Consistency algorithms

Chapter 3
Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Generalized arc-consistency, relational arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gaussian elimination
Consistency methods

- Approximation of inference:
 - Arc, path and i-consistency
- Methods that transform the original network into tighter and tighter representations
Arc-consistency

\[1 \leq X, Y, Z, T \leq 3\]
\[X < Y\]
\[Y = Z\]
\[T < Z\]
\[X \leq T\]
Arc-consistency

1 ≤ X, Y, Z, T ≤ 3
X < Y
Y = Z
T < Z
X ≤ T
Fig. 3.1: A matching diagram describing the arc-consistency of two variables x and y. In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) Given a constraint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_{ij} \in \mathcal{C}$, a variable x_i is arc-consistent relative to x_j if and only if for every value $a_i \in D_i$ there exists a value $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$. The subnetwork (alternatively, the arc) defined by $\{x_i, x_j\}$ is arc-consistent if and only if x_i is arc-consistent relative to x_j and x_j is arc-consistent relative to x_i. A network of constraints is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are arc-consistent.
Inference: Join and Project

(a) Relation R

(b) Relation R''

(c) Relation R'''

$\pi_{\{x_2, x_3\}}(R')$

$R' \bowtie R'''$
Revise for arc-consistency

\textsc{Revise}(x_i, x_j)

\textbf{input:} a subnetwork defined by two variables \(X = \{x_i, x_j\}\), a distinguished variable \(x_i\),

domains: \(D_i\) and \(D_j\), and constraint \(R_{ij}\)

\textbf{output:} \(D_i\), such that, \(x_i\) arc-consistent relative to \(x_j\)

1. \textbf{for} each \(a_i \in D_i\)
2. \textbf{if} there is no \(a_j \in D_j\) such that \((a_i, a_j) \in R_{ij}\)
3. \textbf{then} delete \(a_i\) from \(D_i\)
4. \textbf{endif}
5. \textbf{endfor}

\begin{align*}
D_i & \leftarrow D_i \cap \pi_i (R_{ij} \otimes D_j)
\end{align*}

\textbf{Figure 3.2:} The Revise procedure
A matching diagram describing a network of constraints that is not arc-consistent (b) An arc-consistent equivalent network.
A matching diagram describing a network of constraints that is not arc-consistent (b) An arc-consistent equivalent network.
AC-1(\mathcal{R})

input: a network of constraints \(\mathcal{R} = (X, D, C) \)

output: \(\mathcal{R}' \) which is the loosest arc-consistent network equivalent to \(\mathcal{R} \)

1. repeat
2. for every pair \(\{x_i, x_j\} \) that participates in a constraint
3. \hspace{1em} Revise((x_i, x_j)) (or \(D_i \leftarrow D_i \cap \pi_i(R_{ij} \Join D_j) \))
4. \hspace{1em} Revise((x_j, x_i)) (or \(D_j \leftarrow D_j \cap \pi_j(R_{ij} \Join D_i) \))
5. endfor
6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

- **Complexity** (Mackworth and Freuder, 1986): \(O(enk^3) \)
- \(e \) = number of arcs, \(n \) variables, \(k \) values
- \((ek^2, \text{each loop, } nk \text{ number of loops}), \text{ best-case } = ek \)
- Arc-consistency is: \(\Omega(ek^2) \)
AC-3(\mathcal{R})

input: a network of constraints $\mathcal{R} = (X, D, C)$

output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}

1. **for** every pair $\{x_i, x_j\}$ that participates in a constraint $R_{ij} \in \mathcal{R}$
2. $\text{queue} \leftarrow \text{queue} \cup \{(x_i, x_j), (x_j, x_i)\}$
3. **endfor**
4. **while** queue $\neq \{\}$
5. select and delete (x_i, x_j) from queue
6. $\text{Revise}((x_i), x_j)$
7. if $\text{Revise}((x_i), x_j)$ causes a change in D_i
8. then queue \leftarrow queue $\cup \{(x_k, x_i), i \neq k\}$
9. endif
10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

- Complexity: $O(ek^3)$ since each arc may be processed in $O(2k)$
- Best case $O(ek)$,
Example: A 3 variables network with 2 constraints: z divides x and z divides y
(a) before and (b) after AC-3 is applied.
Example: A 3 variables network with 2 constraints: z divides x and z divides y

(a) before and (b) after AC-3 is applied.
AC-4

AC-4(ℛ)

input: a network of constraints ℛ
output: An arc-consistent network equivalent to ℛ
1. Initialization: M ← ∅,
2. initialize S_{(x_i,a_i)}, counter(i,a_i,j) for all R_{ij}
3. for all counters
4. if counter(x_i, a_i, x_j) = 0 (if < x_i, a_i > is unsupported by x_j)
5. then add < x_i, a_i > to LIST
6. endif
7. endfor
8. while LIST is not empty
9. choose < x_i, a_i > from LIST, remove it, and add it to M
10. for each < x_j, a_j > in S_{(x_i,a_i)}
11. decrement counter(x_j, a_j, x_i)
12. if counter(x_j, a_j, x_i) = 0
13. then add < x_j, a_j > to LIST
14. endif
15. endfor
16. endwhile

- Complexity: $O(ek^2)$
- (Counter is the number of supports to a_i in x_i from x_j. $S_{(x_i,a_i)}$ is the set of pairs that (x_i, a_i) supports)

Figure 3.7: Arc-consistency-4 (AC-4)
Example applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the $S_{(x,a)}$ arrays (indicating all the variable-value pairs that each $<x,a>$ supports), we have:

$S_{(z,2)} = \{<x,2>, <y,2>, <y,4>\}$, $S_{(z,5)} = \{<x,5>\}$, $S_{(x,2)} = \{<z,2>\}$, $S_{(x,5)} = \{<z,5>\}$, $S_{(y,2)} = \{<z,2>\}$, $S_{(y,4)} = \{<z,2>\}$.

For counters we have: $\text{counter}(x,2,z) = 1$, $\text{counter}(x,5,z) = 1$, $\text{counter}(z,2,x) = 1$, $\text{counter}(z,5,x) = 1$, $\text{counter}(z,2,y) = 2$, $\text{counter}(z,5,y) = 0$, $\text{counter}(y,2,z) = 1$, $\text{counter}(y,4,z) = 1$. (Note that we do not need to add counters between variables that are not directly constrained, such as x and y.) Finally, $List = \{<z,5>\}$, $M = \emptyset$. Once $<z,5>$ is removed from $List$ and placed in M, the counter of $<x,5>$ is updated to $\text{counter}(x,5,z) = 0$, and $<x,5>$ is placed in $List$. Then, $<x,5>$ is removed from $List$ and placed in M. Since the only value it supports is $<z,5>$ and since $<z,5>$ is already in M, the $List$ remains empty and the process stops. \square
Distributed arc-consistency (Constraint propagation)

- Implement AC-1 distributedly.
 \[D_i \leftarrow D_i \cap \pi_i (R_{ij} \otimes D_j) \]

- \(h_{j \rightarrow i} \) node \(x_j \) sends the message to node \(x_i \)
 \[h_i^j \leftarrow \pi_i (R_{ij} \otimes D_j) \]

- Node \(x_i \) updates its domain:
 \[D_i \leftarrow D_i \cap \pi_i (R_{ij} \otimes D_j) = D_i \leftarrow D_i \cap h_i^j \]

- Messages can be sent asynchronously or scheduled in a topological order
Exercise: make the following network arc-consistent

- Draw the network’s primal and dual constraint graph
- Network =
 - Domains \{1,2,3,4\}
 - Constraints: \(y < x, z < y, t < z, f < t, x \leq t + 1, Y < f + 2\)
Arc-consistency Algorithms

- **AC-1**: brute-force, distributed \(O(nek^3) \)
- **AC-3**, queue-based \(O(ek^3) \)
- **AC-4**, context-based, optimal \(O(ek^2) \)
- **AC-5,6,7**, ….. Good in special cases

Important: applied at every node of search

- \((n \text{ number of variables, } e=\#\text{constraints, } k=\text{domain size}) \)
Using constraint tightness in analysis

$t = number of tuples bounding a constraint$

- **AC-1**: brute-force, \(O(nek^3) \) \(O(nekt) \)
- **AC-3**, queue-based \(O(ek^3) \) \(O(ekt) \)
- **AC-4**, context-based, optimal \(O(et) \)
- **AC-5,6,7**..... Good in special cases

Important: applied at every node of search

- \((n \text{ number of variables, } e=\#\text{constraints, }k=\text{domain size}) \)
Constraint checking

→ Arc-consistency

\[
\begin{align*}
2 < C - A &< 5 \\
A &< B \\
B &< C
\end{align*}
\]

1- B: [5..14]
 C: [6..15]
2- A: [2..10]
 C: [6..14]
3- B: [5..13]
Is arc-consistency enough?

- Example: a triangle graph-coloring with 2 values.
 - Is it arc-consistent?
 - Is it consistent?
- It is not path, or 3-consistent.
Outline

• Arc-consistency algorithms
• Path-consistency and i-consistency
• Arc-consistency, Generalized arc-consistency, relation arc-consistency
• Global and bound consistency
• Distributed (generalized) arc-consistency
• Consistency operators: join, resolution, Gaussian elimination
Path-consistency

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical picture of path-consistency using the matching diagram.
Path-consistency
(3-consistency)

Definition 3.3.2 (Path-consistency) Given a constraint network $\mathcal{R} = (X, D, C)$, a path from variable x_i to variable x_j is a sequence of variables $x_i = x_{i_1}, x_{i_2}, ..., x_{i_l} = x_j$ such that for every pair of adjacent variables x_{i_k} and $x_{i_{k+1}}$ there is a constraint $R_{i_k, i_{k+1}}$.

Alternatively, a binary constraint R_{ij} is path-consistent relative to x_k iff for every pair $(a_i, a_j) \in R_{ij}$, where a_i and a_j are from their respective domains, there is a value $a_k \in D_k$ s.t. $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$. A subnetwork over three variables $\{x_i, x_j, x_k\}$ is path-consistent iff for any permutation of (i, j, k), R_{ij} is path consistent relative to x_k. A network is path-consistent iff for every R_{ij} (including universal binary relations) and for every $k \neq i, j$ R_{ij} is path-consistent relative to x_k.
Revise-3

\texttt{Revise-3}((x, y), z)

\textbf{input}: a three-variable subnetwork over \((x, y, z), R_{xy}, R_{yz}, R_{xz}\).

\textbf{output}: revised \(R_{xy}\) path-consistent with \(z\).

1. \textbf{for} each pair \((a, b) \in R_{xy}\)
2. \quad \textbf{if} no value \(c \in D_z\) exists such that \((a, c) \in R_{xz}\) and \((b, c) \in R_{yz}\)
3. \quad \textbf{then} delete \((a, b)\) from \(R_{xy}\).
4. \quad \textbf{endif}
5. \textbf{endfor}

\textbf{Figure 3.9:} Revise-3

\[R_{ij} \leftarrow R_{ij} \cap \pi_{ij} (R_{ik} \otimes D_k \otimes R_{kj}) \]

- Complexity: \(O(k^3)\)
- Best-case: \(O(t)\)
- Worst-case \(O(tk)\)
PC-1

PC-1(\mathcal{R})

input: a network \(\mathcal{R} = (X, D, C) \).

output: a path consistent network equivalent to \(\mathcal{R} \).

1. repeat
2. \hspace{1em} for \(k \leftarrow 1 \) to \(n \)
3. \hspace{2em} for \(i, j \leftarrow 1 \) to \(n \)
4. \hspace{3em} \(R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})/\ast (Revise - 3((i, j), k)) \)
5. \hspace{1em} endfor
6. endfor
7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

- **Complexity:** \(O(n^5 k^5) \)
- \(O(n^3) \) triplets, each take \(O(k^3) \) steps \(\rightarrow \) \(O(n^3 k^3) \)
- Max number of loops: \(O(n^2 k^2) \).
PC-2

PC-3(\mathcal{R})

\textbf{input:} a network \(\mathcal{R} = (X, D, C)\).

\textbf{output:} \(\mathcal{R}'\) a path consistent network equivalent to \(\mathcal{R}\).

1. \(Q \leftarrow \{(i, k, j) \mid 1 \leq i < j \leq n, 1 \leq k \leq n, k \neq i, k \neq j\}\)
2. \textbf{while} \(Q\) is not empty
3. \quad select and delete a 3-tuple \((i, k, j)\) from \(Q\)
4. \quad \(R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \otimes D_k \otimes R_{kj})\) /* (Revise-3((i, j), k))
5. \quad \textbf{if} \(R_{ij}\) changed then
6. \quad \quad \(Q \leftarrow Q \cup \{(l, i, j)(l, j, i) \mid 1 \leq l \leq n, l \neq i, l \neq j\}\)
7. \textbf{endwhile}

Figure 3.11: Path-consistency-3 (PC-3)

- \textbf{Complexity:} \(O(n^3 k^5)\)
- \textbf{Optimal PC-4:} \(O(n^3 k^3)\)
- (each pair deleted may add: \(2n - 1\) triplets, number of pairs: \(O(n^2 k^2) \rightarrow \text{size of } Q\) is \(O(n^3 k^2)\), processing is \(O(k^3)\))
Example: before and after path-consistency

- PC-1 requires 2 processings of each arc while PC-2 may not
- Can we do path-consistency distributedly?

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency
Example: before and after path-consistency

- PC-1 requires 2 processings of each arc while PC-2 may not
- Can we do path-consistency distributedly?

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency
Path-consistency algorithms

- Apply Revise-3 \(O(k^3) \) until no change

\[
R_{ij} \leftarrow R_{ij} \cap \pi_{ij} \left(R_{ik} \otimes D_k \otimes R_{kj} \right)
\]

- Path-consistency (3-consistency) adds binary constraints.
 - PC-1: \(O(n^5 k^5) \)
 - PC-2: \(O(n^3 k^5) \)
 - PC-4 optimal: \(O(n^3 k^3) \)
Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency
Higher levels of consistency, global-consistency

Definition:

A network is i-consistent iff given any consistent instantiation of any $i - 1$ distinct variables, there exists an instantiation of any ith variable such that the i values taken together satisfy all of the constraints among the i variables. A network is strongly i-consistent iff it is j-consistent for all $j \leq i$. A strongly n-consistent network, where n is the number of variables in the network, is called globally consistent.

A Globally consistent network is backtrack-free
4-queen example

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent
Revise-i

REVISE-i(\{x_1, x_2, \ldots, x_{i-1}\}, x_i)

input: a network \(\mathcal{R} = (X, D, C) \)
output: a constraint \(R_S \), \(S = \{x_1, \ldots, x_{i-1}\} \) \(i \)-consistent relative to \(x_i \).

1. for each instantiation \(\bar{a}_{i-1} = (< x_1, a_1 >, < x_2, a_2 >, \ldots, < x_{i-1}, a_{i-1} >) \) do,
2. if no value of \(a_i \in D_i \) exists s.t. \((\bar{a}_{i-1}, a_i) \) is consistent
 then delete \(\bar{a}_{i-1} \) from \(R_S \)
 (Alternatively, let \(S \) be the set of all subsets of \(\{x_1, \ldots, x_i\} \) that contain \(x_i \)
 and appear as scopes of constraints of \(\mathcal{R} \), then
 \(R_S \leftarrow R_S \cap \pi_S(\times_{S' \subseteq S} R_{S'}) \))
3. endfor

Figure 3.14: Revise-i

- Complexity: for binary constraints \(O(k^i) \)
- For arbitrary constraints: \(O((2k)^i) \)
I-consistency

I-CONSISTENCY(\mathcal{R})

input: a network \mathcal{R}.
output: an i-consistent network equivalent to \mathcal{R}.
1. repeat
2. for every subset $S \subseteq X$ of size $i - 1$, and for every x_i, do
3. let S be the set of all subsets in of $\{x_1, ..., x_i\}$ $\text{scheme}(\mathcal{R})$
 that contain x_i
4. $R_S \leftarrow R_S \cap \pi_S(\bigvee_{S' \in S} R_{S'})$ (this is Revise-i(S, x_i))
6. endfor
7. until no constraint is changed.

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complexity of brute-force i-consistency $O(2^n(nk)^2)$ and $O(n^ik^4)$, respectively. A lower bound for enforcing i-consistency is $\Omega(n^ik^4)$. □
I-consistency

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency
Outline

• Arc-consistency algorithms
• Path-consistency and i-consistency
• Arc-consistency, Generalized arc-consistency, relation arc-consistency
• Global and bound consistency
• Distributed (generalized) arc-consistency
• Consistency operators: join, resolution, Gaussian elimination
Arc-consistency for non-binary constraints:
Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network $\mathcal{R} = (X, D, C)$, with $R_S \in C$, a variable x is arc-consistent relative to R_S if and only if for every value $a \in D_x$ there exists a tuple $t \in R_S$ such that $t[x] = a$. t can be called a support for a. The constraint R_S is called arc-consistent iff it is arc-consistent relative to each of the variables in its scope and a constraint network is arc-consistent if all its constraints are arc-consistent.

\[
D_x \leftarrow D_x \cap \pi_x (R_S \otimes D_{S-\{x\}})
\]

Complexity: $O(tk)$, t bounds number of tuples.
Relational arc-consistency:

\[
R_{S-\{x\}} \leftarrow \pi_{S-\{x\}} (R_S \otimes D_x)
\]
Algorithm 1: AC3 / GAC3

function Revise3(in \(x_i \): variable; \(c \): constraint): Boolean ;
begin
1 CHANGE ← false;
2 foreach \(v_i \in D(x_i) \) do
3 if \(\exists \tau \in c \cap \pi_{X(c)}(D) \text{ with } \tau[x_i] = v_i \) then
4 remove \(v_i \) from \(D(x_i) \);
5 CHANGE ← true;
6 return CHANGE ;
end

function AC3/GAC3(in \(X \): set): Boolean ;
begin
 /* initialisation */;
7 \(Q \leftarrow \{ (x_i, c) \mid c \in C, x_i \in X(c) \} \);
 /* propagation */;
8 \text{while } Q \neq \emptyset \text{ do }
9 select and remove \((x_i, c) \) from \(Q \);
10 if Revise\((x_i, c) \) then
11 if \(D(x_i) = \emptyset \) then return false ;
12 else \(Q \leftarrow Q \cup \{ (x_j, c') \mid c' \in C \wedge c' \neq c \wedge x_i, x_j \in X(c') \wedge j \neq i \} \);
13 return true ;
end
Generalized arc-consistency

Proposition 27 (GAC3). $GAC3$ is a sound and complete algorithm for achieving arc consistency that runs in $O(er^3dr^{r+1})$ time and $O(er^r)$ space, where r is the greatest arity among constraints.
Examples of generalized arc-consistency

- $x+y+z \leq 15$ and $z \geq 13$ implies $x \leq 2$, $y \leq 2$

- Example of relational arc-consistency

\[
A \land B \rightarrow G,
\]

\[
\neg G, \Rightarrow
\]

\[
\neg A \lor \neg B
\]
More arc-based consistency

- Global constraints: e.g., all-different constraints
 - Special semantic constraints that appear often in practice and a specialized constraint propagation. Used in constraint programming.

- Bounds-consistency: pruning the boundaries of domains
Sudoku – Constraint Satisfaction

- **Variables**: empty slots
- **Domains**: \{1,2,3,4,5,6,7,8,9\}
- **Constraints**: 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gaussian elimination
Global constraints

Constraints of arbitrary scope length defined by expression, a Boolean function

Global constraints are classes of constraints defined by a formula of arbitrary arity (see Section 9.2).

Example 2. The constraint \texttt{alldifferent}(x_1, x_2, x_3) \equiv (v_i \neq v_j \land v_i \neq v_k \land v_j \neq v_k) allows the infinite set of 3-tuples in \(\mathbb{Z}^3 \) such that all values are different. The constraint \(c(x_1, x_2, x_3) = \{(2,2,3), (2,3,2), (2,3,3), (3,2,2), (3,2,3), (3,3,2)\} \) allows the finite set of 3-tuples containing both values 2 and 3 and only them.
We need specialized procedures for generalize Arc-consistency because it is too expensive to try and apply the general algorithm (see Bessiere, section 9.2)

We can decompose a global constraint, or use various specialized representation
Example for alldiff

- $A = \{3,4,5,6\}$
- $B = \{3,4\}$
- $C = \{2,3,4,5\}$
- $D = \{2,3,4\}$
- $E = \{3,4\}$
- $F = \{1,2,3,4,5,6\}$
- Alldiff (A,B,C,D,E)
- Arc-consistency does nothing
- Apply GAC to sol(A,B,C,D,E,F)?
 - $\rightarrow A = \{6\}, F = \{1\}$….
- Alg: bipartite matching $kn^{1.5}$
- (Lopez-Ortiz, et. Al, IJCAI-03 pp 245 (A fast and simple algorithm for bounds consistency of alldifferent constraint))
Global constraints

- Alldifferent
- Sum constraint (variable equal the sum of others)
- Global cardinality constraint (a value can be assigned a bounded number of times to a set of variables)
- The cumulative constraint (related to scheduling tasks)
Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and domain constraints, a variable $x \in S$ is bounds-consistent relative to C if the value $\min\{D_x\}$ (respectively, $\max\{D_x\}$) can be extended to a full tuple t of C. We say that t supports $\min\{D_x\}$. A constraint C is bounds-consistent if each of its variables is bounds-consistent.
Bounds consistency

Example 3.5.5 Consider the constraint problem with variables x_1, \ldots, x_6, each with domains 1, ..., 6, and constraints:

$$C_1 : x_4 \geq x_1 + 3, \quad C_2 : x_4 \geq x_2 + 3, \quad C_3 : x_5 \geq x_3 + 3, \quad C_4 : x_5 \geq x_4 + 1,$$

$$C_5 : \text{alldifferent}\{x_1, x_2, x_3, x_4, x_5\}$$

The constraints are not bounds consistent. For example, the minimum value 1 in the domain of x_4 does not have support in constraint C_1 as there is no corresponding value for x_1 that satisfies the constraint. Enforcing bounds consistency using constraints C_1 through C_4 reduces the domains of the variables as follows: $D_1 = \{1, 2\}$, $D_2 = \{1, 2\}$, $D_3 = \{1, 2, 3\}$, $D_4 = \{4, 5\}$ and $D_5 = \{5, 6\}$. Subsequently, enforcing bounds consistency using constraints C_5 further reduces the domain of C to $D_3 = \{3\}$. Now constraint C_3 is no longer bound consistent. Reestablishing bounds consistency causes the domain of x_5 to be reduced to $\{6\}$. Is the resulting problem already arc-consistent?
Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gaussian elimination
Boolean constraint propagation

- \((A \lor \neg B) \) and \((B) \)
 - \(B \) is arc-consistent relative to \(A \) but not vice-versa
- Arc-consistency by resolution:
 \[\text{res}((A \lor \neg B), (B)) = A \]

Given also \((B \lor C) \), path-consistency:
\[\text{res}((A \lor \neg B), (B \lor C)) = (A \lor C) \]

Relational arc-consistency rule = unit-resolution

\[A \land B \rightarrow G, \neg G, \Rightarrow \neg A \lor \neg B \]
Constraint propagation for Boolean constraints: Unit propagation

Procedure UNIT-PROPAGATION
Input: A cnf theory, \(\varphi, d = Q_1, ..., Q_n \).
Output: An equivalent theory such that every unit clause does not appear in any non-unit clause.
1. queue = all unit clauses.
2. while queue is not empty, do.
3. \(T \leftarrow \) next unit clause from Queue.
4. for every clause \(\beta \) containing \(T \) or \(\neg T \)
5. if \(\beta \) contains \(T \) delete \(\beta \) (subsumption elimination)
6. else, For each clause \(\gamma = \text{resolve}(\beta, T) \).
 if \(\gamma \), the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent \(\gamma \) to the theory and delete \(\beta \).
 if \(\gamma \) is a unit clause, add to Queue.
8. endfor.
9. endwhile.

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.
Consistency for numeric constraints (Gaussian elimination)

\[x \in [1,10], \ y \in [5,15], \]
\[x + y = 10 \]

arc-consistency \(\Rightarrow x \in [1,5], \ y \in [5,9] \)

Gaussian elimination of
\[x + y = 10, -y \leq -5 \]

\[z \in [-10,10], \]
\[y + z \leq 3 \]

path-consistency \(\Rightarrow x - z \geq 7 \)

Gaussian Elimination of:
\[x + y = 10, -y - z \geq -3 \]
Changes in the network graph as a result of arc-consistency, path-consistency and 4-consistency.
Outline

- Arc-consistency algorithms
- Path-consistency and i-consistency
- Arc-consistency, Generalized arc-consistency, relation arc-consistency
- Global and bound consistency
- Distributed (generalized) arc-consistency
- Consistency operators: join, resolution, Gaussian elimination
Distributed arc-consistency (Constraint propagation)

- Implement AC-1 distributedly.
- Node x_j sends the message to node x_i.
- Node x_i updates its domain:

\[D_i \leftarrow D_i \cap \pi_i (R_{ij} \otimes D_j) \]

\[h_i^j \leftarrow \pi_i (R_{ij} \otimes D_j) \]

\[D_i \leftarrow D_i \cap h_i^j \]

- Relational and generalized arc-consistency can be implemented distributedly: sending messages between constraints over the dual graph.

\[R_{S \setminus \{x\}} \leftarrow \pi_{S \setminus \{x\}} (R_S \otimes D_x) \]
The message that R2 sends to R1 is

\[h^j_i \leftarrow \pi_{i,j}(R_i \bigotimes (\bigsqcap_{k \in \text{ne}(i)} h^i_k)) \]

R1 updates its relation and domains and sends messages to neighbors

\[D_i \leftarrow D_i \cap (\bigsqcap_{k \in \text{ne}(i)} D^i_k) \]
Distributed Relational Arc-Consistency

- DRAC can be applied to the dual problem of any constraint network:

\[h^j_i \leftarrow \pi_{l_{ij}}(R_i \Join (\Join_{k \in ne(i)} h^i_k)) \] \hspace{1cm} (1)

\[R_i \leftarrow R_i \cap (\Join_{k \in ne(i)} h^i_k) \] \hspace{1cm} (2)
DRAC on the dual join-graph
Iteration 1

Node 1 sends messages
Node 2 sends messages
Node 3 sends messages
Node 4 sends messages
Node 5 sends messages

\(h_1^2 \) \(h_2^2 \) \(h_3^2 \) \(h_4^2 \) \(R_2 \)

\(h_2^4 \) \(h_3^4 \) \(h_4^4 \) \(h_5^4 \) \(R_4 \)

\(R_1 \) \(h_2^1 \) \(h_3^1 \) \(h_4^1 \)

\(R_3 \) \(h_1^3 \) \(h_2^3 \) \(h_4^3 \) \(h_5^3 \)

\(R_5 \) \(h_2^5 \) \(h_3^5 \) \(h_4^5 \) \(h_6^5 \)

\(R_6 \) \(h_4^6 \) \(h_5^6 \)
\[R_i \leftarrow R_i \cap \left(\bigtriangleup_{k \in ne(i)} h_k^i \right) \]

\textbf{Iteration 1}
\[
\frac{h^j_i}{R_i} \leftarrow \pi_{l_{ij}} \left(R_i \, \bigotimes \, \left(\bigotimes_{k \in \text{ne}(i) \, h^i_k} \right) \right)
\] (1)

Iteration 2
\[R_i \leftarrow R_i \cap \left(\bigotimes_{k \in \text{ne}(i)} h_k^i \right) \] (2)

Iteration 2

- **\(R_1 \)**
 - \(A \)
 - \(1 \)
 - \(3 \)

- **\(R_2 \)**
 - \(A \)
 - \(B \)
 - \(1 \)
 - \(3 \)
 - \(3 \)
 - \(1 \)

- **\(R_3 \)**
 - \(A \)
 - \(C \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(2 \)

- **\(R_4 \)**
 - \(A \)
 - \(B \)
 - \(D \)
 - \(1 \)
 - \(3 \)
 - \(2 \)
 - \(3 \)
 - \(1 \)
 - \(2 \)

- **\(R_5 \)**
 - \(B \)
 - \(C \)
 - \(F \)
 - \(3 \)
 - \(2 \)
 - \(1 \)

- **\(R_6 \)**
 - \(D \)
 - \(F \)
 - \(G \)
 - \(2 \)
 - \(1 \)
 - \(3 \)
\[h^j_i \leftarrow \pi_{l_{ij}}(R_i \Join (\Join_{k \in \text{ne}(i)} h^i_k)) \] (1)

Iteration 3

R_1 \hspace{1cm} h^1_1 \hspace{1cm} h^1_2 \hspace{1cm} h^1_3 \hspace{1cm} h^1_4

R_2

R_3 \hspace{1cm} h^3_1 \hspace{1cm} h^3_2

R_4

R_5 \hspace{1cm} h^5_1 \hspace{1cm} h^5_2 \hspace{1cm} h^5_3 \hspace{1cm} h^5_4

R_6 \hspace{1cm} h^6_1 \hspace{1cm} h^6_2

Winter 2016
\[R_i \leftarrow R_i \cap \left(\bigotimes_{k \in \text{ne}(i)} h_k^i \right) \]

Iteration 3

\[R_1 \]

\[R_2 \]

\[R_3 \]

\[R_4 \]

\[R_5 \]

\[R_6 \]
\[h_i^j \leftarrow \prod_{l} (R_i \bowtie (\bowtie_{k \in n(e(i))} h_k^i)) \quad (1) \]

Iteration 4

- **R_1**: \(h_1^1 = A \), \(h_1^2 = A \), \(h_1^3 = A \), \(h_1^4 = A \)
- **R_2**: \(h_2^1 = 1 \), \(h_2^2 = 1 \), \(h_2^3 = 1 \), \(h_2^4 = 1 \)
- **R_3**: \(h_3^1 = 1 \), \(h_3^2 = 1 \), \(h_3^3 = 2 \)
- **R_4**: \(h_4^1 = 1 \), \(h_4^2 = 1 \), \(h_4^3 = 1 \), \(h_4^4 = 1 \)
- **R_5**: \(h_5^1 = 1 \), \(h_5^2 = 1 \), \(h_5^3 = 3 \), \(h_5^4 = 1 \), \(h_5^5 = 3 \), \(h_5^6 = 2 \)
- **R_6**: \(h_6^1 = 1 \), \(h_6^2 = 1 \), \(h_6^3 = 2 \), \(h_6^4 = 1 \)
\[R_i \leftarrow R_i \cap \left(\bigotimes_{k \in \text{ne}(i)} h^i_k \right) \] (2)

Iteration 4

\[R_1 \]

\[R_2 \]

\[R_3 \]

\[R_4 \]

\[R_5 \]

\[R_6 \]
\[h^j_i \leftarrow \prod_{l_{ij}} (R_i \bigotimes (\bigotimes_{k \in n_e(i)} h^i_k)) \] (1)

Iteration 5
\[R_i \leftarrow R_i \cap \left(\bigotimes_{k \in \text{ne}(i)} h^i_k \right) \] (2)

Iteration 5
Tractable classes

Theorem 3.7.1

1. The consistency binary constraint networks having no cycles can be decided by arc-consistent

2. The consistency of binary constraint networks with bi-valued domains can be decided by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.