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Abstract
The Blackbox planning system unifies the plan-
ning as satisfiability framework (Kautz and Sel-
man 1992, 1996) with the plan graph approach to
STRIPS planning (Blum and Furst 1995). We show
that STRIPS problems can be directly translated
into SAT and efficiently solved using new random-
ized systematic solvers. For certain computation-
ally challenging benchmark problems this unified
approach outperforms both SATPLAN and Graph-
plan alone. We also demonstrate that polynomial-
time SAT simplification algorithms applied to the
encoded problem instances are a powerful com-
plement to the “mutex” propagation algorithm that
works directly on the plan graph.

1 Introduction
It has often been observed that the classical AI planning prob-
lem (that is, planning with complete and certain information)
is a form of logical deduction. Because early attempts to use
general theorem provers to solve planning problems proved
impractical, research became focused on specialized plan-
ning algorithms. Sometimes the relationship to inference was
explicitly acknowledged: for example, the STRIPS system
(Fikes and Nilsson 1971) was originally described as a way
to make theorem-proving practical. In other work the rela-
tionship to deduction was developed after the fact. For exam-
ple, Chapman’s (1985) work on TWEAK clarified the logic
behind one variety of non-linear planning.

The belief that planning required specialized algorithms
was challenged by the work on planning as propositional sat-
isfiability testing of Kautz and Selman (1992, 1996). SAT-
PLAN showed that a general propositional theorem prover
could indeed be competitive with some of the best special-
ized planning systems. The success of SATPLAN can be at-
tributed to two factors:

� The use of a logical representation that has good com-
putational properties. Both the fact that SATPLAN uses
propositional logic instead of first-order logic, and the
particular conventions suggested for representing time
and actions, are significant. Differently declarative rep-
resentations that are semantically equivalent can still
have quite distinct computational profiles.

� The use of powerful new general reasoning algorithms
such as Walksat (Selman, Kautz, and Cohen 1994).
Many researchers in different areas of computer science
are creating faster SAT engines every year. Furthermore,
these researchers have settled on common representa-
tions that allow algorithms and code to be freely shared
and fine-tuned. As a result, at any point in time the best
general SAT engines tend to be faster (in terms of raw in-
ferences per second) than the best specialized planning
engines. In principle, of course, these same improve-
ments could be applied to the specialized engines; but
by the time that is done, there will be a new crop of SAT
solvers.

An approach that shares a number of features with with
the SATPLAN strategy is the Graphplan system, developed
independently by Blum and Furst (1995). Graphplan broke
previous records in terms of raw planning speed, and has be-
come a popular planning framework. Comparisons to SAT-
PLAN show that neither approach is strictly superior. For
example, SATPLAN is faster on a complex logistics domain,
they are comparable on the blocks world, and on several other
domains Graphplan is faster. For excellent reviews and dis-
cussions of the two systems, see Kambhampati (1997) and
Weld (1998).

A practical difference between SATPLAN and Graphplan
is that the former takes as input a set of axiom schemas, while
the input for the latter is a set of STRIPS-style operators.
However, they bear deep similarities. Both systems work in
two phases, first creating a propositional structure (in Graph-
plan, a plan graph, in SATPLAN, a CNF wff) and then per-
forming a search (over assignments to variables) that is con-
strained by that structure. The propositional structure corre-
sponds to a fixed plan length, and the search reveals whether
a plan of that length exists. Kautz and Selman (1996) noted
that the plan graph has a direct translation to CNF, and that
the form of the resulting formula is very close to the origi-
nal conventions for SATPLAN. In the unifying framework of
Kambhampati (1997), both are examples of disjunctive plan-
ners. The initial creation of the propositional structure is a
case of plan refinement without splitting, while the search
through the structure is a case of plan extraction. We hy-
pothesize that the differences in performance of the two sys-
tem can be explained by the fact that Graphplan uses a better
algorithm for instantiating (refining) the propositional struc-



ture, while SATPLAN uses more powerful search (extraction)
algorithms.

SATPLAN fully instantiates a complete problem instance
before passing it to a general logic simplifier (a limited infer-
ence algorithm that runs to completion in polynomial time)
and a solver (a complete or incomplete model-finding pro-
gram). By contrast, Graphplan interleaves plan graph instan-
tiation and simplification. The simplification algorithm used
in Graphplan is based on mutex computation, an algorithm
for determining that pairs of actions or pairs of facts are mu-
tually exclusive. Mutex computation can be viewed as rule
of limited inference that is specialized to take particular ad-
vantage of the structure of planning problems (Kambhampati
et al. 1997). Specifically, mutex computation is a limited
application of negative binary propagation:

given:
���������	��


,
������	��


infer:
���	��������


Each application of the rule allows the deduction of a nega-
tive binary clause (a mutex). The mutex algorithm used by
Graphplan is incomplete (not all mutexes that logically fol-
low can be inferred) and terminates in polynomial time. Note
that this algorithm is different from the simplification rule of
unit propagation employed by the original SATPLAN: more
powerful in propagating negative clauses, but somewhat less
powerful in propagating positive information. The set of mu-
texes is used in two ways by Graphplan, both to prune nodes
from the graph during instantiation and to prune branches of
the search tree that involve mutually exclusive actions.

These observations have led us to create a new system that
combines the best features of Graphplan and SATPLAN. This
system, called Blackbox, � works in a series of phases:

1. A planning problem (specified in a standard STRIPS no-
tation) is converted to a plan graph of length � , and mu-
texes are computed as described above;

2. The plan graph is converted to a CNF wff;

3. The wff is simplified by a general CNF simplification
algorithm;

4. The wff is solved by any of a variety of fast SAT engines;

5. If a model of the wff is found, then the model is con-
verted to the corresponding plan; otherwise, � is incre-
mented and the process repeats.

Note that specialized limited inference is used in mutex com-
putation, while general limited inference is used in CNF sim-
plification. We will return to the complementary nature of
these two processes in section 3 below. The input to the final
general SAT engine can be considered to be the combinato-
rial core of the problem. The basic translation from a plan
graph to SAT is described in Kautz, McAllester, and Selman
(1996); in section 2 we will also describe a variation used in
some of our experiments. Baioletti et al. (1998) also propose
a similar scheme for translating plan graphs augmented with
temporally-qualified goals into SAT.

The wff generated from the plan graph can be considerably
smaller than one generated by translating STRIPS operators
�
Source code and benchmarks available from

http://www.research.att.com/˜kautz/blackbox/.
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Figure 1: Relationship of the cutoff value (measured in backtracks
until a restart is performed) on expected solution time. Data is for
a randomized backtracking algorithm (satz-rand) for the SATPLAN
encoding of a logistics planning problem (log.d). The Y-axis speci-
fies the expected number of backtracks performed until a solution is
found, counting the previous failed restarts.

to axioms in the most direct way, as was done by the earlier
MEDIC system of Ernst, Millstein, and Weld (1997). Fur-
thermore, the fact that the plan graph’s mutex relationships
are directly translated into negative binary clauses makes the
formula easier to solve by many kinds of SAT engines.
Blackbox currently includes the local-search SAT solver

Walksat, and two systematic SAT solvers, satz (Li and An-
bulagan 1997) and rel sat (Bayardo and Schrag 1997), in
addition to the original Graphplan engine (that searches the
plan graph instead of the CNF form). The two systematic
solvers are comparable in power although quite different in
approach: satz is based on forward-checking, while rel sat
employs dependency-directed backtracking. In order to have
robust coverage over a variety of domains, the system can em-
ploy a schedule of different solvers. For example, it can run
Graphplan for 30 seconds, then Walksat for 2 minutes, and if
still no solution is found, satz for 5 minutes.

The Blackbox system actually introduces new SAT tech-
nology as well, namely the use of randomized complete
search methods. As shown in Gomes, Selman, and Kautz
(1998), systematic solvers in combinatorial domains often ex-
hibit a “heavy tail” behavior, whereby they get “stuck” on par-
ticular instances. Adding a small amount of randomization to
the search heuristic and rapidly restarting the algorithm after
a fixed number of backtracks can dramatically decrease the
average solution time. Figure 1 illustrates the effect of adding
randomized restarts to a deterministic backtracking search al-
gorithm. We see from the figure that as the cutoff is increased
from its lowest setting the mean solution time first rapidly de-
creases. Then, as the cutoff continues to increase, the mean
solution time increases in a near-linear fashion. This increase
in expected time is due to the fact that for this problem a non-
negligible portion of the runs take arbitrarily long to com-
plete. In this example, at the optimal cutoff value, about 1 out
of 100 runs succeeds in finding a solution.

We applied this randomization/restart technique to the ver-
sion of satz used by Blackbox. The variable-choice heuris-
tic for satz chooses to split on a variable that maximizes a par-
ticular function of the number of unit propagations that would



be performed if that variable were chosen (see Li and Anbu-
lagan (1997) for details). Our version, satz-rand, randomly
selects among the set of variables whose scores are within
40% of the best score. (The value 40% was selected empir-
ically.) The cutoff value is specified in the solver schedule.
No one value cutoff value is ideal for all domains. Indeed,
predicting good cutoff values is a deep theoretical question
(the known asymptotic results (Luby et al. 1993) are often
not practical). If you need to solve a number of similar prob-
lems, it is feasible to carefully tune the cutoff value on a few
of the instances, and then use that value for the rest of the
set. However, this cannot be done when a unique problem is
encountered, or if you do not specify the parallel plan length
in advance and the system must search through a series of
different size problems.

A simple and effective practical solution is to provide the
solver with a schedule of different cutoff values. The sched-
ule specifies some number of trials with a very low cutoff
value, and if those all failed, then so many at a higher value,
and so forth until either a solution is found or all trials end in
failure. This can be viewed as a version of the well-known
search strategy of iterative deepening. Like iterative deepen-
ing, the time spent on trials with a low cutoff value is negli-
gible compared to that spent on trials with a higher value, so
that even when the early part of the schedule fails to find a
solution little overall effort is wasted.

2 Empirical Results
In order to test the effectiveness of the Blackbox approach
we selected benchmark problems that have the following
characteristics:

� Domains are computationally challenging: there is no
simple polynomial time algorithm for optimal planning.

� Solution time is dominated by search: plan graph gen-
eration is relatively fast, but solution extraction is hard.

� Problem instances are critically constrained: finding
optimal plans is much harder than finding sub-optimal
ones.

� Both both parallel and sequential planning problems
are included.

� Instances push the limits of the approach in order to
demonstrate how it scales up.

In this paper we present results on a set of such problems from
logistics planning (Velosa 1992), a highly parallel planning
domain, and from the classic blocks world, a purely sequen-
tial domain. The test machine was an SGI 194 MHz R10000
Challenge server, where each process ran on a dedicated pro-
cessor. The largest amount of RAM allocated by Blackbox
during solution of the largest logistics problem (log.d) was
178 MB, and during the solution of the largest blocks world
problem (bw.c) was 660 MB. Most of the memory was allo-
cated during the phase of constructing the initial plan graph.

Table 1 compares the performance of Blackbox (version
3.4), SATPLAN, Graphplan, and IPP (version 3.3) on our lo-
gistics benchmark problems, where the optimal plan length
is provided as input. Graphplan is the original code devel-
oped by Blum and Furst (1995) that also is incorporated in the

front-end of Blackbox. IPP (Koehler et al. 1997) is a new
implementation of the Graphplan algorithm including many
improvements and extensions. We tried the solvers satz, satz-
rand, and Walksat for both Blackbox and SATPLAN. Input
to Blackbox, Graphplan, and IPP was in PDDL STRIPS
format (McDermott 1998); input to SATPLAN was a set of
hand-crafted axiom schemas using the “state-based” encod-
ings described in Kautz and Selman (1996). Blackbox sim-
plified wffs before passing them on to a solver using the failed
literal rule, while SATPLAN simplified using unit propaga-
tion.

Let us first make some general observations. We see that
the scaling of Blackbox using any of the SAT solvers is
better than Graphplan. It is important to note that up to the
point at which the wff is generated from the plan graph, the
code running in Blackbox and Graphplan is identical. This
indicates that the cost of performing the SAT translation is
small compared to the savings gained by using any of the SAT
engines instead of the (relatively) simple backward-chaining
search performed by Graphplan. Although IPP generally im-
proves upon Graphplan, in this case it only provides faster
solution times on the two smallest instances, and is always
slower than Blackbox. This is due to the fact that most of
the improvements in IPP over Graphplan are not invoked in
this test: they only come into play when the plan length is not
given, or when the initial state description contains facts that
are irrelevant to the solution. This test also does not allow
us to take advantage of the “RIFO” heuristic graph pruning
option in IPP, because doing so prevents IPP from finding the
minimum parallel length solutions at all.

In short: for critically-constrained planning problems
where plan extraction is the computational bottleneck for
Graphplan-type solvers, translating the plan graph into
SAT and applying a general SAT solver can boost perfor-
mance.

A second general observation is that the scaling of the best
solution times for Blackbox (using satz-rand) is close to
the scaling of the best solver-only times for SATPLAN (us-
ing Walksat). This is quite remarkable, given the fact that the
Blackbox encodings were generated automatically, while
the SATPLAN axioms were carefully hand-tuned in order
to provide the best possible performance for Walksat. The
SATPLAN encodings even included explicit state invariants
(such as the fact that “a truck is only at one location at a
time”) that are known to boost the performance of problem
solvers (Kautz and Selman 1998). Even more striking is the
fact that when the time to generate the SATPLAN encod-
ings is also taken into account, the overall Blackbox times
are consistently better than the SATPLAN times. For exam-
ple, Blackboxtakes 28 seconds to generate and solve log.d,
while SATPLAN takes 3.6 minutes (3.5 minutes to generate
and 7 seconds to solve).

In short: advances in SAT solvers have made plan-
ning using SAT encodings automatically generated from
STRIPS operators competitive with planning using hand-
crafted SAT encodings.

These results contrast with earlier experiments on solving
automatically-generated SAT encodings of planning prob-
lems. Kautz and Selman (1996) reported that both Walksat



problem par- Blackbox Graphplan IPP SATPLAN
allel walksat satz satz- create walksat satz satz-
time rand rand

rocket.a 7 3.2 sec 5 sec 5 sec 3.4 min 28 sec 42 sec 0.02 sec 0.3 sec 2 sec
rocket.b 7 2.5 sec 10 sec 5 sec 8.8 min 55 sec 41 sec 0.04 sec 0.3 sec 1 sec
log.a 11 7.4 sec 5 sec 5 sec 31.5 min 1 hour 1.2 min 2 sec 1.7 min 4 sec
log.b 13 1.7 min 7 sec 7 sec 12.7 min 2.5 hour 1.3 min 3 sec 0.6 sec 7 sec
log.c 13 14.9 min 9 sec 9 sec — — 1.7 min 2 sec 4 sec 0.8 sec
log.d 14 — 52 sec 28 sec — — 3.5 min 7 sec 1.8 hour 1.6 min

Table 1: Results on critically constrained logistics benchmark planning problems running on a 194 MHz SGI Challenge server.
Optimal parallel plan length was provided as an input. Blackbox options for column “satz” are “compact -l -then satz”.
Blackbox options for column “satz-rand” are: “compact -l -then satz -cutoff 20 -restart 10 -then satz -cutoff 200 -restart
100000”. SATPLAN solver options for column “satz-rand” are: “satz -cutoff 16 -restart 100000”. Walksat options for both
Blackbox and SATPLAN are: “-best -noise 50 100 -cutoff 100000000”. Timings are real wall-clock times including all
input and output; differences less than 1 second between different programs are not significant due to implementation details.
Timings for the randomized methods are averages over 1,000 trials. Timings for SATPLAN separate time used to generate wff
(create) and time used for each of the solvers. Long dash (—) indicates solution not found after 24 hours.

and ntab (a determinisitc backtracking solver, less complex
than satz or rel sat) had difficulty solving plan graph gen-
erated SAT encodings of the larger logistics problems, get-
ting as far as log.b before the running time exploded. The
MEDIC system (Ernst, Millstein, and Weld 1997) used the
same solvers but generated the SAT encodings directly from
the STRIPS axioms without taking advantage of an interme-
diate plan graph representation, by using the conventions de-
scribed in Kautz, McAllester, and Selman (1996). They re-
ported a solution time of 1.1 hours using Walksat on log.a.
One should note that there is no significant overhead in us-
ing a plan graph for generation; in fact, the generation phase
in Blackbox takes only a few seconds for each of prob-
lems described above, versus several minutes for generation
by SATPLAN or MEDIC.

A longer version of this paper will contain a detailed
comparison with MEDIC. However, our preliminary exper-
iments indicate that wffs generated from a plan graph (as
in Blackbox) have significantly different computational
properties from ones generated directly from STRIPS (as in
MEDIC), despite the fact that they are logically equivalent
(Kautz, McAllester, and Selman 1996). In particular, the plan
graph-based wffs contain fewer variables, more clauses, and
are easier to solve. For example, the encoding of log.a gen-
erated by Blackbox contained 2,709 variables and 27,522
clauses, while the encoding generated by MEDIC (using the
regular operator representation with explanatory frame ax-
ioms) contained 3,510 variables and 16,168 clauses. As
shown above, the Blackbox wff can be solved by satz-rand
in 5 seconds, but we have not yet been able to find a setting for
the parameters for satz-rand that will let it solve the MEDIC
wff in less than 24 hours.

The differences between the two kinds of wffs can be
explained by the fact that the plan graph algorithm prunes
many unreachable nodes, thus reducing the number of vari-
ables in the corresponding encoding, while propagating mu-
texes between nodes, thus increasing the number of (nega-
tive binary) clauses. The added binary clauses increase prop-

agation at each branch of the backtracking search and thus
speed the solution time. An interesting open question that we
are currently investigating is whether a SAT solver that uses
dependency-directed backtracking (e.g. rel sat) can actually
“learn” the added clauses while running on a MEDIC-type
encoding.

In short: use of an intermediate plan graph represen-
tation appears to improve the quality of automatic SAT
encodings of STRIPS problems.

Next, let us consider the differences in performance caused
by different SAT solvers for Blackbox and SATPLAN.
First, we see that while Walksat performs very well on the
smaller Blackbox instances, it does poorly on the two
largest, log.c and log.d. By contrast, local search works well
for even the largest SATPLAN encodings. (This suggests
some specific connection between local search and state-
based encodings, a topic that has received relatively little at-
tention since the original SATPLAN work.) The determin-
istic version of satz shows more consistent behavior across
the Blackbox instances, although it stumbles on rocket.b
and log.d. Satz stumbles even more dramatically on log.a and
log.d for the SATPLAN encodings.

What is happening in each of these “stumbles” is that the
satz variable choice heuristic (which is usually very good)
has made a wrong choice early on in the search tree, and
so the algorithm spends much time exploring a large area of
the search space that is devoid of solutions. As discussed
in Gomes, Selman, and Kautz (1998), one can observe this
occurring for backtrack search for either a deterministic al-
gorithm on a large distribution of problem instances, or for
a randomized backtrack algorithm repeatedly solving a sin-
gle instance. The latter case is the easiest to observe and has
formed the basis of most experimental work on the subject,
since one can simply do many runs of the algorithm (where
the variable choice heuristic randomly breaks “ties”). In the
experiments discussed here we have, by contrast, a determin-
istic algorithm running on small of different instances. In a set
of examples this small it is not surprising that the phenomena



problem Timeout Prove optimal Prove optimal
/satz-rand /satz /rel sat

rocket.a 59 sec 59 sec 57 sec
rocket.b 1 min 1 min 1 min
log.a 1.3 min 1.3 1.1 min
log.b 2.1 min 45 min 2.1 min
log.c 3 min — 4.9 min
log.d 3.7 min 3.7 min 2.6 min

Table 2: Results for Blackbox finding optimal solutions to
benchmark planning problems where system must search for
the minimum parallel time length. The “Timeout/satz-rand”
solver options are “-maxsec 30 graphplan -then satz -cutoff 20
-restart 10 -then satz -cutoff 200 -restart 1”. The “Prove opti-
mal/satz” solver options are “-maxsec 30 graphplan -then satz
-cutoff 20 -restart 10 -then satz”. The “Prove optimal/rel sat”
solver options are “-maxsec 30 graphplan -then relsat”. Long
dash (—) indicates solution not found after 24 hours. In every
case the same quality solutions were ultimately found.

only occurred for 4 of the 12 trials.
We next reran the experiments using the randomized/restart

version of satz described earlier. The Blackbox sched-
ule for satz-rand used a cutoff of 20 backtracks for up to 10
restarts, followed by a cutoff of 200 backtracks restarting un-
til a solution was found. The SATPLAN schedule for satz-
rand was a cutoff of 16 backtracks restarting until a solution
was found. These schedules were only very roughly tuned by
hand after observing a few trials and are not necessarily op-
timal. However, in each case the observed solution time was
significantly reduced. For Blackbox the times for rocket.b
and log.d were cut in half, while even more significant sav-
ings were seen for SATPLAN, where the solution time for
log.d decreased from 1.8 hours to 1.6 minutes.

In short: Randomized restarts boost the performance
of systematic SAT algorithms on encodings of planning
problems.

Table 2 shows the results of running Blackbox and the
same logistics instances where the parallel solution length is
not specified in advance. The times for running Graphplan
or IPP in this mode on these instances are only marginally
higher than when the plan length is given as input: most of the
work the Graphplan-type engines perform occurs when the
plan length reaches the optimal bound. We ran Blackbox
with satz-rand in two modes: in the first “timeout” mode, if a
solution is not found after a few restarts (10 restarts at cutoff
20, 1 restart at cutoff 200), the plan length is incremented.
In the second mode, Blackbox is made complete by mak-
ing the final part of the solver schedule run satz without any
cutoff. Thus, only the second mode actually proves optimal-
ity. By comparing two modes, we see that the first (time-
out) is much faster than the second, even though the same
quality solutions are ultimately found. This is because in the
second mode most of Blackbox’s effort goes into proving
the non-existence of a solution of length one step less than
optimal. Or, in other words, the “co-NP” part of the SAT
translation was empirically harder than the “NP” part for satz-

rand. Finally, the table presents some data from our initial ex-
periments using the dependency-directed backtracking SAT
solver rel sat. This is also a complete method that guarantees
optimality, but now we see that it’s timings are comparable
with using satz-rand in its incomplete mode. (When the plan
length is given as input, our preliminary experiments indicate
that satz-rand usually has a edge over rel sat.)

In short: Performance of Blackbox for plan length
search tasks can be acceptable, even though information
from failed too-short trials is not reused, as it is in Graph-
plan.

A problem with the SAT approach in some domains is that
the problem encodings become very large. A notable case
is the classic single-armed blocks world. Because no par-
allel actions are permitted, the plan graph must contain as
many layers as there are actions in the solution. If there are� blocks, then there are

��� ����� actions and
��� �	�
� mutexes

per layer. Thus the translation of a 28-step, 15 block problem
(large.c) contains about 2.5 million clauses, most of which
are negative binary clauses (mutexes).

We therefore developed a modification to the translation
scheme that can reduce the number of clauses in such cases.
Note that it is not logically necessary to translate a particular
mutex if that negative binary clause is implied by other parts
of the translation. If particular, if we add clauses that state that
an action implies its effects as well as its preconditions (the
latter are part of the default translation), then mutexes do not
need to be explicitly translated for actions with conflicting ef-
fects or conflicting preconditions: only mutexes where the ef-
fect of an action conflicts with the precondition of another are
needed. Table 3 shows the results of performing this “com-
pressed” translation. The encodings are about 75% smaller
in the number of clauses and considerably easier to solve
by satz-rand (which has no difficulty in chaining through the
Horn clauses that entail the “missing” mutexes). For compar-
ison the final column provides solution times for the Graph-
plan search engine working on the plan graphs that explic-
itly include all the inferred mutex relations. Performance of
Blackbox and Graphplan is comparable, although neither
is currently state of the art. (However, Blackbox’s ability
to find optimal solutions to a 28-step blocks world problems
would have been considered state of the art performance as
little as two years ago.)

In short: SAT encodings become problematically large
in sequential domains with many operators, although re-
finements to the encoding scheme can delay the onset of
the combinatorial explosion.

In summary, our experiments show that Blackbox pro-
vides an effective approach for “search bound” problem in-
stances in certain highly parallel planning domains such as
logistics planning. The approach runs into difficulties in do-
mains such as the blocks world where both the intermediate
plan graph and the SAT translation become very large, al-
though the technique of compressed encodings provide sig-
nificant relief.

A longer version of this paper (in preparation) will include
results on an expanded set of benchmark problems, including
the instances from the AIPS-98 Planning Competition. Al-
though the performance of Blackbox in the AIPS competi-



problem steps Blackbox Graphplan
default compress

clauses time clauses time
reverse 8 1,347 2 sec 917 3 sec 2 sec
12step 12 25,978 5 sec 6,643 3 sec 3 sec
large.a 12 116,353 13 sec 18,061 5 sec 3 sec
large.b 18 469,993 6.5 min 123,653 28 sec 1.9 min
large.c 28 2,496,832 * 917,402 1.3 hour —

Table 3: Comparing the default and “compressed” SAT translations produced by blackbox, for blocks world problems where
the optimal plan length is input (no parallel actions possible). Solver used by Blackbox is “-compact -l -then satz -cutoff 40
-restart 20 -then satz -cutoff 400”. Star (*) indicates solver failed due to memory size, and long dash (—) that no solution found
after 48 hours.

tion was respectable (no competitor dominated it in on all cat-
egories in round 1, and only IPP did so in round 2), we must
note that the competition problem instances did not provide
a way of distinguishing planning systems that employ plan
graphs on the basis of their search strategies. Nearly all of
the instances were “too easy” in the sense that once a planning
graph was generated any search strategy could extract a solu-
tion, or “too hard” in the sense that the planning graph grew
intolerably large before conversion to CNF. For example,
Blackbox’s difficulty in dealing with the “gripper” domain
were due to explosion of the initial plan graph, even though
the domain is inherently non-combinatorial (a linear time do-
main specific optimal planning algorithm exists). Differences
in performance between the various systems was largely due
to various graph-pruning strategies each employed, such as
the RIFO strategy of IPP (Nebel et al. 1997). Many of these
strategies can be incorporated into Blackbox by simply re-
placing it’s Graphplan front-end with e.g. IPP.

The memory required for the SAT encoding can be an is-
sue for running Blackbox on small-memory machines (as
noted above, ones with less than the 178 MB required for
log.d), particularly because the current code does not opti-
mize memory use (e.g., several copies of the wff are kept in
core, and memory is not reused when wffs are sequentially
generated with larger bounds). Even so, the falling prices for
RAM (currently about $1000 for 512MB) support the argu-
ment that the approach will only grow more practical with
time. A more serious technical challenge comes from recent
work on structure sharing techniques for compactly repre-
senting large plan graphs (as will appear in the next versions
of IPP and STAN (Fox and Long 1998)). How can one trans-
late such representations into SAT without multiplying out all
the shared structure? Instead of compiling into pure SAT, one
might try to compile the plan graph into a smaller set of axiom
schemas, that is, a “lifted” form of CNF. The axiom schemas
could be passed on to a general lifted SAT solver or further
compiled into rules in a constraint logic programming sys-
tem. The latter alternative appears particularly attractive in
the light of good results recently obtained in using constraint
logic programming to solve planning problems (van Beek and
Chen 1999).

3 The Role of Limited Inference
The plan graph approach to STRIPS planning gains much of
its power through its use of mutex computations, as we briefly

percent set by
problem vars uprop flit blit
12step 1191 13% 43% 79%
bw.a 2452 10% 100% 100%
bw.b 6358 5% 43% 99%
bw.c 19158 2% 33% 99%
rocket.a 1337 3% 24% 40%
rocket.b 1413 3% 21% 49%
log.a 2709 2% 36% 45%
log.b 3287 2% 24% 30%
log.c 4197 2% 23% 27%
log.d 6151 1% 25% 33%

Table 4: The number of variables in the encoding of a series
of planning problems before simplification, and the percent-
age determined by simplification by unit propagation (uprop),
the failed literal rule (flit), and by the binary failed literal rule
(blit). The first set of problems are blocks world and the sec-
ond set are logistics.

described above. During construction of the plan graph,
Graphplan marks a pair of instantiated actions as mutually ex-
clusive if one deletes a precondition or add-effect of the other.
It further determines that a pair of facts (predicates fully in-
stantiated at a particular time-instant) are mutually exclusive
if all the actions that add one are exclusive of all actions that
add the other. Additional mutexes are added between actions
if a precondition of one is mutex with a precondition of the
other. If one takes the number of preconditions or effects of
an operator to be constant then mutex computation can be per-
formed in

��� � � � time, where � is the number of instantiated
actions (where an instantiated action specifies all its parame-
ters as well as a particular time step).

Thus mutex computation is simply a specialized form of
constraint propagation, i.e., limited deduction. Some nodes
can be determined to be inconsistent during instantiation and
immediately eliminated from the plan graph. The remaining
mutex relations are used to constrain the search over the ei-
ther the graph or its SAT translation. It is natural to wonder if
other forms of limited inference are useful for planning prob-
lems. Blum (personal communication) observes that comput-
ing higher-order mutexes (between triples of actions, etc.) is
not very useful. Do the binary mutex computations extract all
important “local” information from the problem instances?



We decided to test this hypothesis by experimenting with a
series of different limited inference algorithms that work on
the the SAT encodings of the problems. We used the program
“compact” developed by James Crawford, and considered the
following options:

unit propagation Apply unit resolution. Requires
��� � �

time.

failed literal For each literal, try adding the literal to the for-
mula and applying unit resolution. If inconsistency is
determined then then literal can be set to false. Requires��� � �
� time.

binary failed literal For each pair of literals, try adding the
pair of literals to the formula and applying unit reso-
lution. If inconsistency is determined then the binary
clause consisting of the negations of the literals can be
added to the formula, and the single failed literal rule
applied again. Requires

� � � � � time.

Table 4 shows the result of applying each of these kinds
of simplifications to a series of encodings of blocks world
and logistics planning problems. For each problem we show
the number of variables in the instance and the percentage of
those variables whose values are determined by local com-
putation. The results for unit propagation (uprop) seem to
confirm the intuition that there is little local information left
in these problems. For the blocks world problems only be-
tween 2% and 13% of the variables are determined by unit
propagation, and for the logistics problems no more than 3%
are determined. However, the story changes dramatically for
the failed literal rule (flit). In the blocks world from 33% to
100% (i.e., the problem is completely solved!) of the vari-
ables are determined. In the logistics domain over 21% of the
variables are eliminated. The binary failed literal rule (blit) is
even more powerful. All of the blocks world problems were
either solved completely or made trivial to solve (less than
131 variables) by this rule. The logistics problems were also
further reduced in size, although they remained non-trivial to
solve.

These results led us to select the failed literal rule as the de-
fault simplification procedure for Blackbox. It runs quickly
and greatly decreases the size and hardness of the problem in-
stance. So far the higher overhead (

��� � � � versus
��� � ��� ) for

the binary failed literal rule makes it impractical for the do-
mains we have considered: it takes about as long to simplify
the problem with the binary rule as to solve it using the unary
simplifier and satz-rand. Still, these results suggest that an
improved implementation of the binary rule could be of dra-
matic help in certain domains.

Thus we see that general limited inference computations on
the SAT-encoding of planning problems provide a powerful
complement to the kind of specialized mutex computations
performed by the Graphplan front-end to Blackbox. There
is a role both for planning-specific and domain-independent
simplification procedures. In future work we plan to see if we
can find other polytime simplification algorithms for SAT that
take particular advantage of the structure of SAT encodings of
planning problems.

4 Conclusions
We have provided an overview of the Blackbox planning
system, and described how it unifies the plan graph approach
to STRIPS planning with the planning as satisfiability frame-
work. It provides a concrete step toward the IJCAI Challenge
for unifying planning frameworks (Kambhampati 1997). We
discussed empirical results that suggest that new randomized
systematic SAT algorithms are particularly suited to solving
SAT encodings of planning problems. Finally, we examined
the role of limited inference algorithms in the creation and
solution of problem encodings.

There is strong evidence that the best current general SAT
engines are more powerful than the search (plan extraction)
engines used by Graphplan and its descendents. Although it
is possible to incorporate the heuristics used by these general
solvers back into a specialized planner (see Rintanen (1998)
for such an approach), given the rapid development of new
SAT engines such a tactic may be premature. As an alterna-
tive, Giunchiglia et al. (1998) present evidence that it possi-
ble to dramatically boost the performance of a general SAT
engine by feeding it a tiny amount of information about the
structure of the encoding (in particular, identification of the
action variables). There is also much work on improving
the plan graph generation phase (e.g., Kambhampati et al.
(1997), Nebel et al. (1997)) which could be directly incor-
porated in Blackbox by replacing its front-end.
Blackbox is an evolving system. Our general goal is

to unify many different threads of research in planning and
inference by using propositional satisfiability as a common
foundation. An important direction that we have not touched
on in this paper is the use of domain specific control knowl-
edge in planning (Bacchus and Kabanza 1996; Kautz and Sel-
man 1998; Gerevini and Schubert 1998; Fox and Long 1998);
see Cheng, Selman and Kautz (1999) for work on adding con-
trol knowledge to Blackbox.
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