Constraint Networks
 Chapters 1-2

Compsci-275
Fall 2010

Class Information

- Instructor: Rina Dechter
- Days:
- Time:
- Class page:

Tuesday \& Thursday 11:00-12:20 pm http://www.ics.uci.edu/~ dechter/ics-275a/fall-2010/

Text book (required)

Rina Dechter,

Constraint Processing,
Morgan Kaufmann

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definition, and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definition, representation and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Combinatorial

Problems

MO Optimization

Optimization

Graphical Models

Graphical Models

Those problems that can be expressed as:

A set of variables

Each variable takes its values from a finite set of domain values

A set of local functions

Main advantage:
They provide unifying algorithms:
o Search
o Complete Inference
o Incomplete Inference

Combinatorial

Problems

MO Optimization

Optimization

Graphical
Models

Many Examples

EOS Scheduling

Bayesian Networks

Graph Coloring

Timetabling
... and many others.

Example: student course selection

- Context: You are a senior in college
- Problem: You need to register in 4 courses for the Spring semester
- Possibilities: Many courses offered in Math, CSE, EE, CBA, etc.
- Constraints: restrict the choices you can make
- Unary: Courses have prerequisites you have/don't have Courses/instructors you like/dislike
- Binary: Courses are scheduled at the same time
- n-ary: In CE: 4 courses from 5 tracks such as at least 3 tracks are covered
- You have choices, but are restricted by constraints
- Make the right decisions!!
- ICS Graduate program

Student course selection (continued)

- Given
- A set of variables: 4 courses at your college
- For each variable, a set of choices (values)
- A set of constraints that restrict the combinations of values the variables can take at the same time
- Questions
- Does a solution exist? (classical decision problem)
- How many solutions exists?
- How two or more solutions differ?
- Which solution is preferrable?
- etc.

The field of Constraint Programming

- How did it started:
- Artificial Intelligence (vision)

- SATisfiability

Related areas:

- Hardware and software verification
- Operation Research (Integer Programming)
- Ansinar set nrogramming

Graphical Models; deterministic

Scene labeling constraint network

Scene labeling constraint network

3-dimentional interpretation of 2-dimentional drawings

Fork:

(c)
(d)

The field of Constraint Programming

- How did it started:
- Artificial Intelligence (vision)
- Programming Languages (Logic Programming),
- Databases (deductive, relational)
- Logic-based languages (propositional logic)
- SATisfiability
- Related areas:
- Hardware and software verification
- Operation Research (Integer Programming)
- Answer set programming
- Graphical Models; deterministic

Applications

- Radio resource management (RRM)
- Databases (computing joins, view updates)
- Temporal and spatial reasoning
- Planning, scheduling, resource allocation
- Design and configuration
- Graphics, visualization, interfaces
- Hardware verification and software engineering
- HC Interaction and decision support
- Molecular biology
- Robotics, machine vision and computational linguistics
- Transportation
- Qualitative and diagnostic reasoning

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definitions and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Constraint Networks

A

Example: map coloring

Variables - countries (A,B,C,etc.)
Values - colors (red, green, blue)
Constraints: $\quad \mathbf{A} \neq \mathbf{B}, \mathbf{A} \neq \mathbf{D}, \mathbf{D} \neq \mathbf{E}$, etc.
Constraint graph

A	B
red	green
red	yellow
green	red
green	yellow
yellow	green
yellow	red

Constraint Satisfaction Tasks

Example: map coloring

Variables - countries (A,B,C,etc.)
Values - colors (e.g., red, green, yellow)
Constraints:

$$
\mathbf{A} \neq \mathbf{B}, \mathbf{A} \neq \mathbf{D}, \mathbf{D} \neq \mathbf{E}, \text { etc. }
$$

Are the constraints consistent?
Find a solution, find all solutions
Count all solutions

A	B	C	\mathbf{D}	E...
red	green	red	green	blue
red	blue	green	green	blue
\ldots	\ldots	\ldots	\ldots	green
\ldots	\ldots	\ldots	\ldots	red
red	blue	red	green	red

Find a good solution

Information as Constraints

- I have to finish my class in 50 minutes
- 180 degrees in a triangle
- Memory in our computer is limited
- The four nucleotides that makes up a DNA only combine in a particular sequence
- Sentences in English must obey the rules of syntax
- Susan cannot be married to both John and Bill
- Alexander the Great died in 333 B.C.

Constraint Network; Definition

- A constraint network is: $\mathbf{R}=(X, D, C)$
- X variables

$$
X=\left\{X_{1}, \ldots, X_{n}\right\}
$$

- D domain

$$
D=\left\{D_{1}, \ldots, D_{n}\right\}, D_{i}=\left\{v_{1}, \ldots v_{k}\right\}
$$

- C constraints $C=\left\{C_{1}, \ldots C_{t}\right\},,, C_{i}=\left(S_{i}, R_{i}\right)$
- \boldsymbol{R} expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- Tasks: consistency?, one or all solutions, counting, optimization

The N -queens problem

The network has four variables, all with domains $D i=\{1,2,3,4\}$.
(a) The labeled chess board. (b) The constraints between variables.

(a)

$$
\begin{aligned}
& R_{12}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\} \\
& R_{13}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{14}=\{(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4) \\
&(4,2),(4,3)\} \\
& R_{23}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\} \\
& R_{24}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{34}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\}
\end{aligned}
$$

(b)

A solution and a partial consistent tuple

Not all consistent instantiations are part of a solution:
(a) A consistent instantiation that is not part of a solution.
(b) The placement of the queens corresponding to the solution (2, 4, 1,3).
c) The placement of the queens corresponding to the solution (3, 1, 4, 2).

(a)

(b)

(c)

Example: Crossword puzzle

- Variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{13}$
- Domains: letters
- Constraints: words from

1	2	3	4	5
		6		7
	8	9	10	11
		12	13	

\{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US\}

contieunation anc cuesion

- Want to build: recreation area, apartments, houses, cemetery, dump
- Recreation area near lake
- Steep slopes avoided except for recreation area
- Poor soil avoided for developments
- Highway far from apartments, houses and recreation
- Dump not visible from apartments, houses and lake
- Lots 3 and 4 have poor soil
- Lots 3, 4, 7, 8 are on steep slo
- Lots 2, 3, 4 are near lake
- Lots 1, 2 are near highway

Example: Sudoku

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				(3)
(4)		(6)	9				7	2.7 76
		9			4	5	8	1
			3		2	9		

-Variables: 81 slots
-Domains =
\{1,2,3,4,5,6,7,8,9\}
-Constraints:

- 27 not-equal

Constraint propagation

Each row, column and major block must be alldifferent "Well posed" if it has unique solution: 27 constraints

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definition, representation and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Mathematical background

- Sets, domains, tuples
- Relations
- Operations on relations
- Graphs
- Complexity

Two graphical representation and views of a relation: $R=\{(b l a c k$, coffee $)$, (black, tea), (green, tea) $\}$.

		x_{2}		
		apple juice		
x_{1}	x_{2}			coffee
black	coffee			tea
black	tea		black	$\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$
green	tea	$\underline{x_{1}}$	green	$\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
	able		b) $(0,1)$)-matrix

Operations with relations

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

Local function

$$
f: \prod_{x_{i} \in Y} D_{i} \rightarrow A
$$

where
$\operatorname{var}(f)=Y \subseteq X:$ scope of function f
A : is a set of valuations

- In constraint networks: functions are boolean

X_{1}	X_{2}	f	relation	X_{1}	x_{2}
a	a	true		a	a
a	b	false		b	b
b	a	false			
b	b	true	Fall 2010		

Example of set operations intersection, union, and difference applied to relations.

x_{1}	x_{2}	x_{3}
a	b	c
b	b	c
c	b	c
c	b	s

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c
c	n	n

x_{2}	x_{3}	x_{4}
a	a	1
b	c	2
b	c	3

(a) Relation R
(b) Relation R^{\prime}
(c) Relation $R^{\prime \prime}$

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c

(a) $R \cap R^{\prime}$

x_{1}	x_{2}	x_{3}
a	b	c
b	b	c
c	b	c
c	b	s
c	n	n

(b) $R \cup R^{\prime}$

x_{1}	x_{2}	x_{3}
a	b	c
c	b	s

(b) $R-R^{\prime}$

Selection, Projection, and Join operations on relations.

x_{1}	x_{2}	x_{3}
a	b	c
b	b	c
c	b	c
c	b	s

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c
c	n	n

x_{2}	x_{3}	x_{4}
a	a	1
b	c	2
b	c	3

(a) Relation R
(b) Relation R^{\prime}
(c) Relation $R^{\prime \prime}$

x_{1}	x_{2}	x_{3}
b	b	c
c	b	c

x_{2}	x_{3}
b	c
n	n

x_{1}	x_{2}	x_{3}	x_{4}
b	b	c	2
b	b	c	3
c	b	c	2
c	b	c	3

(a) $\sigma_{x_{3}=c}\left(R^{\prime}\right)$
(b) $\pi_{\left\{x_{2}, r_{3}\right\}}\left(R^{\prime}\right)$
(c) $R^{\prime} \bowtie R^{\prime \prime}$

Local Functions

Combination

- Join: $f \bowtie g$

x_{1}	x_{2}
a	a
b	b

| | x_{2} x_{3}
 a
 a
 a b
 b a,$~$ |
| :---: | :---: | :---: |

$=\quad$| x_{1} | x_{2} | x_{3} |
| :---: | :---: | :---: |
| a | a | a |
| a | a | b |
| b | b | a |

- Logical AND: $f \wedge g$

x_{1}	x_{2}	f		x_{2}	x_{3}	g
a	a	true				
a	a	a	true			
a	b	false		a	b	true
b	a	false		b	a	true
b	b	true		b	b	false

x_{1}	x_{2}	x_{3}	h
a	a	a	true
a	a	b	true
a	b	a	false
a	b	b	false
b	a	a	false
b	a	b	false
b	b	a	true
b	b	b	false
a			

Global View of the Problem

Does the problem a solution?

Global View=universal relation

The problem has a solution if the global view is not empty

x_{1}	x_{2}	x_{3}	h
a	a	a	true
a	a	b	true
a	b	a	false
a	b	b	false
b	a	a	false
b	a	b	false
b	b	a	true
b	b	b	false

The problem has a solution if there is some true tuple in the global view, the universal relation

What about counting?

x_{1}	x_{2}	x_{3}	h
a	a	a	true
a	a	b	true
a	b	a	false
a	b	b	false
b	a	a	false
b	a	b	false
b	b	a	true
b	b	b	false

x_{1}	x_{2}	x_{3}	h
a	a	a	1
a	a	b	1
a	b	a	0
a	b	b	0
b	a	a	0
b	a	b	0
b	b	a	1
b	b	b	0

Sum over all the tuples

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definition, representation and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Modeling; Representing a problems

- If a CSP M = <X,D,C> represents a problem P, then every solution of M corresponds to a solution of P and every solution of P can be deriv from at least one solution of M
- The variables and values of M represent entities in P

- The constraints of M ensure the correspondence between solutions
- The aim is to find a model M that can be solved as quickly as possible
- goal of modeling: choose a set of variables and values that allows the constraints to be expressed easily and concisely

Propositional Satisfiability

Given a proposition theory

$$
\varphi=\{(\boldsymbol{A} \vee B),(\boldsymbol{C} \vee \neg \boldsymbol{B})\} \quad \text { does it have a model? }
$$

Can it be encoded as a constraint network?

Variables: $\quad\{A, B, C\}$
Domains: $\quad D_{A}=D_{B}=D_{C}=\{0,1\}$

Relations:

A	B		B	C
	1		0	0
1	0		0	1
1	1		1	1

If this constraint network has a solution, then the propositional theory has a model

Constraint's representations

$\begin{array}{cccc} & X & Y & Z \\ \text { - Relation: allowed tuples } & 1 & 3 & 2 \\ 2 & 1 & 3\end{array}$

- Algebraic expression:

$$
X+Y^{2} \leq 10, X \neq Y
$$

- Propositional formula:

$$
(a \vee b) \rightarrow \neg c
$$

- Semantics: by a relation

Constraint Graphs:

Primal, Dual and Hypergraphs

-A (primal) constraint graph: a node per variable, arcs connect constrained variables.
-A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph

(a)

(b)

Graph Concepts Reviews:

Hyper Graphs and Dual Graphs

- A hypergraph
- Dual graphs

(a)

(c)

(b)

(d)

Propositional Satisfiability

$$
\varphi=\{(\neg C),(A \vee B \vee C),(\neg A \vee B \vee E),(\neg B \vee C \vee D)\} .
$$

Examples

Radio Link Assignment

Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.

Encoding?

Variables: one for each antenna
Domains: the set of available frequencies
Constraints: the ones referring to the antennas in the same communication link

Constraint graphs of 3 instances of the Radio frequency assignment problem in CELAR's benchmark

324
349 350

Scene labeling constraint network

$$
\begin{aligned}
R_{21}=\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] R_{31}=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] R_{51}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \\
R_{24}=R_{37}=R_{56}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right] \\
R_{26}=R_{34}=R_{57}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

reat yeryy
Arrow:

Ell:
Tee:

Figure 1.5: Solutions: (a) stuck on left wall, (b) stuck on right wall, (c) suspended in mid-air, (d) resting on floor.
(a)

(b)

(d)

Examples

Scheduling problem

Five tasks: T1, T2, T3, T4, T5
Each one takes one hour to complete
The tasks may start at 1:00, 2:00 or 3:00
Requirements:
T1 must start after T3
T3 must start before T4 and after T5
T2 cannot execute at the same time as T1 or T4
T4 cannot start at 2:00

Encoding?

Variables: one for each task
Domains: $D_{T 1}=D_{T 2}=D_{T 3}=D_{T 3}=\{1: 00,2: 00,3: 00\}$

Constraints:

T 4
$1: 00$
$3: 00$

The constraint graph and relations of scheduling problem

Examples

Numeric constraints

Can we specify numeric constraints as relations?

More examples

- Given $\boldsymbol{P}=(\boldsymbol{V}, \boldsymbol{D}, \boldsymbol{C})$, where

$$
\begin{aligned}
& \boldsymbol{V}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\} \\
& \boldsymbol{D}=\left\{D_{V_{1}}, D_{V_{2}}, \ldots, D_{V_{n}}\right\} \\
& \boldsymbol{C}=\left\{C_{1}, C_{2}, \ldots, C_{l}\right\}
\end{aligned}
$$

Example I:

- Define C?

Example: temporal reasoning

- Give one solution:
- Satisfaction, yes/no: decision problem

Outline

\checkmark Motivation, applications, history
\checkmark CSP: Definition, representation and simple modeling examples
\checkmark Mathematical concepts (relations, graphs)
\checkmark Representing constraints
\checkmark Constraint graphs
\checkmark The binary Constraint Networks properties

Properties of binary constraint networks

A graph \Re to be colored by two colors, an equivalent representation \mathfrak{R} ' having a newly inferred constraint between $x 1$ and $x 3$.

a

b

Equivalence and deduction with constraints (composition)

Composition of relations (Montanari'74)

Input: two binary relations $\boldsymbol{R}_{\mathrm{ab}}$ and $\boldsymbol{R}_{\mathrm{bc}}$ with 1 variable in common.
Output: a new induced relation $\boldsymbol{R}_{\mathrm{ac}}$ (to be combined by intersection to a pre-existing relation between them, if any).
Bit-matrix operation: matrix multiplication

$$
\begin{gathered}
R_{a c}=R_{a b} \cdot R_{b c} \\
R_{a b}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad R_{b c}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right), \quad R_{a c}=?
\end{gathered}
$$

Equivalence, Redundancy, Composition

- Equivalence: Two constraint networks are equivalent if they have the same set of solutions.
- Composition in matrix notation
- $R x z=R x y \times R y z$
- Composition in relational operation

$$
R_{x z}=\pi_{x z}\left(R_{x y} \otimes R_{y z}\right)
$$

Relations vs networks

- Can we represent by binary constraint networks the relations
- $R(x 1, x 2, x 3)=\{(0,0,0)(0,1,1)(1,0,1)(1,1,0)\}$
- $R(X 1, x 2, x 3, x 4)=\{(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)\}$
- Number of relations $2^{\wedge}\left(k^{\wedge} n\right)$
- Number of networks: $2^{\wedge}\left(\left(k^{\wedge} 2\right)\left(n^{\wedge} 2\right)\right)$
- Most relations cannot be represented by binary networks

The minimal and projection networks

- The projection network of a relation is obtained by projecting it onto each pair of its variables (yielding a binary network).
- Relation $=\{(1,1,2)(1,2,2)(1,2,1)\}$
- What is the projection network?
- What is the relationship between a relation and its projection network?
- $\{(1,1,2)(1,2,2)(2,1,3)(2,2,2)\}$, solve its projection network?

Projection network (continued)

- Theorem: Every relation is included in the set of solutions of its projection network.
- Theorem: The projection network is the tightest upper bound binary networks representation of the relation.

Therefore, If a network cannot be represented by its projection network it has no binary network representation

Partial Order between networks, The Minimal Network

Definition 2.3.10 Given two binary networks, \mathcal{R}^{\prime} and \mathcal{R}, on the same set of variables $x_{1}, \ldots, x_{n}, \mathcal{R}^{\prime}$ is at least as tight as \mathcal{R} iff for every i and $j, R_{i j}^{\prime} \subseteq R_{i j}$.
-An intersection of two networks is tighter (as tight) than both
-An intersection of two equivalent networks is equivalent to both

Definition 2.3.14 Let $\left\{\mathcal{R}_{1}, \ldots \mathcal{R}_{l}\right\}$ be the set of all networks equivalent to \mathcal{R}_{0} and let $\rho=\operatorname{sol}\left(\mathcal{R}_{0}\right)$. Then the minimal network M of \mathcal{R}_{0} is defined by $M\left(\mathcal{R}_{0}\right)=\cap_{i=1}^{l} \mathcal{R}_{i}$.

Theorem 2.3.15 For every binary network \mathcal{R} s.t. $\rho=\operatorname{sol}(\mathcal{R}), M(\rho)=P(\rho)$.

The N -queens constraint network.

The network has four variables, all with domains $D i=\{1,2,3,4\}$.
(a) The labeled chess board. (b) The constraints between variables.

(a)

$$
\begin{aligned}
& R_{12}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\} \\
& R_{13}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{14}=\{(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4) \\
&(4,2),(4,3)\} \\
& R_{23}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\} \\
& R_{24}=\{(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)\} \\
& R_{34}=\{(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)\}
\end{aligned}
$$

(b)

The 4-queens constraint network:
(a) The constraint graph. (b) The minimal binary constraints.
(c) The minimal unary constraints (the domains).

(a)

$$
\begin{array}{ll}
M_{12}=\{(2,4),(3,1)\} & \\
M_{13}=\{(2,1),(3,4)\} & D_{1}=\{1,3\} \\
M_{14}=\{(2,3),(3,2)\} & D_{2}=\{1,4\} \\
M_{23}=\{(1,4),(4,1)\} & D_{3}=\{1,4\} \\
M_{24}=\{(1,2),(4,3)\} & D_{4}=\{1,3\} \\
M_{34}=\{(1,3),(4,2)\} &
\end{array}
$$

(b)
(c)

Solutions are: (2,4,1,3) (3,1,4,2)

The Minimal vs Binary decomposable networks

- The minimal network is perfectly explicit for binary and unary constraints:
- Every pair of values permitted by the minimal constraint is in a solution.
- Binary-decomposable networks:
- A network whose all projections are binary decomposable
- Ex: $(x, y, x, t)=\{(a, a, a, a)(a, b, b, b),(b, b, a, c)\}:$
is binary representeble? and what about its projection on x, y, z ?
- Proposition: The minimal network represents fully binarydecomposable networks.

