman Problem: A Case Study in
Local Optimization,” in Local Search in Combinatorial Optimization, E. H. Aarts
and J. K. Lenstra (eds.), Wiley and Sons, 1997.

22. Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science 220, 671-680, (13 May 1983).

23. Kirkpatrick, S., “Optimization by simulated annealing: Quantitative studies,” J.
Stat. Physics 34, 976-986 (1984).

24. Lister, R.,”Annealing Networks and Fractal Landscapes,” Proc. IEEE Internatio-
nal Conference on Neural Nets, March 1993, Vol. I, pp 257-262.

25. Miner, S., S. Elmohamed, and H. W. Yau, “Optimizing Timetabling Solutions
Using Graph Coloring,” 1995 NPAC REU program, NPAC, Syracuse University,
Syracuse, NY, 1995.

26. Mouritsen, O. G., Computer Studies of Phase Transitions and Critical Phenomena,
Springer-Verlag, Berlin, 1984.

27. Otten, R., and L. van Ginneken, The Annealing Algorithm, Kluwer Academic Pu-
blishers, 1989.

28. Peterson, C., and B. Söderberg, “Artificial Neural Networks and Combinatorial Op-
timization Problems,” Local Search in Combinatorial Optimization, E.H.L. Aarts
and J.K. Lenstra (eds.), Wiley and Sons, 1997.

29. Peterson, C., and B. Söderberg, “A New Method for Mapping Optimization Pro-
blems onto Neural Nets”, International Journal of Neural Systems 1, 3 (1989).

30. Schaerf, A., “A survey of automated timetabling,” Department of Software Tech-
nology, Report CS-R9567, CWI, Amsterdam, The Netherlands.

31. Simmen, Martin, Personal Communication.
32. Sorkin, G., Theory and Practice of Simulated Annealing on Special Energy Land-

scapes, PhD. Thesis, Dept. of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, July 1991.

33. Thompson, J., and K. Dowsland, “General Cooling Schedules for Simulated An-
nealing Based Timetabling Systems,” Proceedings of the 1st International Conf.
on the Practice and Theory of Automated Timetabling, Napier Univ., Edinburgh
1995.



112 M.A.S. Elmohamed, P. Coddington, and G. Fox

34. van Laarhoven, P. J. and E. H. Aarts, Simulated Annealing: Theory and Applica-
tions. D. Reidel, Dordrecht, 1987.

35. Vidal, R. V. ed., Applied Simulated Annealing, Lecture Notes in Economics and
Mathematical Systems no. 396, Springer-Verlag, 1993.

36. White, S. R., “Concepts of scale in simulated annealing,” Proceedings of the IEEE
International Conference on Circuit Design, pp 646-651, 1984.


	1 Introduction
	2 The Timetabling Problem
	3 Mean-Field Annealing
	3.1 The Mean-Field Annealing Algorithm

	4 The Rule-Based System
	5 Simulated Annealing
	5.1 Timetabling Using the Annealing Algorithm
	5.2 The Annealing Schedules
	5.3 The Choice of Moves

	6 Experimental Results
	7 Conclusions
	Acknowledgments
	References

