CONSTRAINT Networks Chapters 1-2

Compsci-275 Fall 2010

1

Class Information

• Instructor: Rina Dechter

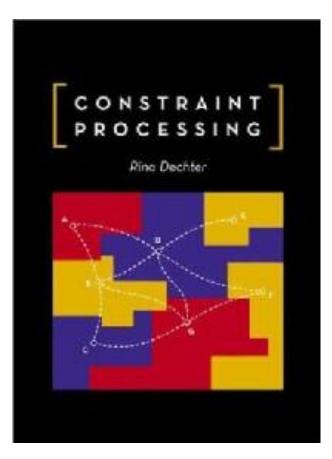
- Days: Tuesday & Thursday
- Time: 11:00 12:20 pm

• Class page: http://www.ics.uci.edu/~dechter/ics-275a/fall-2010/

Text book (required)

Rina Dechter,

Constraint Processing, Morgan Kaufmann



Outline

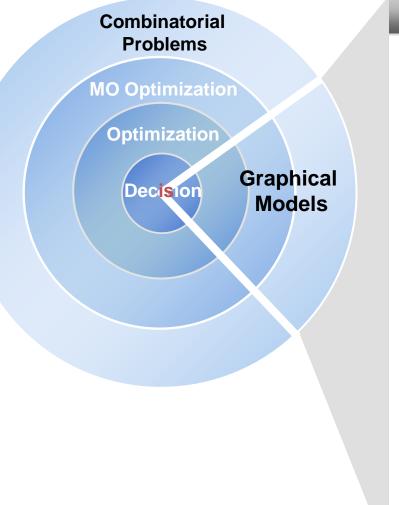
- ✓ Motivation, applications, history
- ✓ CSP: Definition, and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Outline

✓ Motivation, applications, history

- CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Combinatorial Problems



Graphical Models

Those problems that can be expressed as:

A set of variables

Each variable takes its values from a finite set of domain values

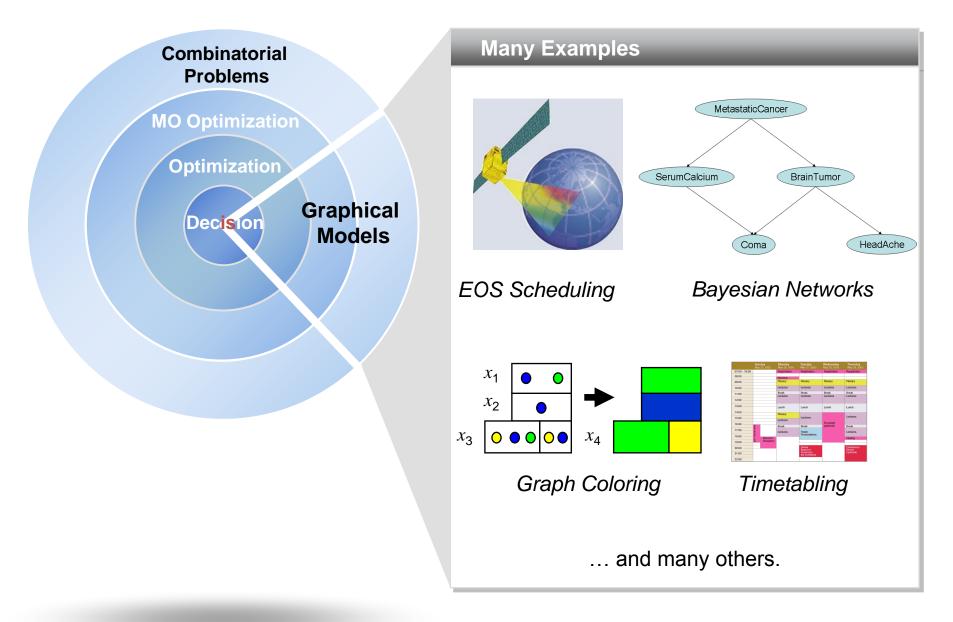
A set of local functions

Main advantage:

They provide unifying algorithms:

- o Search
- o Complete Inference
- o Incomplete Inference

Combinatorial Problems



Example: student course selection

- **Context**: You are a senior in college
- **Problem**: You need to register in 4 courses for the Spring semester
- **Possibilities**: Many courses offered in Math, CSE, EE, CBA, etc.
- **Constraints**: restrict the choices you can make
 - Unary: Courses have prerequisites you have/don't have Courses/instructors you like/dislike
 - *Binary*: Courses are scheduled at the same time
 - *n*-ary: In CE: 4 courses from 5 tracks such as at least 3 tracks are covered
- You have choices, but are restricted by constraints
 - Make the right decisions!!
 - ICS Graduate program

Student course selection (continued)

• Given

- A set of variables: 4 courses at your college
- For each variable, a set of choices (values)
- A set of constraints that restrict the combinations of values the variables can take at the same time

Questions

- Does a solution exist? (classical decision problem)
- How many solutions exists?
- How two or more solutions differ?
- Which solution is preferrable?

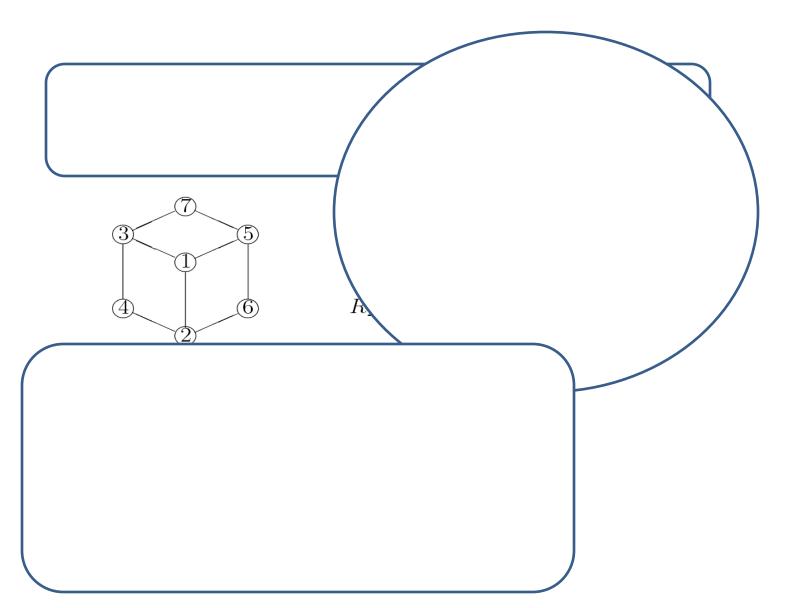
– etc.

The field of Constraint Programming

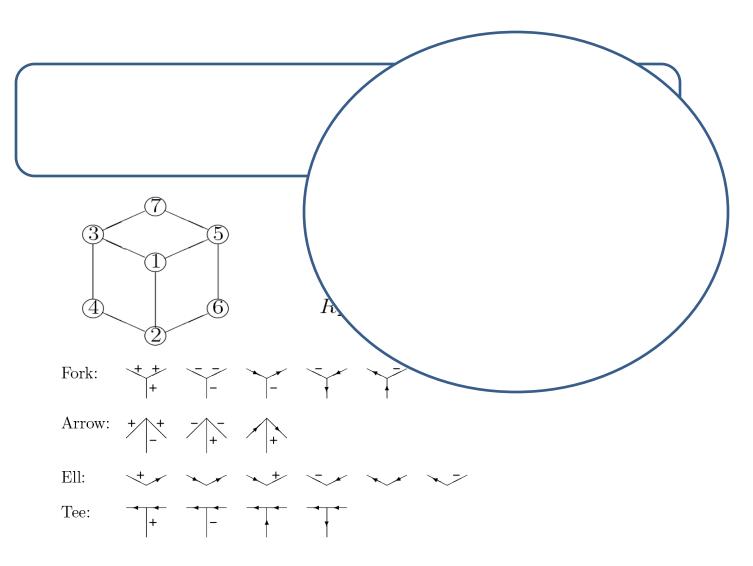
• How did it started:

- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability
- Related areas:
 - Hardware and software verification
 - Operation Research (Integer Programming)
 - Answer set programming
- Graphical Models; deterministic

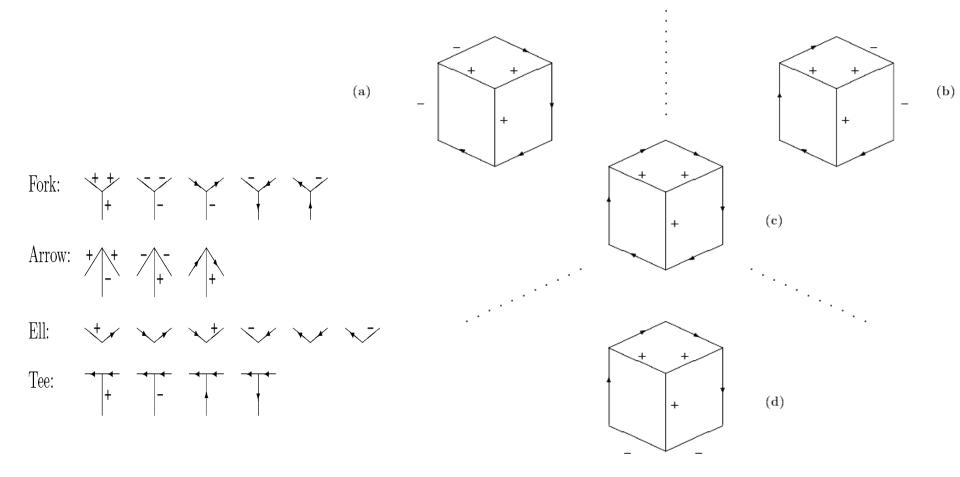
Scene labeling constraint network



Scene labeling constraint network



3-dimentional interpretation of 2-dimentional drawings



The field of Constraint Programming

• How did it started:

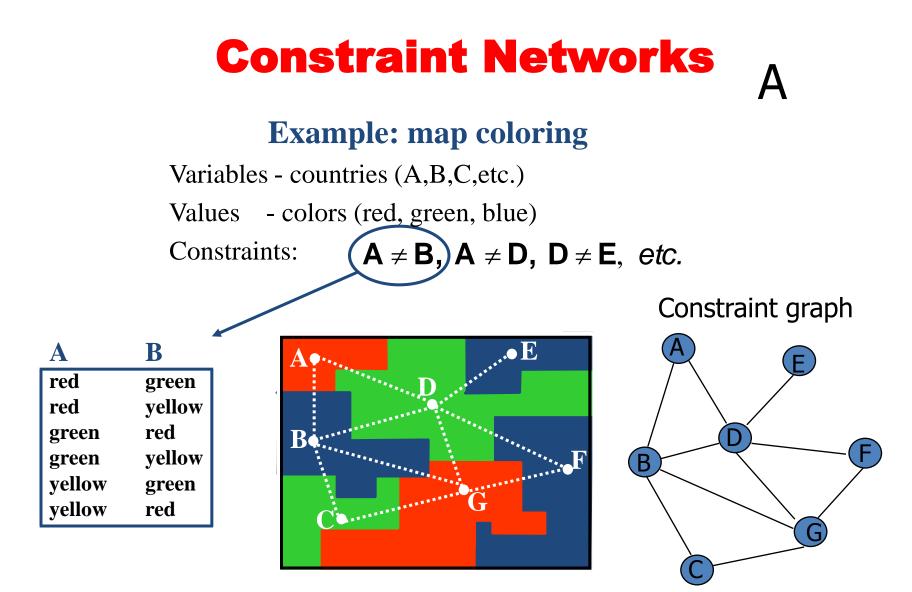
- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability
- Related areas:
 - Hardware and software verification
 - Operation Research (Integer Programming)
 - Answer set programming
- Graphical Models; deterministic

Applications

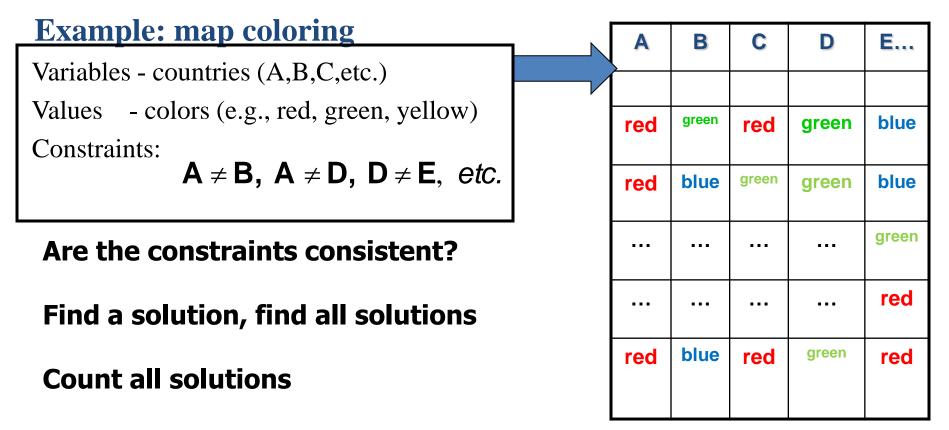
- Radio resource management (RRM)
- Databases (computing joins, view updates)
- Temporal and spatial reasoning
- Planning, scheduling, resource allocation
- Design and configuration
- Graphics, visualization, interfaces
- Hardware verification and software engineering
- HC Interaction and decision support
- Molecular biology
- Robotics, machine vision and computational linguistics
- Transportation
- Qualitative and diagnostic reasoning

Outline

- Motivation, applications, history
- ✓ CSP: Definitions and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties



Constraint Satisfaction Tasks



Find a good solution

Information as Constraints

- I have to finish my class in 50 minutes
- 180 degrees in a triangle
- Memory in our computer is limited
- The four nucleotides that makes up a DNA only combine in a particular sequence
- Sentences in English must obey the rules of syntax
- Susan cannot be married to both John and Bill
- Alexander the Great died in 333 B.C.

Constraint Network; Definition

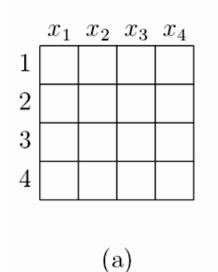
- A constraint network is: **R**=(X,D,C)
 - X variables $X = \{X_1, \dots, X_n\}$
 - **D domain** $D = \{D_1, ..., D_n\}, D_i = \{v_1, ..., v_k\}$

- **C constraints**
$$C = \{C_1, ..., C_t\}, ..., C_i = (S_i, R_i)$$

- *R* expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- **Tasks:** consistency?, one or all solutions, counting, optimization

The N-queens problem

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.



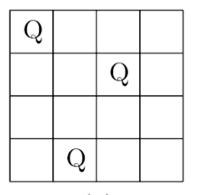
$$\begin{split} R_{12} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \\ R_{13} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\} \\ R_{14} &= \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4) \\ (4,2), (4,3)\} \\ R_{23} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \\ R_{24} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\} \\ R_{34} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \end{split}$$

(b)

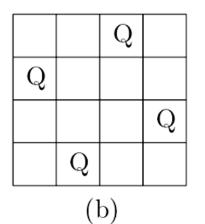
A solution and a partial consistent tuple

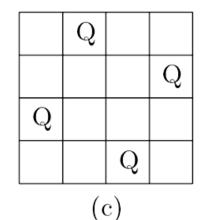
Not all consistent instantiations are part of a solution:

- (a) A consistent instantiation that is not part of a solution.
- (b) The placement of the queens corresponding to the solution (2, 4, 1,3).
- c) The placement of the queens corresponding to the solution (3, 1, 4, 2).



(a)





Example: Crossword puzzle

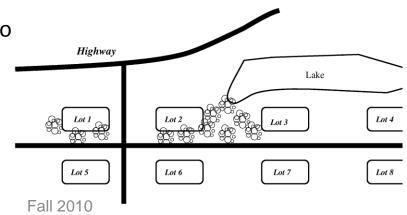
- Variables: x₁, ..., x₁₃
- Domains: letters
- Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

Configuration and design

- Want to build: recreation area, apartments, houses, cemetery, dump
 - Recreation area near lake
 - Steep slopes avoided except for recreation area
 - Poor soil avoided for developments
 - Highway far from apartments, houses and recreation
 - Dump not visible from apartments, houses and lake
 - Lots 3 and 4 have poor soil
 - Lots 3, 4, 7, 8 are on steep slo
 - Lots 2, 3, 4 are near lake
 - Lots 1, 2 are near highway



Example: Sudoku

Constraint propagation

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	2-3
		9			4	5	8	1
			3		2	9		

•Variables: 81 slots

•Domains = {1,2,3,4,5,6,7,8,9}

•Constraints: •27 not-equal

Each row, column and major block must be all different "Well posed" if it has unique solution: 27 constraints

Fall 2010

Outline

- Motivation, applications, history
- CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Mathematical background

- Sets, domains, tuples
- Relations
- Operations on relations
- Graphs
- Complexity

Two graphical representation and views of a relation: *R* = {(black, coffee), (black, tea), (green, tea)}.

				$\underline{x_2}$	
				apple juice	9
x_1	x_2			coffee	
black	coffee				
black	tea				
green	tea	<u>x</u>	21	$ \begin{array}{c} \text{black} \\ \text{green} \end{array} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} $	
(a) t	table			(b) $(0,1)$ -matrix	

Operations with relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

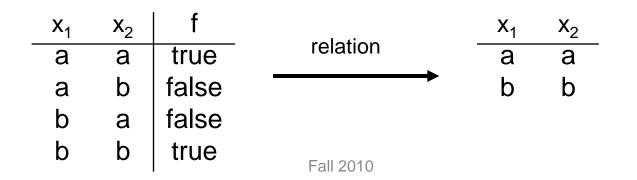
Local Functions

Local function

where

var(f) = $Y \subseteq X$: scope of function fA: is a set of valuations

In constraint networks: functions are boolean



Example of set operations intersection, union, and difference applied to relations.

$\begin{array}{c c} x_1 \\ \hline a \\ b \\ c \\ c \\ \end{array}$	$\begin{array}{c} x_2 \\ b \\ b \\ b \\ b \\ b \end{array}$	$egin{array}{c} x_3 \\ c \\ c \\ c \\ s \end{array}$	-	$\begin{array}{c} x_1 \\ b \\ c \\ c \end{array}$	$\begin{array}{c} x_2 \\ b \\ b \\ n \end{array}$	$\begin{array}{c} x_3 \\ c \\ c \\ n \end{array}$			$\begin{array}{c} x_2 \\ \hline a \\ b \\ b \\ \end{array}$	$\begin{array}{c c} x_3 \\ a \\ c \\ c \\ \end{array}$	$\begin{array}{c c} x_4 \\ \hline 1 \\ 2 \\ 3 \end{array}$	
(a) R	elati	ion I	R	(b) I	Relat	ion R	2/		(c) I	Relat	ion R'	,
	$\begin{array}{c} x_1 \\ \hline \mathbf{b} \\ \mathbf{c} \end{array}$	$\begin{vmatrix} x_2 \\ b \\ b \end{vmatrix}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} x_1 \\ a \\ b \\ c \\ c \\ c \\ c \end{array}$	$\begin{array}{c c} x_2 \\ b \\ b \\ b \\ b \\ b \\ n \end{array}$	$\begin{array}{c} x_3 \\ c \\ c \\ c \\ s \\ n \end{array}$		$\begin{array}{c c} x_1 \\ \hline a \\ c \end{array}$	$\begin{array}{c c} x_2 \\ b \\ b \\ \end{array}$	$\frac{x_3}{c}$ s		
	(a	$) R \cap$	$\cap R'$	(b)) $R \cup$	R'		(b)	R - L	R'		

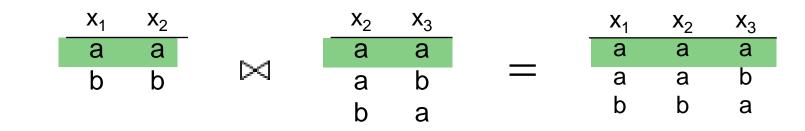
Selection, Projection, and Join operations on relations.

$\begin{array}{c c} x_1 \\ \hline a \\ b \\ c \\ c \\ c \\ \end{array}$	$\begin{array}{c c} x_2 & x_3 \\ b & c \\ b & c \\ b & c \\ b & s \end{array}$	$\begin{array}{c c} x_1 & x_2 \\ \hline b & b \\ c & b \\ c & n \\ \end{array}$	$\begin{array}{c} x_3 \\ c \\ c \\ n \end{array}$	$\begin{array}{c} x_2 \\ \hline a \\ b \\ b \end{array}$	$\begin{array}{c c} x_3 \\ a \\ c \\ c \\ c \end{array}$	$\begin{array}{c} x_4 \\ 1 \\ 2 \\ 3 \end{array}$
(a) R	telation R	(b) Relat	sion R'	(c) I	Relat	ion R''
	$\begin{array}{c ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \end{array}$	$\begin{array}{c c} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$		$\begin{array}{c cccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ b & b & c \\ c & b & c \\ c & b & c \\ c & b & c \end{array}$	$\begin{array}{c} 2\\ 3\\ 2\\ \end{array}$	
	(a) $\sigma_{x_3=c}(R')$	(b) $\pi_{\{x_2,x_3\}}$	$_{ m B}(R')$	(c) $R' \bowtie$	R''	

Local Functions

Combination

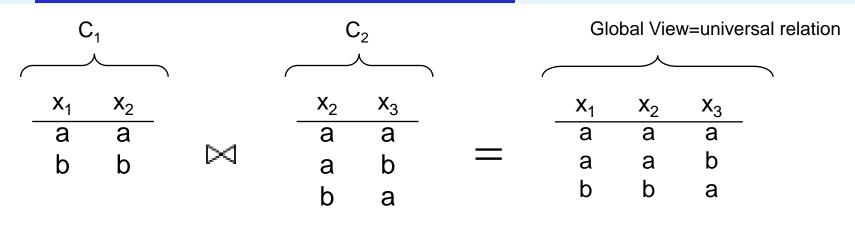
 $f \bowtie g$ Join : •



Logical AND: $f \wedge g$ ٠

								x ₁	x ₂	x ₃	h
		L L						а	а	а	true
X_1	X ₂	T	-	X ₂	Х ₃	g		а	а	b	true
а	а	true		а	а	true		а	b	а	false
а	b	false	\wedge	а	b	true	=	а	b	b	false
b	а	false	<i>,</i> , ,	b	а	true		b	а	а	false
b	b	true		b	b	false		b	а	b	false
						l		b	b	а	true
Fall 2010								b	b	b	false ₃₄

Global View of the Problem



Does the problem a solution?

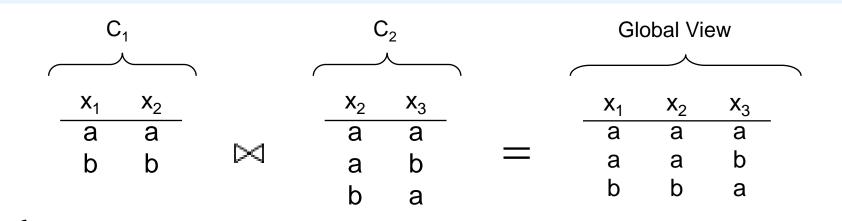
The problem has a solution if the global view is not empty

X ₁	X ₂	X_3	h
а	а	а	true
а	а	b	true
а	b	а	false
а	b	b	false
b	а	а	false
b	а	b	false
b	b	а	true
b	b	b	false

TASK

The problem has a solution if there is some true tuple in the global view, the universal relation

Global View of the Problem



What about counting?

X ₁	x ₂	X ₃	h		x ₁	X ₂	X ₃	h
 а	а	а	true		а	а	а	1
а	а	b	true		а	а	b	1
а	b	а	false		а	b	а	0
а	b	b	false		а	b	b	0
b	а	а	false	true is 1 false is 0	b	а	а	0
b	а	b	false	logical AND?	b	а	b	0
b	b	а	true		b	b	а	1
b	b	b	false		b	b	b	0
Number of true tuples				Fall 2010	Sum	over a	II the to	uples

Outline

- Motivation, applications, history
- CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Modeling; Representing a problems

- If a CSP M = <X,D,C> represents a problem P, then every solution of M corresponds to a solution of P and every solution of P can be deriven x₄ = x₃ = x₂ = x₁ from at least one solution of M
- The variables and values of M represent entities in P
- The constraints of M ensure the correspondence between solutions
- The aim is to find a model M that can be solved as quickly as possible
- goal of modeling: choose a set of variables and values that allows the constraints to be expressed easily and concisely

b

С

d

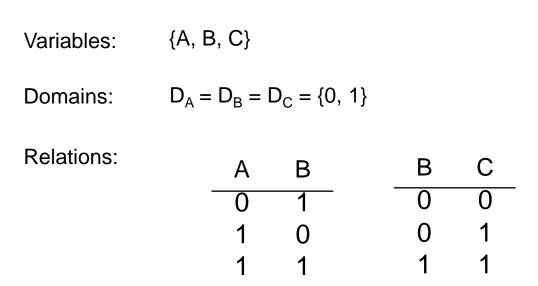
Examples

Propositional Satisfiability

Given a proposition theory

$$\varphi = \{(A \lor B), (C \lor \neg B)\}$$
 does it have a model?

Can it be encoded as a constraint network?



If this constraint network has a solution, then the propositional theory has a model

Constraint's representations

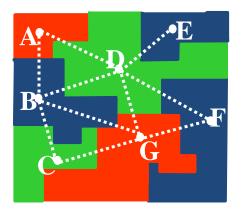
- Relation: allowed tuples
- Algebraic expression:
- $X + Y^2 \le 10, X \ne Y$

 $X \quad Y \quad Z$

1 3 2

2 1 3

- Propositional formula:
- $(a \lor b) \rightarrow \neg c$
- Semantics: by a relation

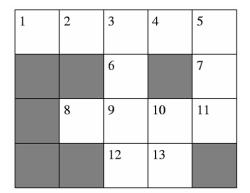


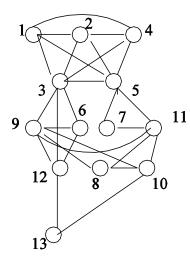
Constraint Graphs:

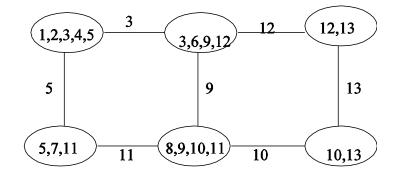
Primal, Dual and Hypergraphs

•A (primal) constraint graph: a node per variable, arcs connect constrained variables.

•A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph







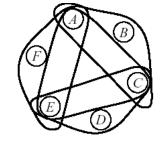
(b)

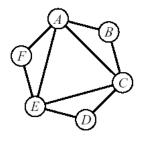
(a)

Graph Concepts Reviews:

Hyper Graphs and Dual Graphs

- A hypergraph
- Dual graphs

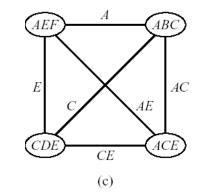


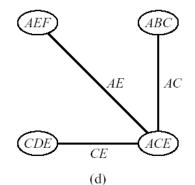


(a)

(b)

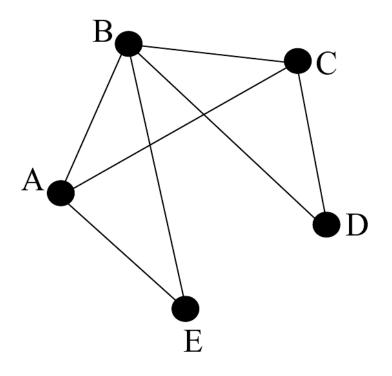
- Primal graphs
- Factor graphs





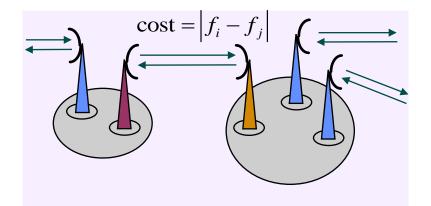
Propositional Satisfiability

 $\varphi = \{ (\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D) \}.$



Examples

Radio Link Assignment



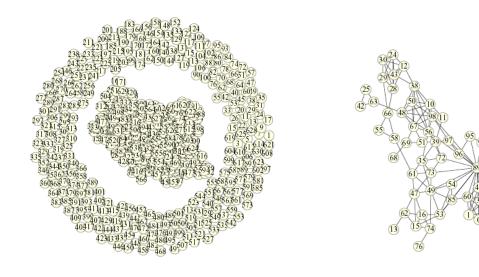
Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.

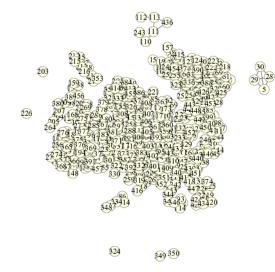
Encoding?

- Variables: one for each antenna
- Domains: the set of available frequencies

Constraints: the ones referring to the antennas in the same communication link

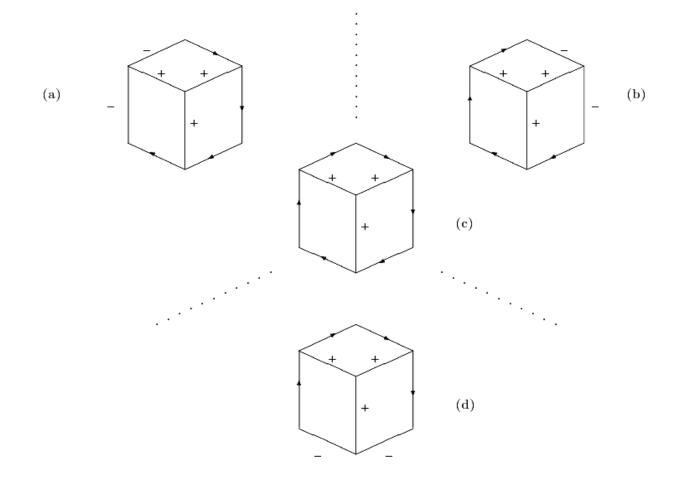
Constraint graphs of 3 instances of the Radio frequency assignment problem in CELAR's benchmark





Scene labeling constraint network

Figure 1.5: Solutions: (a) stuck on left wall, (b) stuck on right wall, (c) suspended in mid-air, (d) resting on floor.



Examples

Scheduling problem

Five tasks: T1, T2, T3, T4, T5 Each one takes one hour to complete The tasks may start at 1:00, 2:00 or 3:00 Requirements:

T1 must start after T3 T3 must start before T4 and after T5 T2 cannot execute at the same time as T1 or T4 T4 cannot start at 2:00

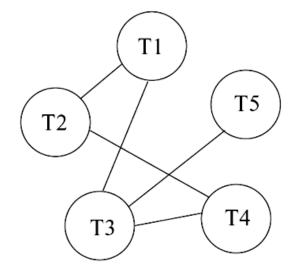
Encoding?

Variables: one for each task

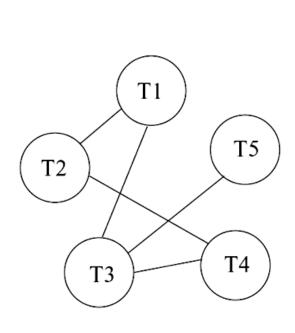
Domains: $D_{T1} = D_{T2} = D_{T3} = D_{T3} = \{1:00, 2:00, 3:00\}$

Constraints:

Fall 2010



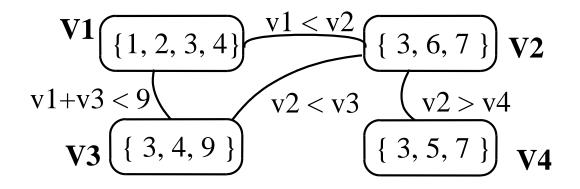
The constraint graph and relations of scheduling problem



Unary constraint $D_{T4} = \{1:00, 3:00\}$ Binary constraints $R_{\{T1,T2\}}$: {(1:00,2:00), (1:00,3:00), (2:00,1:00), (2:00,3:00), (3:00,1:00), (3:00,2:00) $\{(2:00,1:00), (3:00,1:00), \}$ $R_{\{T1,T3\}}$: (3:00,2:00) $R_{T2,T4}$: {(1:00,2:00), (1:00,3:00), (2:00,1:00), (2:00,3:00), (3:00,1:00), (3:00,2:00) $\{(1:00,2:00), (1:00,3:00), \}$ $R_{\{T3,T4\}}$: (2:00,3:00) $R_{\{T3,T5\}}$: $\{(2:00,1:00),$ (3:00,1:00),(3:00,2:00)

Examples

Numeric constraints

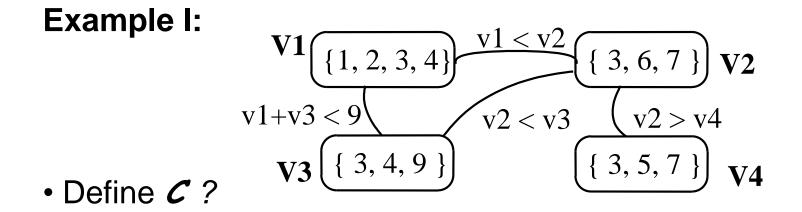


Can we specify numeric constraints as relations?

More examples

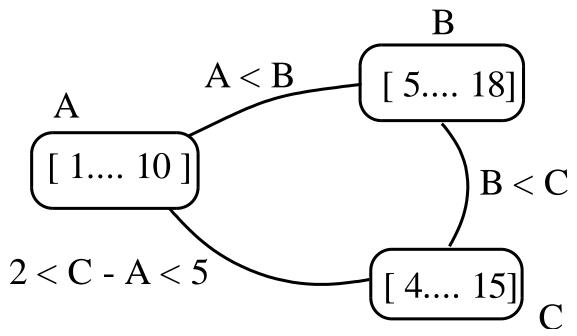
• Given P = (V, D, C), where

$$V = \{V_1, V_2, ..., V_n\}$$
$$D = \{D_{V_1}, D_{V_2}, ..., D_{V_n}\}$$
$$C = \{C_1, C_2, ..., C_l\}$$



Fall 2010

Example: temporal reasoning



- Give one solution:
- Satisfaction, yes/no: decision problem

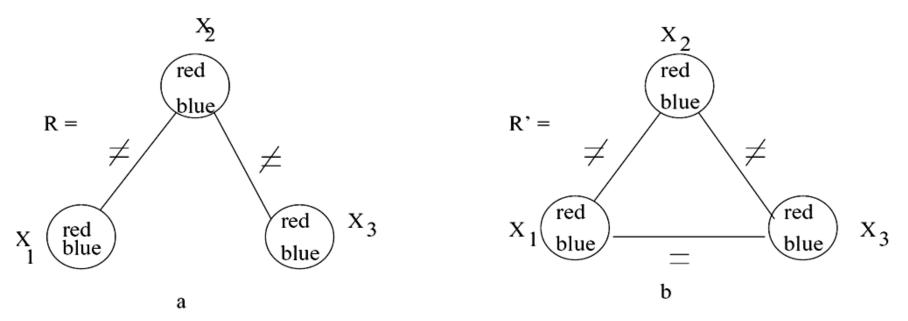
Outline

- Motivation, applications, history
- CSP: Definition, representation and simple modeling examples
- ✓ Mathematical concepts (relations, graphs)
- ✓ Representing constraints
- ✓ Constraint graphs
- ✓ The binary Constraint Networks properties

Properties of binary constraint networks

A graph \Re to be colored by two colors,

an equivalent representation \Re ' having a newly inferred constraint between x1 and x3.



Equivalence and deduction with constraints (composition)

Composition of relations (*Montanari*'74**)**

Input: two binary relations R_{ab} and R_{bc} with 1 variable in common.

Output: a new induced relation R_{ac} (to be combined by intersection to a pre-existing relation between them, if any).

Bit-matrix operation: matrix multiplication

$$R_{ac} = R_{ab} \cdot R_{bc}$$

$$R_{ab} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad R_{bc} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad R_{ac} = ?$$

Equivalence, Redundancy, Composition

- Equivalence: Two constraint networks are equivalent if they have the same set of solutions.
- Composition in matrix notation
- $Rxz = Rxy \times Ryz$
- Composition in relational operation

$$R_{xz} = \pi_{xz} (R_{xy} \otimes R_{yz})$$

Relations vs networks

- Can we represent by binary constraint networks the relations
- $R(x1,x2,x3) = \{(0,0,0)(0,1,1)(1,0,1)(1,1,0)\}$
- $R(X1, x2, x3, x4) = \{(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)\}$
- Number of relations 2^(k^n)
- Number of networks: 2^((k^2)(n^2))
- Most relations cannot be represented by binary networks

The minimal and projection networks

- The projection network of a relation is obtained by projecting it onto each pair of its variables (yielding a binary network).
- Relation = {(1,1,2)(1,2,2)(1,2,1)}

- What is the projection network?

- What is the relationship between a relation and its projection network?
- {(1,1,2)(1,2,2)(2,1,3)(2,2,2)}, solve its projection network?

Projection network (continued)

- **Theorem**: Every relation is included in the set of solutions of its projection network.
- **Theorem**: The projection network is the tightest upper bound binary networks representation of the relation.

Therefore, If a network cannot be represented by its projection network it has no binary network representation

Partial Order between networks, The Minimal Network

Definition 2.3.10 Given two binary networks, \mathcal{R}' and \mathcal{R} , on the same set of variables $x_1, ..., x_n$, \mathcal{R}' is at least as tight as \mathcal{R} iff for every i and j, $R'_{ij} \subseteq R_{ij}$.

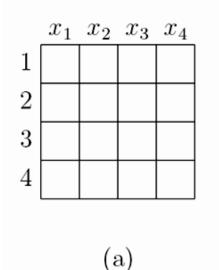
An intersection of two networks is tighter (as tight) than bothAn intersection of two equivalent networks is equivalent to both

Definition 2.3.14 Let $\{\mathcal{R}_1, ..., \mathcal{R}_l\}$ be the set of all networks equivalent to \mathcal{R}_0 and let $\rho = sol(\mathcal{R}_0)$. Then the minimal network M of \mathcal{R}_0 is defined by $M(\mathcal{R}_0) = \bigcap_{i=1}^l \mathcal{R}_i$.

Theorem 2.3.15 For every binary network \mathcal{R} s.t. $\rho = sol(\mathcal{R}), M(\rho) = P(\rho)$.

The N-queens constraint network.

The network has four variables, all with domains $Di = \{1, 2, 3, 4\}$. (a) The labeled chess board. (b) The constraints between variables.

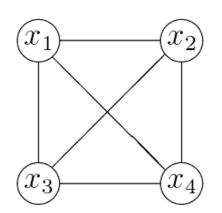


$$\begin{split} R_{12} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \\ R_{13} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\} \\ R_{14} &= \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4) \\ (4,2), (4,3)\} \\ R_{23} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \\ R_{24} &= \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\} \\ R_{34} &= \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\} \end{split}$$

(b)

The 4-queens constraint network:

(a) The constraint graph. (b) The minimal binary constraints.(c) The minimal unary constraints (the domains).



$$M_{12} = \{(2,4), (3,1)\}$$

$$M_{13} = \{(2,1), (3,4)\}$$

$$M_{14} = \{(2,3), (3,2)\}$$

$$M_{23} = \{(1,4), (4,1)\}$$

$$M_{24} = \{(1,2), (4,3)\}$$

$$M_{34} = \{(1,3), (4,2)\}$$

$$D_{1} = \{1,3\}$$

$$D_{2} = \{1,4\}$$

$$D_{3} = \{1,4\}$$

$$D_{4} = \{1,3\}$$

(a)

(b) (c)

Solutions are: (2,4,1,3) (3,1,4,2)

The Minimal vs Binary decomposable networks

- The minimal network is perfectly explicit for binary and unary constraints:
 - Every pair of values permitted by the minimal constraint is in a solution.
- Binary-decomposable networks:
 - A network whose all projections are binary decomposable
 - Ex: $(x,y,x,t) = \{(a,a,a,a)(a,b,b,b,)(b,b,a,c)\}$:

is binary representeble? and what about its projection on x,y,z?

 Proposition: The minimal network represents fully binarydecomposable networks.