From Bucket-Elimination To Bucket Trees

Definition: *T* is a bucket tree.

Theorem: *T* is an i-map of *G*.

- Variable-elimination can be viewed as message-passing (elimination) using a rooted bucket tree.
- Any variable (bucket) can be the root.

Generalization:Eliminate (sum over) Variables Not in Separators

• Multiply all incoming messages, and P_i 's in the bucket and sum over $B_1 \cap B_2$.

•
$$\boldsymbol{I}_{B_1}^{B_2}(s) = \sum_{B_1-s} (\Pi \boldsymbol{I}_i) \cdot (\Pi \boldsymbol{P}_i)$$

- Given a rooted bucket tree, *T*, every node can be the "root" of the variables-elimination computation.
- If B₃ is the root, bucket B₂ and then Bucket B₁ should be processed; π-messages sent from B₂ to B₁ and from B₁ To B₃

Bucket Propagation Algorithm

- Input: A bucket tree $B_1 \dots B_n$
- Output: For Each B_i and parent B_j , functions $\lambda_i^j(S_{ij})$ and $\pi_i^j(S_{ij})$ are exchanged.

Top Down:

• Let $s \ \boldsymbol{l}_1 \dots \boldsymbol{l}_k$ messages from child nodes of B_i , $P_1 \dots P_r$ in B_i original functions.

•
$$\boldsymbol{l}_{i}^{j}(S_{ij}) = \sum_{B_{i}-B_{j}} \prod_{i} \boldsymbol{l}_{i} \bullet \prod_{j} P_{j}$$

Bottom Up:

• Let $\pi_{i_{j}}^{i}$ be received from B_{j} .

•
$$\mathbf{p}_{i}^{k}(S_{ki}) = \sum_{B_{k}-B_{i}} (\prod_{j} P_{j}) \bullet \mathbf{p}_{j}^{i} \bullet \prod_{i \neq k} \mathbf{l}_{i}$$

- The belief of B_i
- $P(B_i) = \prod_i P_j \bullet \prod_i \mathbf{l}_i \bullet \mathbf{p}_j^i$
- if x index Bucket i get Bel(x) by summing out Bel(x) = $\alpha \sum_{S_{ij}} P(B_i)$

Propagation in a Bucket Tree

Definitions:

- Let *G* be a Bayesian network, *d*, an ordering and $B_1 \dots B_n$ the final bucket created processing along $d = x_1 \dots x_n$.
- Let B_i be the set of variables appearing in bucket *i* when it is processed.

Bucket Tree:

• A bucket tree has each B_i cluster as a node and there is an arc from B_i to B_j if the function created at B_i was placed in B_j

Graph-Based Definition:

Let G_d be the induced graph along d. Each variable x and it's earlier neighbors in a node, B_x. There is an arc from B_x to B_y if y is the closest parent of x.

Upwards Messages On The Bucket Tree

$$\Pi(A) = P(A)$$

$$\Pi_{B}^{P}(A, B) = P(B, A) \bullet \boldsymbol{I}_{C}^{B}(A, B)$$

$$\Pi_{B}^{C}(A, B) = P(B, A) \bullet \Pi(A) \bullet \boldsymbol{I}_{D}^{B}(A, B)$$

$$\Pi_{C}^{E}(B, C) = \sum_{A} P(C, A) \bullet \Pi_{B}^{C}(A, B)$$