Advanced consistency methods Chapter 8

ICS-275 Spring 14

Relational consistency (Chapter 8)

- Relational arc-consistency
- Relational path-consistency
- Relational m-consistency
- Relational consistency for Boolean and linear constraints:
 - Unit-resolution is relational-arc-consistency
 - Pair-wise resolution is relational pathconsistency

Example

- Consider a constraint network over five integer domains, where the constraints take the form of linear equations and the domains are integers bounded by
 - D_x in [-2,3]
 - D_y in [-5,7]
 - $R_{xyz}: x + y = z$
 - R_{zlt} : z + t = |
 - From D_x and R_{xyz} infer z-y in [-2,3] from this and D_y we can infer z in [-7,10]

Relational arc-consistency

Let R be a constraint network, $X = \{x_1, ..., x_n\}$, $D_1, ..., D_n, R_S$ a relation.

 R_S in R is relational-arc-consistent relative to x in S, iff any consistent instantiation of the variables in S- $\{x\}$ has an extension to a value in D_x that satisfies R_S . Namely,

$$\rho(S-x) \subseteq \pi_{S-x} R_S \bowtie D_x$$

Enforcing relational arc-consistency

• If arc-consistency is not satisfied add:

$$R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x} R_S \otimes D_S$$

Example

- $R_{xyz} = \{(a,a,a),(a,b,c),(b,b,c)\}.$
- This relation is not relational arc-consistent, but if we add the projection:
 - $R_{xy}= \{(a,a),(a,b),(b,b)\}, \text{ then } R_{xyz} \text{ will be relational arc-consistent relative to } \{z\}.$
- To make this network relational-arc-consistent, we would have to add all the projections of R_{xyz} with respect to all subsets of its variables.

Relational path-cosistency

- Let R_S and R_T be two constraints in a network.
- R_S and R_T are relational-path-consistent relative to a variable x in S U T iff any consistent instantiation of variables in S T $\{x\}$ has an extension to in the domain D_X , s.t. R_S and R_T simultaneously;

$$\rho(A) \subseteq \pi_A R_S \otimes R_T \otimes D_x$$
$$A = S \cup T - x$$

• A pair of relations R_S and R_T is relational-path-consistent iff it is relational-path-consistent relative to every variable in $S \cap T$. A network is relational-path-consistent iff every pair of its relations is relational-path-consistent.

Example:

$$R_{xyz} := x + y = z$$

D_x in [-2,3] D_y in [-5,7]

$$R_{ztl}:=z+t=l$$

- We can assign to x, y, I and t values that are consistent relative to the relational-arc-consistent network generated in earlier. For example, the assignment
- (x=2, y=-5, t=3, l=15) is consistent, since only domain restrictions are applicable, but no value of z that satisfies x+y=z and z+t=l.
- To make the two constraints relational pathconsistent relative to z add : x+y+t=1.

Enforcing relational arc, path and m-consistency

• If arc-consistency is not satisfied add:

r.a.c
$$R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x} R_S \otimes D_S$$
 r.p.c $\rho(A) \subseteq \pi_A R_S \otimes R_T \otimes D_x$ $A = S \cup T - x$ $\rho(A) \subseteq \pi_A \otimes_{i=1,m} R_{S_i} \otimes D_x$ r.m.c $A = S_1 \cup ...S_m - x$

Extended composition

The extended composition of relation $R_{S_1} \dots R_{S_m}$ relative to A is defined by

$$EC_A(R_1,...,R_m) = \pi_A(R_1 \otimes R_2 \otimes,...,\otimes R_m)$$

- If the projection operation is restricted to subsets of size i, it is called extended (i,m)-composition.
- Special cases: domain propagation and relational arcconsistency

$$D_{x} \leftarrow D_{x} \cap \pi_{x}(R_{S} \otimes D_{S})$$

$$R_{S-x} \leftarrow R_{S-x} \cap \pi_{S-x}(R_S \otimes D_S)$$

Example: crossword puzzle, DRC_2

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S), (L,A,S,E,R), (S,H,E,E,T),\\ &\quad (S,N,A,I,L), (S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E), (A,R,O,N), (K,E,E,T), (E,A,R,N), \\ \end{split}$$
(S, A, M, E)

 $R_{5711} = \{(\hat{R}, \hat{U}, \hat{N}), (\hat{S}, \hat{U}, \hat{N}), (\hat{L}, \hat{E}, \hat{T}), (\hat{Y}, \hat{E}, \hat{S}), (\hat{E}, \hat{A}, \hat{T}), (\hat{T}, \hat{E}, \hat{N})\}$

$$\begin{split} R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O), (B,E), (U,S), (I,T)\} \end{split}$$

 $R_{12.13}^{10,13} = R_{10.13}$

 $bucket(x_1)$

 $bucket(x_2)$

 $bucket(x_3)$

 $bucket(x_4)$

 $bucket(x_5)$

bucket(x_6)

 $bucket(x_7)$

 $bucket(x_8)$

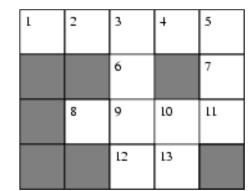
 $bucket(x_9)$

 $bucket(x_{10})$

 $bucket(x_{11})$

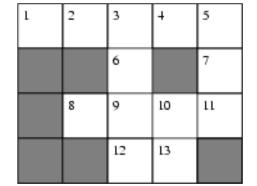
 $bucket(x_{12})$

 $bucket(x_{13})$



Example: crossword puzzle, Directional-relational-2

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \\ R_{12,13} &= R_{10,13} \end{split}$$



$bucket(x_1)$	$R_{1,2,3,4,5}$	·
$bucket(x_2)$		$H_{2,3,4,5}$
$bucket(x_3)$	$R_{3,6,9,12}$	$H_{3,4,5}$
$bucket(x_4)$	Ì	$H_{4,5,6,9,12}$
$bucket(x_5)$	$R_{5,7,11}$	$H_{5,6,9,12}$
$bucket(x_6)$		$H_{6,7,9,11,12}$
$bucket(x_7)$		$H_{7,9,11,12}$
$bucket(x_8)$	$R_{8,9,10,11}$	
$bucket(x_9)$	$H_{9,10,11}$	$H_{9,11,12}$
$bucket(x_{10})$	$R_{10,13}$	$H_{10,11,12}$
$bucket(x_{11})$		Empty relation exit.
$bucket(x_{12})$	$R_{12,13}$	
$bucket(x_{13})$		

Complexity

- Theorem: DRC_2 is exponential in the induced-width.
- (because size of the recorded relations are exp in w).

 Crossword puzzles can be made directional backtrack-free by DRC_2

Domain tightness

- Theorem: a strong relational 2-consistent constraint network over bi-valued domains is globally consistent.
- Theorem: A strong relational k-consistent constraint network with at most k values is globally consistent.

Inference for Boolean theories

- Resolution is identical to extended 2 decomposition
- check: {(f ∨ x ∨ y ∨∽ z), (x ∨y ∨f)}
- Boolean theories have domain size 2
- Therefore DRC₂ makes a cnf globally consistent.
- DRC₂ expressed on cnfs is directional resolution

Directional resolution

DIRECTIONAL-RESOLUTION

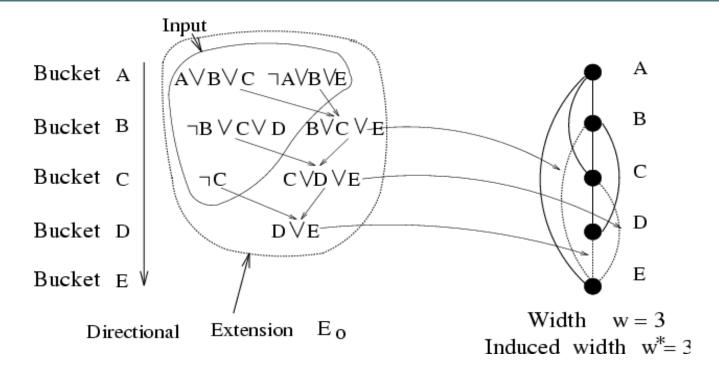
Input: A CNF theory φ , an ordering $d = Q_1, \ldots, Q_n$ of its variables.

OutputA decision of whether φ is satisfiable. If it is, a theory $E_d(\varphi)$, equivalent to φ , else an empty directional extension.

- 1. **Initialize:** generate an ordered partition of clauses into buckets. $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all clauses whose highest literal is Q_i .
- 2. for $i \leftarrow n$ downto 1 process $bucket_i$:
- 3. **if** there is a unit clause **then** (the instantiation step) apply unit-resolution in $bucket_i$ and place the resolvents in their right buckets. **if** the empty clause was generated, theory is not satisfiable.
- 4. **else** resolve each pair $\{(\alpha \vee Q_i), (\beta \vee \neg Q_i)\} \subseteq bucket_i$. **if** $\gamma = \alpha \vee \beta$ is empty, return $E_d(\varphi) = \{\}$, theory is not satisfiable **else** determine the index of γ and add it to the appropriate bucket.
- 5. **return** $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

Figure 4.20: Directional-resolution

DR resolution = adaptive-consistency=directional relational path-consistency

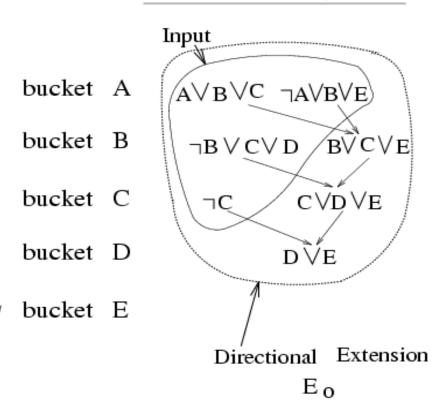


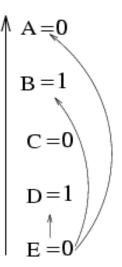
 $|bucket_i| = O(\exp(w^*))$ DR time and space : $O(n \exp(w^*))$

Directional Resolution Adaptive Consistency

Knowledge compilation

Model generation





Resolution - An Example

$$(x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3) \wedge (x_3 \vee x_4) \wedge (x_3 \vee \neg x_4) \vdash (\neg x_2 \vee \neg x_3) \wedge (x_2 \vee x_3) \wedge (x_3 \vee x_4) \wedge (x_3 \vee \neg x_4)$$

History

- 1960 resolution-based Davis-Putnam algorithm
- 1962 resolution step replaced by conditioning (Davis, Logemann and Loveland, 1962) to avoid memory explosion, resulting into a backtracking search algorithm known as Davis-Putnam (DP), or DPLL procedure.
- The dependency on induced width was not known in 1960.
- 1994 Directional Resolution (DR), a rediscovery of the original Davis-Putnam, identification of tractable classes (Dechter and Rish, 1994).

Complexity of DR

Theorem 4.7.6 (complexity of DR)

Given a theory φ and an ordering of its variables o, the time complexity of algorithm DR along o is $O(n \cdot 9^{w_o^*})$, and $E_o(\varphi)$ contains at most $n \cdot 3^{w_o^*+1}$ clauses, where w_o^* is the induced width of φ 's interaction graph along o. \square

2-cnfs and Horn theories

Theorem 4.7.7 Given a 2-cnf theory φ , its directional extension $E_o(\varphi)$ along any ordering o is of size $O(n \cdot w_o^{*2})$, and can be generated in $O(n \cdot w_o^{*2})$ time.

Theorem 4.7.8 The consistency of Horn theories can be determined by unit propagation. If the empty clause is not generated, the theory is satisfiable. \Box

Linear inequalities

- Consider r-ary constraints over a subset of variables $x_1 cdot x_r$ of the form
- $a_r x_r + ... + a_r x_r <= c$, a_i are rational constants. The r-ary inequalities define corresponding r-ary relations that are *row convex*.
- Since r-ary linear inequalities that are closed under relational path-consistency are row-convex, relative to any set of integer domains (using the natural ordering).
- **Proposition:** A set of linear inequalities that is closed under RC_2 is globally consistent.

Linear inequalities

- Gausian elimination with domain constraint is relational-arc-consistency
- Gausian elimination of 2 inequalities is relational path-consistency
- Theorem: directional relational pathconsistency is complete for CNFs and for linear inequalities

Directional-Linear-Elimination (φ, d)

Input: A set of linear inequalities φ , an ordering $d = x_1, \dots, x_n$.

OutputA decision of whether φ is satisfiable. If it is, a backtrack-free theory $E_d(\varphi)$.

- Initialize: Partition inequalities into ordered buckets.
- 2. for $i \leftarrow n$ downto 1 do
- 3. if x_i has one value in its domain then
- substitute the value into each inequality in the bucket and put the resulting inequality in the right bucket.
- 4. else, for each pair $\{\alpha, \beta\} \subseteq bucket_i$, compute $\gamma = elim_i(\alpha, \beta)$ if γ has no solutions, return $E_d(\varphi) = \{\}$, "inconsistency" else add γ to the appropriate lower bucket.
- 5. return $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

Figure 4.22: Fourier Elimination; DLE

Directional linear elimination, DLE: generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities φ , algorithm DLE (Fourier elimination) decides the consistency of φ over the Rationals and the Reals, and it generates an equivalent backtrack-free representation. \square

Example

 $bucket_4: 5x_4 + 3x_2 - x_1 \le 5, x_4 + x_1 \le 2, -x_4 \le 0,$

 $bucket_3: x_3 \le 5, x_1 + x_2 - x_3 \le -10$

 $bucket_2: x_1 + 2x_2 \leq 0.$

 $bucket_1$:

Figure 4.23: initial buckets

bucket₄: $5x_4 + 3x_2 - x_1 \le 5$, $x_4 + x_1 \le 2$, $-x_4 \le 0$,

bucket₃: $x_3 < 5$, $x_1 + x_2 - x_3 < -10$

 $bucket_2: x_1 + 2x_2 \le 0 \mid |3x_2 - x_1 \le 5, x_1 + x_2 \le -5$

 $bucket_1: || x_1 \leq 2.$

Figure 4.24: final buckets