
CPlan: A Constraint Programming Approach to Planning

Peter van Beek and Xinguang Chen
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2H1�

vanbeek,xinguang � @cs.ualberta.ca

Abstract

Constraint programming, a methodology for solving diffi-
cult combinatorial problems by representing them as con-
straint satisfaction problems, has shown that a general pur-
pose search algorithm based on constraint propagation com-
bined with an emphasis on modeling can solve large, prac-
tical scheduling problems. Given the success of constraint
programming on scheduling problems and the similarity of
scheduling to planning, the question arises, would a con-
straint programming approach work as well in planning? In
this paper, we present evidence that a constraint programming
approach to planning does indeed work well and has the ad-
vantage in terms of time and space efficiency over the current
state-of-the-art planners.

Introduction
Constraint programming, a methodology for solving diffi-
cult combinatorial problems by representing them as con-
straint satisfaction problems, has shown that a general pur-
pose search algorithm based on constraint propagation com-
bined with an emphasis on modeling can solve large, prac-
tical scheduling problems (see, for example, (Baptiste &
Le Pape 1995) and references therein). At the heart of
constraint programming are constraint satisfaction problems
(CSPs). A problem is represented as a set of variables, a
domain of values for each variable, and a set of constraints
between the variables. A solution is an instantiation of the
variables that satisfies the constraints. The CSP is often
solved using backtracking search and constraint program-
ming has developed many techniques for reducing the size
of the search space including adding redundant variables and
redundant constraints to the CSP model .

Much work in planning, with its emphasis on a mini-
mal domain model (just the representation of the actions)
and planning specific, special purpose, search algorithms
has taken an almost opposite approach to that of constraint
programming, with its emphasis on domain knowledge and
general purpose search algorithms. However, given the suc-
cess of constraint programming on scheduling problems and
the similarity of scheduling to planning, the question arises,
would a constraint programming approach work as well in
planning?

Copyright c
�

1999, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

In this paper, we present evidence that a constraint pro-
gramming approach to planning does indeed work well. We
compare our constraint programming planner, called CPlan,
to state-of-the-art planners on benchmark problems in five
different domains and show that our planner has the ad-
vantage in terms of time and space efficiency and robust-
ness. CPlan also has several other advantages which it shares
with other CSP-like approaches to planning. In CPlan, the
CSP model is a purely declarative representation of domain
knowledge and is thus independent of any algorithm. Thus
the same model can be given to a systematic solver or a
solver based on local search. As well, in CPlan it is easy
to represent incomplete initial states or partial information
about intermediate states and to represent resource and ca-
pacity constraints. Of course, there is one important disad-
vantage of this approach over planners which use a minimal
domain model. For each new domain, a robust CSP model
must be developed. The modeling phase can require much
intellectual effort and, although much of what is learned in
one domain can be applied in another, each new domain does
require a new model. The tradeoff is that less work needs to
be done on algorithms since there are several commercial
and many research constraint programming languages with
general purpose constraint solvers embedded in them.

Background
We first define constraint satisfaction problems and then
briefly review backtracking search (for more background on
these topics see, for example, (Marriott & Stuckey 1998;
Van Hentenryck 1989)).

A constraint satisfaction problem (CSP) consists of a set
of � variables,

�����	��
	
�
����� � ; a domain ��� of possible val-
ues for each variable

� � , ��������� ; and a collection of �
constraints,

��� � ��
	
�
������ � . Each constraint
� � , � �!�"�#� ,

is a constraint over some set of variables called the scheme
of the constraint. The size of this set is known as the arity
of the constraint. A solution to a CSP is an assignment of
a value $ �&% � � to

� � , �'�(���)� , that satisfies all of the
constraints.

CSPs are often solved using a backtracking algorithm. At
every stage of backtracking search, there is some current
partial solution which the algorithm attempts to extend to
a full solution by assigning a value to an uninstantiated vari-
able. One of the keys behind the success of constraint pro-

gramming is the idea of constraint propagation. During the
backtracking search when a variable is assigned a value, the
constraints are used to reduce the domains of the uninstan-
tiated variables. The algorithm we used in our experiments,
which we denote as GAC+CBJ, performs generalized arc
consistency propagation and conflict-directed backjumping
(Prosser 1993).

Following Van Hentenryck (1989), We say that a � -ary
constraint, ����� , is arc consistency checkable if at least
one of its variables is uninstantiated. Such a constraint is
also forward checkable if exactly ��� � of its variables have
been instantiated and the remaining variable is uninstanti-
ated. During backtracking search, the assignment of a value
to a variable

���
causes some (possibly empty) set of con-

straints to be queued for propagation: all of the constraints
that are arc consistency checkable and for which

� �
is in

the scheme of that constraint. For each forward checkable
constraint on the queue, GAC+CBJ checks whether each
value in the domain of the unassigned variable together with
the values of the assigned variables satisfies the constraint,
pruning those values that are inconsistent. If this process
causes the unassigned variable to have all of its domain
values pruned, GAC+CBJ backtracks. The arc consistency
checkable constraints are processed in a similar manner: for
each uninstantiated variable in the constraint, GAC+CBJ
tests whether there exists values for the other variables that
are consistent with the constraint, pruning those values for
which this test fails and backtracking should a variable have
all of its values pruned. If a variable has had its domain re-
duced, all of the constraints that have that variable in their
scheme are added to the queue of constraints to be propa-
gated. To backup, GAC+CBJ does not necessarily return to
the chronologically most recent decision and undue that de-
cision. Rather, it attempts to locate the source of the deadend
and to jump back to that point.

Example 1 Consider the CSP with three variables
�

, 	 , and
 , each with domain
� � � � ��� �� � , and the following three

constraints,� �
: ��	�� ����� � � � ��� ,���
: 	��
 ��� ,���
: alldifferent(

� � 	 �
)
where constraint

� �
enforces that its three arguments are

pair-wise different. When backtracking search starts all con-
straints are arc consistency checkable, but no values are
pruned from the domains. Suppose backtracking search
makes the assignment

��� � . Constraint
� �

and
� �

are
queued for processing because they involve the newly in-
stantiated variable. Processing

� �
causes the domain of 	 to

be reduced to
�! � . This causes

� �
to be added to the queue.

Processing
� �

next reduces the domain of
 to
� � ��� � . Pro-

cessing
���

further reduces the domain of
 to
� � � . The rest

of the search then proceeds in a backtrack-free manner.

Constraint Programming Methodology
In the constraint programming methodology we cast the
problem as a CSP in terms of variables, values, and con-
straints. The choice of variables defines the search space
and the choice of constraints defines how the search space

can be reduced so that it can be effectively searched using
backtracking search. We illustrate the approach using the lo-
gistics domain. In the logistics domain, there are packages
which need to be moved around between cities and between
locations within cities using trucks and planes.

We model each state by a collection of variables and the
constraints enforce valid transitions between states. For ex-
ample, in the logistics world we have the following vari-
ables for each state "$# : � ��% # , &(')% # , and *,+�% # , where � , - , �
range over the number of packages, trucks, and planes, re-
spectively and . ranges over the number of steps in the plan.
The domains of the package variables are locations, trucks,
and planes. Assigning a package variable a location means
the package is at that location in that state and assigning a
package variable a truck means the package is in that truck
in that state. The common STRIPS representation of this
domain has two predicates that specify whether a package
is at a location or in a plane or truck, respectively and an
implicit state constraint that a package is either at a location
or in a vehicle, but not both. This shows how CSP variables
can be more succinct than propositional variables and how
some state constraints can be implicitly handled. Similarly,
the domains of trucks and planes are locations.

Part of the modeling task is to specify which are the vis-
ible variables and which are the hidden variables. In the
logistics domain the package variables are visible and the
truck and plane variables are hidden. Thus, backtracking oc-
curs over the package variables and once they are all instanti-
ated, the search is guaranteed to proceed in a backtrack-free
manner to find values for the hidden variables.

We now turn to specifying the constraints. Constraints
are represented intensionally as functions which return true
or false, given a set of assignments to the variables in the
scheme of the constraint. This is a compact representation,
in contrast to an extensional approach where all of the as-
signments of values to variables which satisfy a constraint
are explicitly listed (as in the planning as satisfiability frame-
work of Kautz and Selman).

We found the following constraint categories to be use-
ful across the five domains to which we have applied the
approach. For a minimal correct model of the domain we
need the action constraints which enforce how variables can
change from a state "/# to a next state "$#�0 � and the state
constraints which enforce how variables within a state must
be consistent. The remaining categories of constraints were
found to be essential in improving the efficiency of the
search for a plan. Each constraint can be classified as to
whether it is redundant or non-redundant. A constraint is
redundant if its removal from the CSP does not change the
set of solutions. Our goal is a sound and complete plan-
ner. Thus, for each non-redundant constraint that we add, we
need to provide an argument that, if the set of solutions was
non-empty before the addition of the constraint, it remains
non-empty after its addition. In other words, a constraint
must be optimality preserving to be considered for addition
to the model.

Action constraints model the effects of actions. These
constraints are patterned after explanation closure axioms
(Schubert 1994). For example, a package variable can only

change from being at a location in "/# to being in a truck or
plane in "$#�0 � (or vice-versa) and if it does change, this im-
plies that the truck or plane must be at the same location as
the package in these states.

State constraints enforce how variables within a state
must be consistent.

Distance constraints are upper and lower bound con-
straints on how many steps are needed for a variable to
change from one value to another. For example, a lower
bound on the number of steps to get a package from a non-
airport location in one city to a non-airport in another city
is nine steps (as it needs to be loaded and unload from two
trucks and one plane). These constraints were found to be
among the most important for reducing the search space in
the domains that we explored.

Symmetric values constraints are constraints which break
symmetries on the values that variables can be assigned. For
example, in the logistics domain, given two package vari-
ables, the planes in their domains are often symmetric and
if there is a solution (or no solution) with a particular as-
signment of planes to packages, there is another solution (or
no solution) with the planes swapped. With distance con-
straints, these constraints were found to be the most impor-
tant for reducing the search space in the domains that we
explored.

Action choice constraints enforce constraints on which
actions can be performed in each state. Part of the explo-
sion in the search space in planning is because a sequence
of actions starting from some state can be permuted and still
result in the same end state. For example, in the logistics
world suppose there are two packages at an airport. A plane
can either pick up both at once, or pick up one now and an-
other later. All of these will end up being equivalent and a
constraint is added which forbids all but one of the action
sequences.

Capacity constraints enforce bounds on resources. In the
logistics domain the trucks and planes have unlimited ca-
pacity, so these did not apply. However, in the mystery and
Mprime domains (see the next section), the vehicles have ca-
pacity restrictions and there are limits on the amount of fuel
available. These kinds of constraints are straightforward in
the CSP approach, but difficult for traditional planners.

Domain constraints enforce restrictions on the original
domains of the variables. For example, in the logistics do-
main, a package which is to be picked up and delivered
within the same city can have its domain restricted to lo-
cations and trucks within that city.

Part of the modeling task is to specify what kind of prop-
agation is desired for each constraint: whether a constraint
should just be forward checked or arc consistency checked.
Constraints of high arity are expensive to arc consistency
check and may not reduce the search space enough to com-
pensate. Experimentation is required to know whether a
constraint is effective and what is the most efficient way to
propagate it.

To solve an instance of a planning problem with particular
initial and goal states, we start with some lower bound on the
length of an optimal plan, generate a CSP model with that
many steps in it, appropriately instantiate the variables in the

initial and goal state, and pass the model to the backtracking
algorithm GAC+CBJ. This is repeated, each time increment-
ing the number of steps in the plan, until a solution is found
or some upper bound on the length of an optimal plan is ex-
ceeded. The idea of incrementally finding an optimal plan is
due to Kautz and Selman (1992).

GAC+CBJ uses a dynamic variable ordering that selects
as the next variable to instantiate the variable with the small-
est domain, breaking ties by the number of constraints that
the variable participates in. Thus, planning can proceed in a
forwards or backwards or middle out direction and any part
of the plan can be worked on before other parts. The overall
planning algorithm, CPlan, is sound, complete, and guaran-
teed to terminate (but, as with other planners, the algorithm
is incomplete in any practical sense since it can run for a
very long time).

Experiments
We have applied our constraint satisfaction methodology to
the five test domains used in the First AI Planning Systems
Competition, held in Pittsburgh, June 6–9, 1998, and com-
pared our results to four other planners: Blackbox, HSP, IPP,
and TLPlan. Blackbox, HSP, and IPP were all entered into
the AIPS’98 competition and each was the best or among
the best in at least one of the test domains.

Blackbox (Kautz & Selman 1998a) is based on convert-
ing planning graphs (as constructed by Graphplan (Blum
& Furst 1997)) into a CNF formula, and then attempting
to solve the formula using a variety of satisfiability solvers.
HSP (Bonet & Geffner 1998) is a forward-chaining planner
which uses hill-climbing search with an automatically gen-
erated (inadmissible) heuristic cost function to estimate the
distance to the goal state. IPP (Koehler & Nebel 1998) is
based on Graphplan, and like Graphplan constructs a plan-
ning graph in a forwards direction and then searches it in
a backwards direction to extract a plan. IPP improves on
Graphplan by having a better memoization scheme to rec-
ognize subsets of goals that have failed in the past and a
richer representation language. TLPlan (Bacchus 1998) is
a forward-chaining planner which allows various heuristic
search algorithms to be selected and provides a temporal
logic for representing declarative search control knowledge.
With respect to the AIPS’98 competition benchmark prob-
lems, TLPlan only comes with domain knowledge specified
for the logistics problems and so we only compared its per-
formance to the other planners on this domains.

We used the following experimental setup. All ex-
periments were run on 400 MHz Pentium II’s with 256
Megabytes of memory. Each planner was given one hour of
CPU time and 256 Megabytes of memory in which to solve
a problem. If the planner solved the problem within the re-
source limits, the CPU time was recorded (see Tables 1–5).
By solving a problem, we mean that, if a plan exists, the
planner returns a plan (either optimal or non-optimal), and
if a plan does not exist, the planner correctly reports this
fact. For some of the planning problems in the mystery do-
main (see Table 3), no plan exists and, by definition, a non-
systematic planner such as HSP cannot correctly solve these

Table 1: Time (seconds) to solve gripper planning problems.
The absence of an entry indicates that the problem was not
solved correctly within the given resource limits.

CPlan Blackbox HSP IPP
1 0.01 0.11 0.03 0.02
2 0.04 5.68 0.10 0.39
3 0.08 . 0.11 7.83
4 0.17 . 0.18 100.37
5 0.28 . 0.26 .
6 0.48 . 0.35 .
7 0.75 . 0.46 .
8 1.15 . 0.53 .
9 1.67 . 0.74 .
10 2.34 . 0.94 .
11 3.17 . 1.13 .
12 4.23 . 1.45 .
13 5.52 . 1.49 .
14 7.07 . 1.81 .
15 8.92 . 2.19 .
16 11.15 . 2.56 .
17 13.67 . 3.04 .
18 16.81 . 3.26 .
19 20.19 . 3.77 .
20 24.35 . 4.23 .

problems. As well, in the Mprime domain Blackbox some-
times incorrectly reported that no plan exists when CPlan
and IPP were able to find a correct plan.

We were not able to exactly duplicate the results that the
individual planners obtained in the AIPS’98 competition. To
varying degrees the planners require parameter tuning on
each domain they are applied to. For IPP, only the default
parameters were used. For Blackbox the only parameter we
needed to vary from its default setting (in order to approxi-
mately equal the performance of the planner in the AIPS’98
competition in terms of number of problems solved) was to
increase the respective parameter for the maximum number
of nodes at each level during the planning graph generation.
For the HSP planner, more elaborate parameter tuning was
required.

CPlan is guaranteed to generate optimal parallel plans.
Blackbox, IPP, and TLPlan can be used as either optimal
or approximate planners, whereas HSP is inherently an ap-
proximate planner. In the AIPS’98 competition, Blackbox
and IPP were used as approximate planners and we did the
same in our experiments. For TLPlan, we used the default
settings, including using depth-first search as in (Bacchus
& Kabanza 1998). Thus, TLPlan was used as an approxi-
mate planner. We found in our experiments that Blackbox
and TLPlan generated high quality plans that were almost
always optimal or nearly optimal. However, HSP often gen-
erated longer plans. For example, in the gripper domain,
the length of the plans generated by HSP almost doubles the
length of the optimal plan for each instance. For HSP, some-
times the quality of the plans can be improved with differ-
ent parameter settings, but with the consequence that many
fewer instances are solved.

Blackbox and IPP consume large amounts of memory and
often ran out of this resource before finding a plan. Is it just a

Table 2: Time (seconds) to solve logistics planning prob-
lems. The absence of an entry indicates that the problem
was not solved correctly within the given resource limits.

CPlan Blackbox HSP IPP TLPlan
1 0.05 1.48 . 0.62 0.37
2 0.06 4.29 . 552.20 1.48
3 0.94 . . . 15.83
4 0.17 . . . 44.37
5 1.73 148.01 1.17 2.52 0.28
6 18.89 . . . 68.80
7 0.09 . . 3059.24 4.65
8 0.16 . . . 78.60
9 0.32 . . . 176.41
10 135.44
11 0.05 4.51 4.96 6.48 4.43
12 0.12 . . . 231.97
13 0.59 . . . 865.04
14 0.68 . . . 651.37
15 203.15 . . . 19.24
16 0.40 . . . 136.59
17 0.32 . . 1935.52 74.97
18 1308.15 . . . 3592.67
19 1.37 . . . 2308.24
20 28.94 . . . 2897.54
21 0.72 . . . 1684.82
22
23 96.37
24 0.09 . . . 562.35
25 13.94
26
27 48.62
28
29
30
1 0.00 0.28 0.16 0.16 0.06
2 0.01 0.36 0.24 0.18 0.13
3 0.06 0.56 1.14 0.37 0.40
4 0.07 124.03 . . 2.44
5 0.94 . . 49.39 1.09

matter then of more memory and these methods could solve
the problems? To examine this question, we ran the follow-
ing experiments. Our machines have 256 Mb of physical
memory, but processes are permitted to allocate up to 640
Mb (this is a preset limit in our configuration of Linux). The
AIPS’98 competition consisted of two rounds and within a
round the problems are roughly ordered by difficulty. with
the easier problems coming first. For instance 3 of the logis-
tics problems (third row of Table 2), CPlan is able to find a
plan in under one second of CPU time using just under 2 Mb
of memory. Blackbox on this problem exhausts the available
640 Mb quickly (in about three minutes) without finding a
plan. IPP exhausts the available 640 Mb more slowly (in
just over eleven hours) but also without finding a plan. For
instance 6 of the mystery problems, CPlan is able to find a
plan in just over three seconds of CPU time using under 2
Mb of memory. Blackbox on this problem takes 83 seconds
and uses 568 Mb to find a plan. IPP on this problem takes
133 seconds and 107 Mb of memory to find a plan. Thus,
on these smaller problems, CPlan can be one to two orders

Table 3: Time (seconds) to solve mystery planning prob-
lems. The absence of an entry indicates that the problem
was not solved correctly within the given resource limits.

CPlan Blackbox HSP IPP
1 0.00 0.11 0.05 0.08
2 0.03 4.22 7.09 11.43
3 0.02 0.42 0.39 0.85
4 0.00 1.18 . 0.37
5 0.00 11.36 . 7.58
6 3.06 . . 133.95
7 0.00 1.14 . 9.79
8 0.00 . . 30.88
9 0.03 1.03 0.66 1.32
10 0.53 . 86.45 .
11 0.02 0.53 0.07 0.28
12 0.00 0.94 . 0.49
13 0.39 . . .
14 1.08 . . .
15 0.39 . 16.81 .
16 0.00 3.70 . 5.70
17 0.12 2.44 11.91 29.68
18 0.00 13.39 . 273.20
19 0.13 5.26 6.05 19.94
20 0.53 . 6.23 .
21 0.00 . . 50.25
22 0.00 . . .
23 0.00 . . 101.19
24 0.00 . . 72.39
25 0.01 0.10 0.06 0.07
26 0.07 1.24 0.43 1.44
27 0.01 0.42 0.56 0.69
28 0.02 0.39 0.11 0.18
29 0.01 0.38 0.32 0.59
30 0.15 3.91 6.42 9.42

of magnitude more efficient in both time and space. Fur-
ther, the difference between the intensional representation
used by CPlan and the extensional representations used by
Blackbox and IPP only grows as the problem sizes increase.

In these experiments, the planners without domain knowl-
edge appear to be quite brittle—either solving a problem
quickly or not solving it at all—and to not scale well to more
difficult problems.

Related Work
In this section, we relate our work to previous work in plan-
ning. We first review previous CSP-like approaches to plan-
ning and then we review previous work on using domain
specific declarative knowledge to improve planning.

The definition of a CSP is general enough that it subsumes
Boolean satisfiability and integer linear programming; both
of these can be viewed as particular restrictions on the do-
mains of the variables and the forms of the constraints. The
first work that we are aware of that casts planning as a CSP is
the work on planning as satisfiability by Kautz and Selman
(1992; 1996). Our work owes much to theirs, including the
general framework of planning as satisfiability, and the idea
of a state-based model with explanation closure axioms de-
fined on state variables and no variables that explictly model

Table 4: Time (seconds) to solve Mprime planning prob-
lems. The absence of an entry indicates that the problem
was not solved correctly within the given resource limits.

CPlan Blackbox HSP IPP
1 0.05 0.59 0.14 2.34
2 0.09 4.42 13.92 23.93
3 0.16 0.60 0.51 4.35
4 0.22 0.60 0.61 2.51
5 0.22 . . 7.19
6 2.25 . 201.81 .
7 0.13 . . 12.58
8 0.67 1.99 4.39 32.91
9 0.06 1.34 0.75 4.93
10 2.14 . 273.32 .
11 0.12 1.28 0.18 4.19
12 0.09 1.63 0.87 5.92
13 2.38 . . .
14 4.04 . . .
15 1.39 . 104.02 .
16 0.13 3.61 3.33 .
17 0.57 . 27.76 91.76
18 6.95 . . .
19 0.61 . 30.48 .
20 2.34 . 130.53 .
21 0.22 . . 58.16
22 3.50 . 187.12 .
23 2.10 . . .
24 0.64 . . .
25 0.01 0.13 0.06 0.92
26 0.27 2.22 1.11 12.86
27 0.05 2.21 6.83 31.49
28 0.07 1.33 0.64 4.65
29 0.09 1.57 1.30 15.90
30 0.80 . . .
1 0.16 0.57 0.74 7.12
2 0.14 1.74 0.67 1.83
3 1.20 . . .
4 0.07 1.13 1.07 7.88
5 0.04 0.33 0.14 1.95

actions. More recently, Bockmayr and Dimopoulos (1998)
have examined integer linear programming models of plan-
ning. They use 0-1 integer variables in their formulations
in a manner similar to the satisfiability approach and exam-
ine the effect of adding redundant constraints. Their work
is preliminary and it is as yet unclear whether the approach
will be fruitful. (For a problem in the logistics world they
report a time of 75 minutes on an unknown machine to find
a plan; we are able to solve this problem in less than one
minute.) As well, there has been a long history of partial or-
der planners which are often referred to as performing con-
straint posting. In these approaches, constraint satisfaction
techniques are added as an adjunct to the planning process,
but the planning process itself is not formulated as a CSP.

There have been two streams of work on adding declara-
tive domain knowledge to improve the performance of plan-
ners. In the first stream, the knowledge is hand-coded as
in our approach. In the second, the knowledge is automati-
cally derived. As two examples, Kautz and Selman (1998b)
advocate adding domain specific knowledge in a declarative

Table 5: Time (seconds) to solve grid planning problems.
The absence of an entry indicates that the problem was not
solved correctly within the given resource limits.

CPlan Blackbox HSP IPP
1 0.67 8.08 1.13 3.03
2 33.36 . 4.33 9.38
3
4 1773.28 . . 57.00
5

manner to a planner and show some limited experimentation
in a satisfiability-based planner, and Bacchus and Kabanza
(1998) provide a temporal language for specifying domain
knowledge and show how effective it is in their TLPlan plan-
ner. For work on automatically deriving constraints from ac-
tion representations and initial and goal states, HSP (1998)
derives distance constraints; Fox and Long (1999), show
how to identify a primitive form of symmetry and use it in
a planner; Gerevini and Schubert (1998) show how to de-
rive state constraints; and Nebel, Dimopoulos, and Koehler
(1997) show how to ignore irrelevant facts and operators, all
to automatically improve the performance of planners. This
work may also be helpful in semi-automating the task of de-
veloping CSP models for planning.

Conclusions

We presented a constraint programming or constraint sat-
isfaction approach to planning. The approach shares the
advantages of other CSP-like approaches, including the ex-
pressiveness of the modeling language, the declarativeness
of the models, and the independence of the model from the
solving algorithm. We also demonstrated that a constraint
programming approach has several distinct advantages over
other approaches, including the succinctness of the models,
and the robustness and speed with which plans can be found.
Our experiments indicate that present state-of-the-art plan-
ners can be brittle, either solving the problem quickly or not
at all. Our system, CPlan, can be one to two orders of mag-
nitude more efficient in both time and space on problems
which the other systems can solve and can scale to harder
problems which the other systems cannot solve.

For future work, we intend to look at approximate plan-
ning, by examining whether the same declarative CSP mod-
els that we solved using a systematic search algorithm in the
experiments presented in this paper can be solved effectively
using local search algorithms. As Blackbox has shown, this
can be an effective technique. As well, we intend to look at
alternative CSP models. It is well known within the opera-
tions research and constraint programming fields that one of
the keys to effectively solving difficult combinatorial prob-
lems is to find the right model of the problem. In this paper
we presented results for a state-based model. The question
remains if this is the best CSP model for planning.

Availability. CPlan, including source code and CSP mod-
els for the domains discussed in this paper, is available via
http://www.cs.ualberta.ca/˜vanbeek.

Acknowledgements. We would like to thank Fahiem Bac-
chus for suggesting that we evaluate our methodology on the
planning problems used in the AIPS’98 competition. This
work was supported in part by the Natural Sciences and En-
gineering Research Council of Canada.

References
Bacchus, F., and Kabanza, F. 1998. Using temporal logics
to express search control knowledge for planning. Unpub-
lished manuscript.
Bacchus, F. 1998. TLPlan (Version of September 1998).
http://logos.uwaterloo.ca/˜fbacchus.
Baptiste, P., and Le Pape, C. 1995. A theoretical and exper-
imental comparison of constraint propagation techniques
for disjunctive scheduling. In IJCAI-95, 600–606.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
plan graph analysis. Artif. Intell. 90:281–300.
Bockmayr, A., and Dimopoulos, Y. 1998. Mixed inte-
ger programming models for planning problems. In CP98
Workshop on constraint problem reformulation.
Bonet, B., and Geffner, H. 1998. HSP (Version of August
1998). http://www.ldc.usb.ve/˜hector.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning domains. Technical Report 1,
Durham University, UK.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In AAAI-98,
905–912.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In ECAI-92, 359–363.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
AAAI-96, 1194–1201.
Kautz, H., and Selman, B. 1998a. Blackbox (Version 3.1).
http://www.research.att.com/˜kautz.
Kautz, H., and Selman, B. 1998b. The role of domain-
specific knowledge in the planning as satisfiability frame-
work. In Proc. of the 4th International Conference on AI
Planning Systems (AIPS-98).
Koehler, J., and Nebel, B. 1998. IPP (AIPS’98 version).
http://www.informatik.uni-freiburg.de/˜koehler
Marriott, K., and Stuckey, P. J. 1998. Programming with
Constraints. The MIT Press.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Proc. of
the European Conference on Planning (ECP-97), 338–350.
Springer Verlag.
Prosser, P. 1993. Hybrid algorithms for the constraint sat-
isfaction problem. Comput. Intell. 9:268–299.
Schubert, L. 1994. Explanation closure, action closure,
and the Sandewall test suite for reasoning about change. J.
of Logic and Computation 4:679–700.
Van Hentenryck, P. 1989. Constraint Satisfaction in Logic
Programming. MIT Press.

