Tree Decomposition methods

Chapter 9

ICS-275
Spring 2010
Tree-solving

Belief updating (sum-prod)

CSP – consistency (projection-join)

MPE (max-prod)

#CSP (sum-prod)

Trees are processed in linear time and memory
Inference and Treewidth

\[\text{treewidth} = 4 - 1 = 3 \]

\[\text{treewidth} = \text{(maximum cluster size)} - 1 \]
The dual graph of a constraint problem associates a node with each constraint scope and an arc for each two nodes sharing variables. This transforms a non-binary constraint problem into a binary one, called the dual problem:

Variables: constraints,
Domains: legal tuples of the relation
Binary constraints between any two dual variables that share original variables, enforcing equality on the values assigned to the shared variables.

Therefore, if a problem's dual graph happens to be a tree, it can be solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a
Dual Constraint Problems

- Constraints can be: $C = \text{AVE}$
- $F = \text{AVE}$ and so on…
Dual Constraint Problems

- Constraints can be: $C = \text{AVE}$
- $F = \text{AVE}$ and so on…
A hypergraph is \(H = (V, S) \), \(V = \{v_1, \ldots, v_n\} \) and a set of subsets Hyperegdes: \(S = \{S_1, \ldots, S_l\} \).

Dual graphs of a hypergraph: The nodes are the hyperedges and a pair of nodes is connected if they share vertices in \(V \). The arc is labeled by the shared vertices.

A primal graph of a hypergraph \(H = (V, S) \) has \(V \) as its nodes, and any two nodes are connected by an arc if they appear in the same hyperedge.

if all the constraints of a network \(R \) are binary, then its hypergraph is identical to its primal graph.
Acyclic Networks

- **The running intersection property (connectedness):** An arc can be removed from the dual graph if the variables labeling the arcs are shared along an alternative path between the two endpoints.

- **Join graph:** An arc subgraph of the dual graph that satisfies the connectedness property.

- **Join-tree:** A join-graph with no cycles

- **Hypertree:** A hypergraph whose dual graph has a join-tree.

- **Acyclic network:** is one whose hypergraph is a hypertree.
Example

- Constraints are:
 - $R_{ABC} = R_{AEF} = R_{CDE} = \{(0,0,1) (0,1,0)(1,0,0)\}$
 - $R_{ACE} = \{(1,1,0) (0,1,1) (1,0,1)\}$.

- $d=\left(R_{ACE}, R_{CDE}, R_{AEF}, R_{ABC}\right)$.
 - When processing R_{ABC}, its parent relation is R_{ACE};
 $$R_{ACE} = \pi_{ACE}(R_{ACE} \otimes R_{ABC}) = \{(0,1,1)\}$$
 - processing R_{AEF} we generate relation
 $$R_{ACE} = \pi_{ACE}(R_{ACE} \otimes R_{AEF}) = \{(0,1,1)\}$$
 - processing R_{CDE} we generate:
 - $R_{(ACE)} = \pi_{(ACE)}(R_{(ACE)} \times R_{(CDE)}) = \{(0,1,1)\}$.

- A solution is generated by picking the only allowed tuple for R_{ACE}, $A=0$,$C=1$,$E=1$, extending it with a value for D that satisfies R_{CDE}, which is only $D=0$, and then similarly extending the assignment to $F=0$ and $B=0$, to satisfy R_{AEF} and R_{ABC}.
Solving acyclic networks

- Algorithm **acyclic-solving** applies a tree algorithm to the join-tree. It applies (a little more than) directional relational arc-consistency from leaves to root.

- **Complexity**: acyclic-solving is \(O(r \log l) \) steps, where \(r \) is the number of constraints and \(l \) bounds the number of tuples in each constraint relation.

- (It assumes that join of two relations when one’s scope is a subset of the other can be done in linear time)
Recognizing acyclic networks

- Dual-based recognition:
 - perform maximal spanning tree over the dual graph and check connectedness of the resulting tree.
 - Dual-acyclicity complexity is \(O(e^3)\)

- Primal-based recognition:
 - **Theorem** (Maier 83): A hypergraph has a join-tree iff its primal graph is chordal and conformal.
 - A chordal primal graph is **conformal** relative to a constraint hypergraph iff there is a one-to-one mapping between maximal cliques and scopes of constraints.
Primal-based recognition

- Check cordality using max-cardinality ordering.
- Test conformality
- Create a join-tree: connect every clique to an earlier clique sharing maximal number of variables
Tree-based clustering

- Convert a constraint problem to an acyclic-one: group subset of constraints to clusters until we get an acyclic problem.

- **Tree-decomposition**: Hypertree embedding of a hypergraph \(H = (X,H) \) is a hypertree \(S = (X, S) \) s.t., for every \(h \) in \(H \) there is \(h_1 \) in \(S \) s.t. \(h \) is included in \(h_1 \).

- This yield algorithm join-tree clustering and tree-decomposition in general

- **Hypertree decomposition**: Hypertree partitioning of a hypergraph \(H = (X,H) \) is a hypertree \(S = (X, S) \) s.t., for every \(h \) in \(H \) there is \(h_1 \) in \(S \) s.t. \(h \) is included in \(h_1 \) and \(X \) is the union of scopes in \(h_1 \).
Join-tree clustering

- **Input**: A constraint problem $R = (X, D, C)$ and its primal graph $G = (X, E)$.
- **Output**: An equivalent acyclic constraint problem and its join-tree: $T = (X, D, \{C'\})$

1. Select an $d = (x_1, \ldots, x_n)$
2. **Triangulation**: (create the induced graph along d and call it G^*:)
 - for $j = n$ to 1 by -1 do
 - $E \leftarrow E \cup \{(i, k) | (i, j) \in E, (k, j) \in E\}$
3. **Create a join-tree of the induced graph G^***:
 - a. Identify all maximal cliques (each variable and its parents is a clique).
 - Let C_1, \ldots, C_t be all such cliques,
 - b. Create a tree-structure T over the cliques:
 - Connect each $C_{(i)}$ to a $C_{(j)}$ ($j < i$) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let P_i be the constraint subproblem associated with C_i.
5. Solve P_i and let $\{R'_i\}$ be its set of solutions.
6. Return $C' = \{R'_1\}, \ldots, \{R'_t\}$ the new set of constraints and their join-tree, T.

- **Theorem**: Join-tree clustering transforms a constraint network into an acyclic network
Example of tree-clustering
Complexity of JTC

- **complexity of JTC:** join-tree clustering is $O(r k^{w^*(d)+1})$ time and $O(nk^{w^*(d)+1})$ space, where k is the maximum domain size and $w^*(d)$ is the induced width of the ordered graph.

- The complexity of acyclic-solving is $O(n w^*(d) (\log k) k^{w^*(d)+1})$
Let $R=\langle X, D, C \rangle$ be a CSP problem. A tree decomposition for R is $\langle T, \chi, \psi \rangle$, such that

- $T=(V,E)$ is a tree
- χ associates a set of variables $\chi(v) \subseteq X$ with each node v
- ψ associates a set of functions $\psi(v) \subseteq C$ with each node v

such that

1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and scope(R_i) $\subseteq \chi(v)$.
2. $\forall x \in X$, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.
HyperTree Decomposition

Let $R=\langle X, D, C \rangle$ be CSP problem. A tree decomposition is $\langle T, \chi, \psi \rangle$, such that

- $T=(V,E)$ is a tree
- χ associates a set of variables $\chi(v) \subseteq X$ with each node
- ψ associates a set of functions $\psi(v) \subseteq C$ with each node

such that

1. $\forall R_i \in C$, there is exactly one v such that $R_i \in \psi(v)$ and $\text{scope}(R_i) \subseteq \chi(v)$.
1a. $\forall v, \chi(v) \subseteq \text{scope}(\psi(v))$.
2. $\forall x \in X$, the set $\{v \in V | x \subseteq \chi(v)\}$ induces a connected subtree.

$$w \ (\text{tree-width}) = \max_{v \in V} |\chi(v)|$$
$$hw \ (\text{hypertree width}) = \max_{v \in V} |\psi(v)|$$
$$\text{sep} \ (\text{max separator size}) = \max_{(u,v)} |\text{sep}(u,v)|$$
Example of two join-trees again

Tree decomposition

(a) \{R_{DF}\} \quad (b) \{R_{BE}, R_{AE}\}

\{R_{AB}, R_{AC}, R_{BE}\}

\{R_{BD}, R_{DC}, R_{AE}\}

\{R_{FD}\}

\{R_{AB}, R_{AC}\}

ICS 275, Fall 2010
Cluster Tree Elimination

- Cluster Tree Elimination (CTE) works by passing messages along a tree-decomposition.

- Basic idea:
 - Each node sends one message to each of its neighbors.
 - Node u sends a message to its neighbor v only when u received messages from all its other neighbors.
Constraint Propagation

\[\text{cluster}(u) = \psi(u) \cup \{m(x_1, u), m(x_2, u), \ldots, m(x_n, u), m(v, u)\} \]

Compute the message:

\[m_{(u,v)} = \pi_{\text{sep}(u,v)} \left(\bigotimes_{R_i \in \text{cluster}(u)} R_i \right) \]
Example of CTE message propagation

1

F, D

\[m_{(1,2)}(D) = \pi_D(R_{FD}) \]

2

B, C, D

\[m_{(2,1)}(D) = \pi_D(R_{BD} \bowtie R_{CD} \bowtie m_{(3,2)}) \]

\[m_{(2,3)}(B,C) = \pi_{BC}(R_{BD} \bowtie R_{CD} \bowtie m_{(1,2)}) \]

3

A, B, C

\[m_{(3,2)}(B,C) = \pi_{BC}(R_{AB} \bowtie R_{AC} \bowtie m_{(4,3)}) \]

4

A, B, E

\[m_{(3,4)}(A,B) = \pi_{AB}(R_{AB} \bowtie R_{AC} \bowtie m_{(2,3)}) \]

\[m_{(4,3)}(A,B) = \pi_{AB}(R_{BE} \bowtie R_{AE}) \]
Each function in a cluster

- Satisfy running intersection property

- **Tree-width**: number of variables in a cluster-1

- Equals induced-width

Join-Tree Decomposition

(Dechter and Pearl 1989)
Cluster Tree Elimination

1

A B C
R(a), R(b,a), R(c,a,b)

BC

project
join

h_{(1,2)}(b,c) = \downarrow_a R(a) \otimes R(b,a) \otimes R(c,a,b)

2

B C D F
R(d,b), R(f,c,d), h_{(1,2)}(b,c)

BF

sep(2,3)={B,F}
elim(2,3)={C,D}

h_{(2,3)}(b,f) = \downarrow_{c,d} R(d,b) \otimes R(f,c,d) \otimes h_{(1,2)}(b,c)

3

B E F
R(e,b,f), h_{(2,3)}(b,f)

EF

4

E F G
R(g,e,f)

ICS 275, Fall 2010
CTE: Cluster Tree Elimination

Time: $O(\exp(w^*+1))$
Space: $O(\exp(sep))$

Time: $O(\exp(hw))$ (Gottlob et. Al., 2000)

ABC

$h_{(1,2)}(b, c) = \downarrow_a R(a) \otimes R(b, a) \otimes R(c, a, b)$

BC

$h_{(2,1)}(b, c) = \downarrow_{d, f} R(d, b) \otimes R(f, c, d) \otimes h_{(3,2)}(b, f)$

BCDF

$h_{(2,3)}(b, f) = \downarrow_{c, d} R(d, b) \otimes R(f, c, d) \otimes h_{(1,2)}(b, c)$

BEF

$h_{(3,2)}(b, f) = \downarrow_e R(e, b, f) \otimes h_{(4,3)}(e, f)$

EF

$h_{(3,4)}(e, f) = \downarrow_b R(e, b, f) \otimes h_{(2,3)}(b, f)$

EFG

$h_{(4,3)}(e, f) = \downarrow_g R(g, e, f)$
Cluster Tree Elimination - properties

- Correctness and completeness: Algorithm CTE is sound and complete for generating minimal subproblems over \(\chi(v) \) for every \(v \): i.e. the solution of each subproblem is minimal.
- Time complexity: \(O(\deg \times (r+N) \times k^{w^*+1}) \)
- Space complexity: \(O(N \times d^{sep}) \)
 where \(\deg = \) the maximum degree of a node
 \(r = \) number of of CPTs
 \(N = \) number of nodes in the tree decomposition
 \(k = \) the maximum domain size of a variable
 \(w^* = \) the induced width
 \(sep = \) the separator size
- JTC is \(O(r \times k^{w^*+1}) \) time and space
Cluster-Tree Elimination (CTE)

\[m(u,w) = \downarrow_{\text{sep}(u,w)} \left[\otimes_j \{ m(v_j,u) \} \otimes \psi(u) \right] \]
Adaptive-consistency as tree-decomposition

- Adaptive consistency is a message-passing along a bucket-tree

- **Bucket trees**: each bucket is a node and it is connected to a bucket to which its message is sent.
 - The variables are the clique of the triangulated graph
 - The functions are those placed in the initial partition
Bucket Elimination

Adaptive Consistency (Dechter and Pearl, 1987)

Bucket Elimination

Bucket(E): E \neq D, E \neq C, E \neq B
Bucket(D): D \neq A \parallel R_{DCB}
Bucket(C): C \neq B \parallel R_{ACB}
Bucket(B): B \neq A \parallel R_{AB}
Bucket(A): R_A

Bucket(A): A \neq D, A \neq B
Bucket(D): D \neq E \parallel R_{DB}
Bucket(C): C \neq B, C \neq E
Bucket(B): B \neq E \parallel R_{BE}^D, R_{BE}^C
Bucket(E): \parallel R_E

Complexity: \Theta(n \exp(w^*(d)))

w^*(d) - induced width along ordering d
From bucket-elimination to bucket-tree propagation
The bottom up messages

Bucket G: $R(G, F)$

Bucket F: $R(F, B, C)$

Bucket D: $R(D, A, B)$

Bucket C: $R(C, A)$

Bucket B: $R(B, A)$

Bucket A: $R(A)$

ICS 275, Fall 2010
Adaptive-Tree-Consistency as tree-decomposition

- Adaptive consistency is a message-passing along a bucket-tree

- **Bucket trees**: each bucket is a node and it is connected to a bucket to which its message is sent.

- **Theorem**: A bucket-tree is a tree-decomposition. Therefore, CTE adds a bottom-up message passing to bucket-elimination.

- The complexity of ATC is $O(r \cdot \deg k^{(w^*+1)})$ time and $O(n \cdot k^{(\text{sep}^*+1)})$ space.
Conditioning

Graph Coloring problem

• Inference may require too much memory

• **Condition** on some of the variables

A=yellow

A=green

Radcliffe 33
Conditioning

• Inference may require too much memory

• **Condition** on some of the variables

Graph Coloring problem
Cycle cutset = \{A, B, C\}
Transforming into a tree

- By Inference
 - Time and space exponential in tree-width

- By Conditioning-search
 - Time exponential in the cycle-cutset
Treewidth equals cycle cutset

treewidth = cycle cutset = 4
Treewidth smaller than cycle cutset

treewidth = 2

cycle cutset = 5