Local Structure

COMPSCI 276, Fall 2014

Set 4b: Rina Dechter

Outline

- Bayesian networks and queries
- Building Bayesian Networks
- Special representations of CPTs
 - Causal Independence
 - Context Specific Independence
 - Determinism
 - Mixed Networks

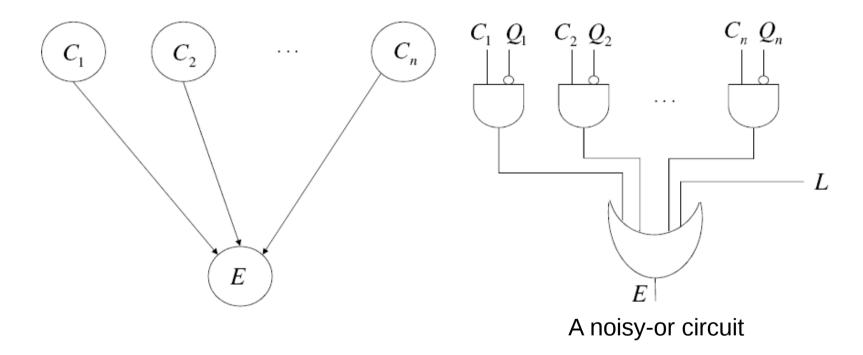
Dealing with Large CPTs

The size of a CPT

for binary variable E with binary parents C_1, \ldots, C_n

Number of Parents: n	Parameter Count: 2 ⁿ
2	4
3	8
6	64
10	1024
20	1, 048, 576
30	1, 073, 741, 824

Micro Model

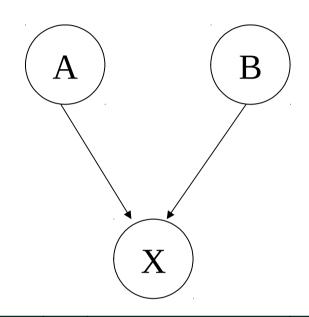


A micro model

details the relationship between a variable E and its parents C_1, \ldots, C_n .

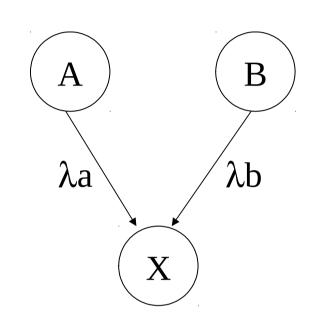
We wish to specify cpt with less parameters

Binary OR



A	В	P(X=0 A,B)	P(X=1 A,B)
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

Noisy-OR



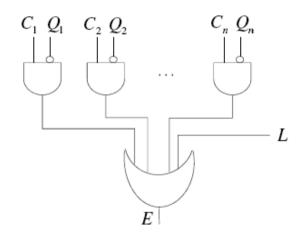
"noise" is associated with each edge described by noise parameter $\lambda \in [0,1]$:

Let q
$$b=0.2$$
, qa $=0.1$

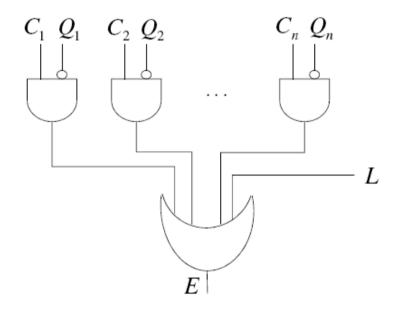
$$P(x=0|a,b) = (1-\lambda a) (1-\lambda b)$$

$$(X=1|A,B)$$
 b)=1-(1- λa) (1- λb)

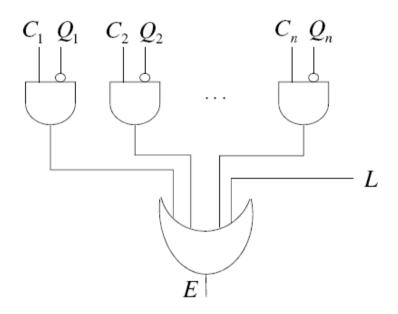
A	В	P(X=0 A,B)	P(X=1 A,B)	
0	0	1	0	
0	1	0.1	0.9	
1	0	0.2	8.0	
1	1	0.02	0.98	



- Cause C_i is capable of establishing effect E, except under some unusual circumstances summarized by suppressor Q_i .
- When suppressor Q_i is active, C_i is no longer able to establish E.
- The leak variable L represents all other causes of E which were not modeled explicitly.
- When none of the causes C_i are active, the effect E may still be established by the leak variable L.



The noisy-or model requires n+1 parameters.



The noisy-or model requires n+1 parameters.

To model the relationship between headache and ten different conditions

- $\theta_{q_i} = \Pr(Q_i = \text{active})$: probability that suppressor of C_i is active.
- $\theta_l = \Pr(L = \text{active})$: probability that leak is active.

• Let I_{α} be the indices of causes that are active in α .

- Let I_{α} be the indices of causes that are active in α .
- If

```
\alpha: C_1 = active, C_2 = active, C_3 = passive, C_4 = passive, C_5 = active, then I_{\alpha} = \{1, 2, 5\}.
```

- Let I_{α} be the indices of causes that are active in α .
- If

$$\alpha$$
: C_1 = active, C_2 = active, C_3 = passive, C_4 = passive, C_5 = active, then $I_{\alpha} = \{1, 2, 5\}$.

We then have

$$\Pr(E = \mathsf{passive} | \alpha) = (1 - \theta_I) \prod_{i \in I_{\alpha}} \theta_{q_i}$$

 $\Pr(E = \mathsf{active} | \alpha) = 1 - \Pr(E = \mathsf{passive} | \alpha).$

- Let I_{α} be the indices of causes that are active in α .
- If

$$\alpha$$
: C_1 = active, C_2 = active, C_3 = passive, C_4 = passive, C_5 = active, then $I_{\alpha} = \{1, 2, 5\}$.

We then have

$$\Pr(E = \mathsf{passive} | \alpha) = (1 - \theta_I) \prod_{i \in I_{\alpha}} \theta_{q_i}$$

 $\Pr(E = \mathsf{active} | \alpha) = 1 - \Pr(E = \mathsf{passive} | \alpha).$

The full CPT for variable E, with its 2^n parameters, can be induced from the n+1 parameters of the noisy-or model.

Example

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

Example

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

If we assume that S is related to its causes by a noisy-or model

we can then specify the CPT for S by the following four probabilities:

- The suppressor probability for cold, say .15
- The suppressor probability for flu, say, .01
- The suppressor probability for tonsillitis, say .05
- The leak probability, say .02

Example

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

Example

Sore throat (S) has three causes: cold (C), flu (F), tonsillitis (T).

The CPT for sore throat is then determined completely as follows:

C	F	Τ	S	$\theta_{s c,f,t}$	
true	true	true	true	0.9999265	1 - (102)(.15)(.01)(.05)
true	true	false	true	0.99853	1 - (102)(.15)(.01)
true	false	true	true	0.99265	1 - (102)(.15)(.05)
÷	:	:	:	:	
false	false	false	true	.02	1-(102)

Noisy/OR CPDs

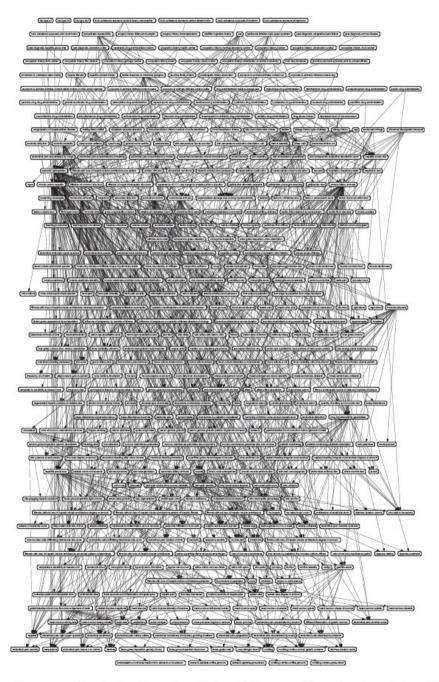


Figure 11: the CPCs network for diagnosis of internal diseases. The network contains 448 nodes, 906 links.

Independence of Causal Influence

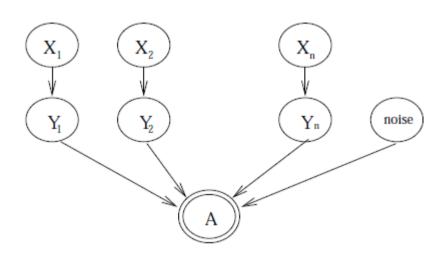
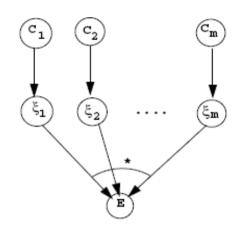


Figure 10: Independence of causal influence

Definition 2

Let A be a random variable with k parents X1,...,Xk. The CPT P(Y|X1,...Xk) exhibits independence of causal influence (ICI) if it is described via a network fragment of the structure shown in on the left where CPT of Z is a deterministic functions f.

Causal Independence



- Formally, C_1 , C_2 . . . , and C_m are said to be **causally independent** w.r.t effect E if
 - there exist random variables $\xi_1, \xi_2 \ldots$, and ξ_m such that
 - 1 For each i, ξ_i probabilistically depends on C_i and is conditionally independent of all other C_i 's and all other ξ_i 's given C_i , and
 - 2 There exists a commutative and associative binary operator * over the domain of e such that

$$E = \xi_1 * \xi_2 * \dots * \xi_m$$

.

Causal Independence

- Example: Lottery
 - \blacksquare C_i : money spent on buying lottery of type i.
 - \blacksquare E: change of wealth.
 - \blacksquare ξ_i : change in wealth due to buying the *i*th type lottery.
 - Base combination operator: "+". (**Noisy-adder**)
- Other causal independence models:
 - Noisy MAX-gate max
 - 2 Noisy AND-gate ∧

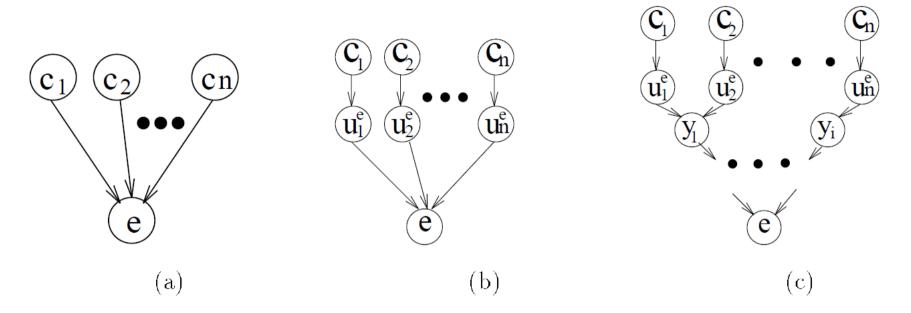


Figure 2: (a) causally-independent belief network; (b) its dependency graph and (c) its decomposition network

We can use a linear number of hidden variables to decompose

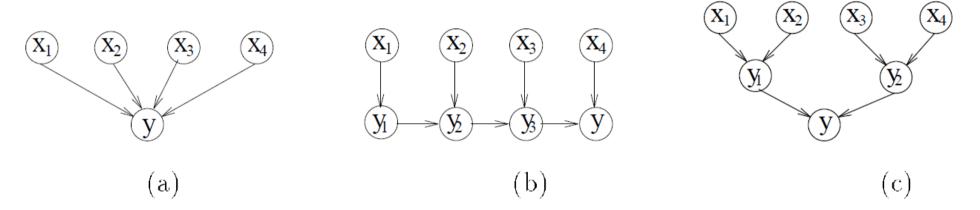


Figure 3: (a) A Bayesian network; (b) temporal transformation (c) parent divorcing.

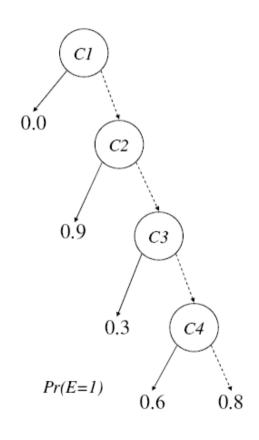
Context Specific Independence

- When there is conditional independence in some specific variable assignment
- Reading:
 - Darwiche chapter 5
 - Koller & Freidman Chapter 5
 - Pearl Chapter 4

Decision Trees

Can we use hidden variables?

CI C2 C3 C4 Pr(E=1) 1 1 1 0.0 1 1 0 0.0 1 1 0 1 0.0 1 1 0 0 0.0 1 0 1 0.0 0 1 0 0 1 0.0 1 0 0 0 0 0 1 1 0.9 0 0 1 1 0.9 0 0 1 0 0.9 0 0 1 0 0.9 0 0 1 0 0.9 0 0 1 0 0.3 0 0 0 1 0.6 0 0 0 0 0.8 0					
1 1 1 0 0.0 1 1 0 1 0.0 1 1 0 0 0.0 1 0 1 1 0.0 1 0 1 0 0.0 1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	CI	C2	<i>C3</i>	C4	Pr(E=1)
1 1 0 1 0.0 1 1 0 0 0.0 1 0 1 1 0.0 1 0 1 0 0.0 1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	1	1	1	0.0
1 1 0 0 0.0 1 0 1 1 0.0 1 0 1 0 0.0 1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	1	1	0	0.0
1 0 1 1 0.0 1 0 1 0 0.0 1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	1	0	1	0.0
1 0 1 0 0.0 1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 0 0.9 0 0 1 0 0.3 0 0 0 1 0.6	1	1	0	0	0.0
1 0 0 1 0.0 1 0 0 0 0.0 0 1 1 1 0.9 0 1 1 0 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	0	1	1	0.0
1 0 0 0 0.0 0 1 1 1 0.9 0 1 1 0 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	0	1	0	0.0
0 1 1 1 0.9 0 1 1 0 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	0	0	1	0.0
0 1 1 0 0.9 0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	1	0	0	0	0.0
0 1 0 1 0.9 0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	0	1	1	1	0.9
0 1 0 0 0.9 0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	0	1	1	0	0.9
0 0 1 1 0.3 0 0 1 0 0.3 0 0 0 1 0.6	0	1	0	1	0.9
0 0 1 0 0.3 0 0 0 1 0.6	0	1	0	0	0.9
0 0 0 1 0.6	0	0	1	1	0.3
- 	0	0	1	0	0.3
0 0 0 0 0.8	0	0	0	1	0.6
	0	0	0	0	0.8



If-Then Rules

A CPT for variable E can be represented using a set of if-then rules of the form

If α_i then $\Pr(e) = p_i$, for each value e of variable E, where α_i is a propositional sentence constructed using the parents of variable E.

If-Then Rules

A CPT for variable E can be represented using a set of if-then rules of the form

If α_i then $\Pr(e) = p_i$, for each value e of variable E, where α_i is a propositional sentence constructed using the parents of variable E.

If-Then Rules

A CPT for variable E can be represented using a set of if-then rules of the form

If α_i then $\Pr(e) = p_i$, for each value e of variable E, where α_i is a propositional sentence constructed using the parents of variable E.

For the rule-based representation to be complete and consistent

- The premises α_i must be mutually exclusive. That is, $\alpha_i \wedge \alpha_j$ is inconsistent for $i \neq j$. This ensures that the rules will not conflict with each other.
- The premises α_i must be exhaustive. That is, $\bigvee_i \alpha_i$ must be valid. This ensures that every CPT parameter $\theta_{e|...}$ is implied by the rules.

Context specific independence (CSI)

- Let C be a set of variables. A context on C is an assignment of one value to each variable in C.
- We denote a context by C=c, where c is a set of values of variables in C.
- Two contexts are incompatible if there exists a variable that is assigned different values in the contexts.
- They are compatible otherwise.

Context-specific independence

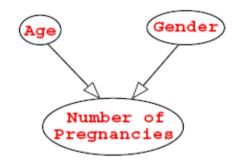
- Let X, Y, Z, and C be four disjoint sets of variables.
- X and Y are independent given Z in context C=c if

$$P(X|Z,Y,C=c) = P(X|Z,C=c)$$

whenever $P(\mathbf{Y}, \mathbf{Z}, \mathbf{C} = \mathbf{c}) > 0$.

■ When Z is empty, one simply says that X and Y are independent in context C=c.

Context-specific independence

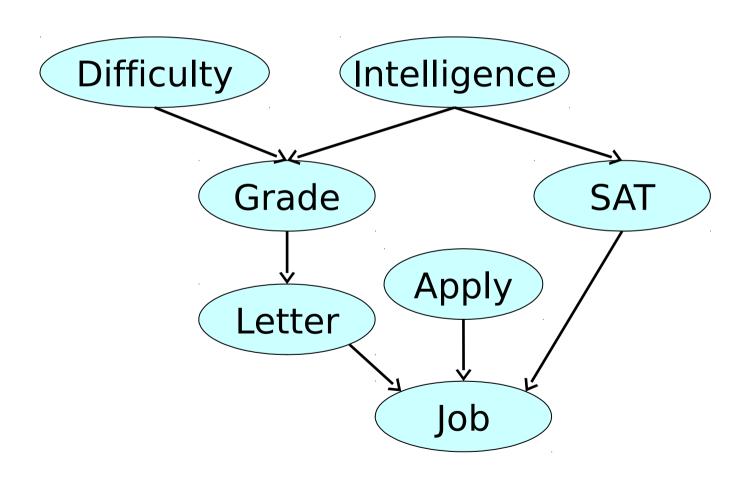


- Shafer's Example:
 - Number of pregnancies (N) is independent of Age(A) in the context Gender=Male(G=m).

$$P(N|A, G=m) = P(N|G=m)$$

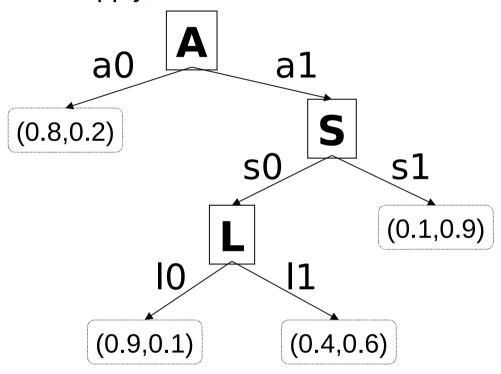
■ Number of parameters reduced by (|A|-1)(|N|-1).

A student's example



Tree CPD

If the student does not Apply, SAT and L are irrelevant

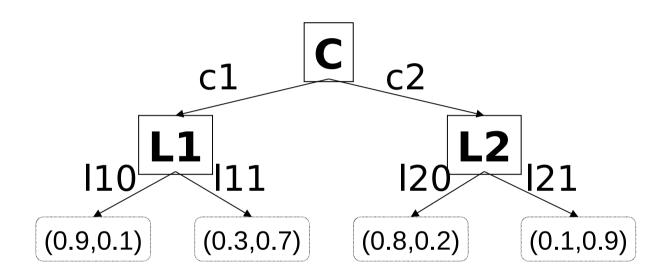


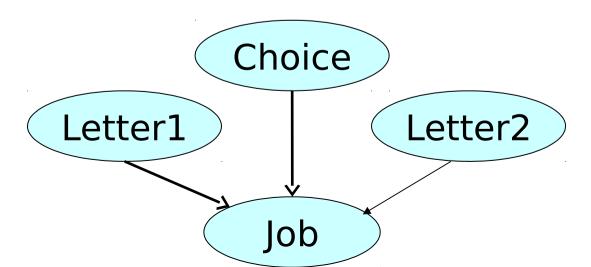
Tree-CPD for job

Definition of CPD-tree

 A CPD-tree of P(z|pazpa) is a tree whose leaves are labeled by P(z) and internal nodes correspond to parents branching over their values.

Captures irrelevant variables

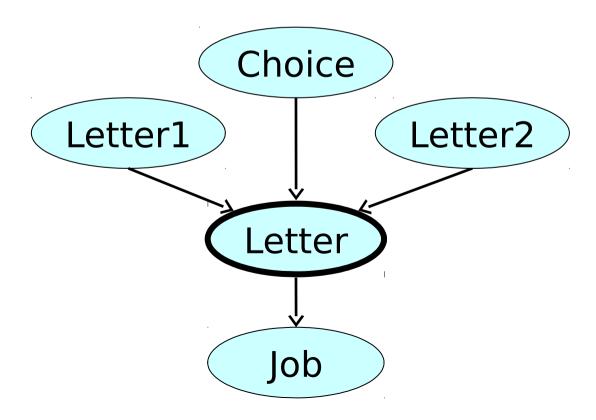




Multiplexer CPD

A CPD P(Y|A,Z1,Z2,...,Zk) is a multiplexer iff Val(A)=1,2,...k, and

$$P(Y|A,Z1,...Zk)=Z_a$$



Mixture of trees

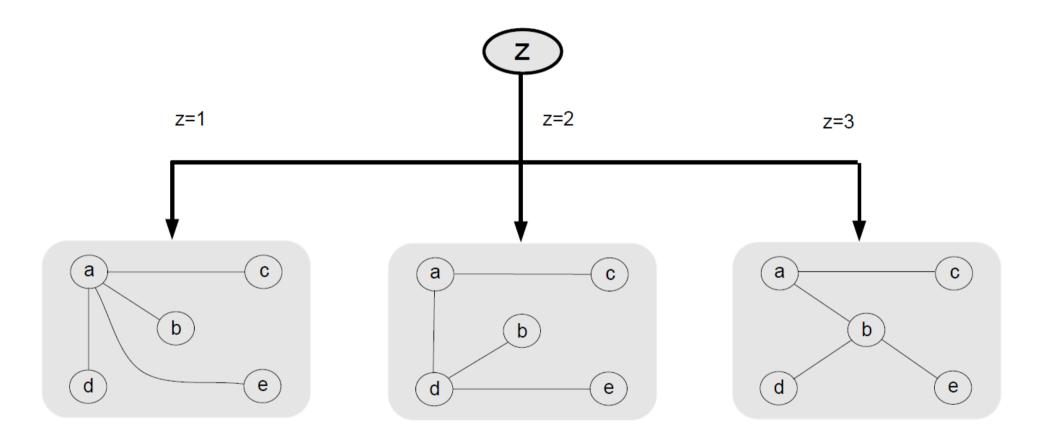


Figure 1: A mixture of trees over a domain consisting of random variables $V = \{a, b, c, d, e\}$, where z is a hidden choice variable. Conditional on the value of z, the dependency structure is a tree. A detailed presentation of the mixture-of-trees model is provided in Section 3.

Mixture model with shared structure

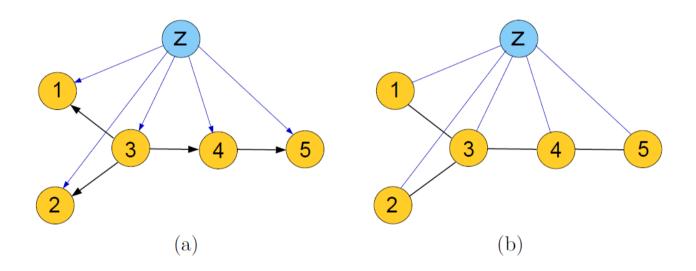


Figure 4: A mixture of trees with shared structure (MTSS) represented as a Bayes net (a) and as a Markov random field (b).

Deterministic CPTs

A deterministic, or functional CPT

is one in which every probability is either 0 or 1

A deterministic CPT for variable E with values e_1, \ldots, e_m

can be represented by a set of propositional sentences of the form:

$$\Gamma_i \iff E = e_i$$

where we have one rule for each value e_i of E, and the premises Γ_i are mutually exclusive and exhaustive.

The CPT for variable E is then given by

$$\theta_{e_i|\alpha} = \left\{ \begin{array}{l} 1, & \text{if parent instantiation } \alpha \text{ is consistent with } \Gamma_i; \\ 0, & \text{otherwise.} \end{array} \right.$$

Deterministic CPTs

Can we use hidden variables?

Α	X	C	$\theta_{c a,x}$
high	ok	high	0
low	ok	high	1
high	stuckat0	high	0
low	stuckat0	high	0
high	stuckat1	high	1
low	stuckat1	high	1

We can represent this CPT as follows

$$(X = \text{ok} \land A = \text{high}) \lor X = \text{stuckat0} \iff C = \text{low}$$

 $(X = \text{ok} \land A = \text{low}) \lor X = \text{stuckat1} \iff C = \text{high}$

Generalized linear models

(see Koller 5.4.2)

Let Y be a binary-valued variable with parents the X_i 's that can take a numerical value (discrete). The CPT $P(Y|X_1,...X_n)$ is a logistic CDT if there are w's such that

$$P(y|x_1,...,x_n) = \operatorname{sigmoid}(w_0 + \sum_{i=1}^k w_i x_i)$$
$$\operatorname{sigmoid}(z) = \frac{e^z}{1 + e^z}$$

Mixed Networks

(Dechter 2013)

Augmenting Probabilistic networks with constraints because:

Some information in the world is deterministic and undirected (X not-eq Y)

Some queries are complex or evidence are complex (cnfs)

Queries are probabilistic queries

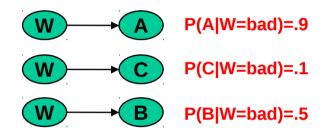
Probabilistic Reasoning

Party example: the weather effect

Alex is-<u>likely</u>-to-go in bad weather

Chris <u>rarely</u>-goes in bad weather

Becky is indifferent but <u>unpredictable</u>



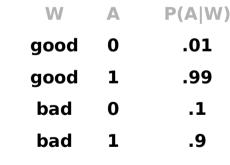
P(W)

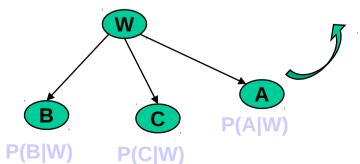
Questions:

Given bad weather, which group of individuals is most likely to show up at the party?

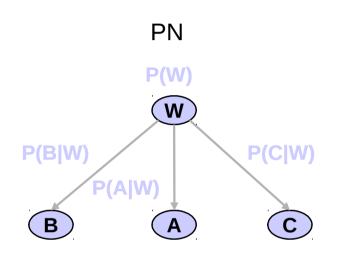
What is the probability that Chris goes to the party but Becky does not?

 $P(W,A,C,B) = P(B|W) \cdot P(C|W) \cdot P(A|W) \cdot P(W)$ $P(A,C,B|W=bad) = 0.9 \cdot 0.1 \cdot 0.5$





Party example again



Semantics?

Algorithms?

 $\boldsymbol{C} \to \boldsymbol{A}$

CN

Query:

 $A \rightarrow B$

Is it likely that Chris goes to the party if Becky does not but the weather is bad?

$$P(C, \neg B \mid w = b \triangleleft A \rightarrow B, C \rightarrow A)$$

Markov Networks

Definition 2.23 Markov networks. A Markov network is a graphical model $\mathcal{M} = \langle X, \mathbf{D}, \mathbf{H}, \Pi \rangle$ where $\mathbf{H} = \{\psi_1, \dots, \psi_m\}$ is a set of potential functions where each potential ψ_i is a non-negative real-valued function defined over a scope of variables $\mathcal{S} = \{\mathbf{S}_1, \dots, \mathbf{S}_m\}$. \mathbf{S}_i . The Markov network represents a global joint distribution over the variables \mathbf{X} given by:

$$P_{\mathcal{M}} = \frac{1}{Z} \prod_{i=1}^{m} \psi_i \quad , \quad Z = \sum_{\mathbf{X}} \prod_{i=1}^{m} \psi_i$$

where the normalizing constant Z is called the partition function.

Markov network example

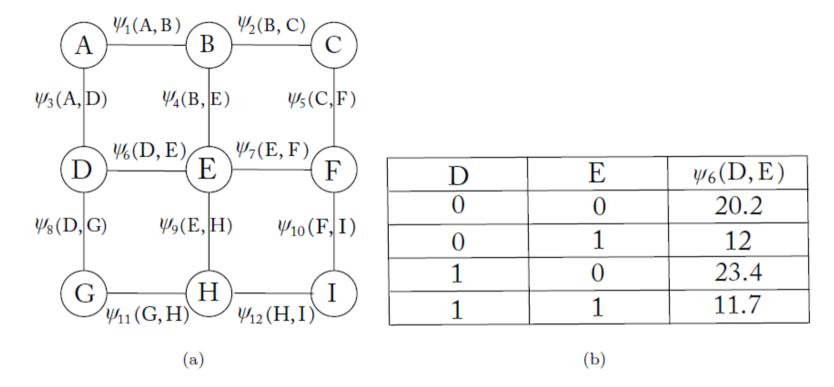


Figure 2.6: (a) An example 3×3 square grid Markov network (ising model) and (b) an example potential $H_6(D, E)$.

$$F(a,b,c,d,e,f,g,h,i) \propto$$

$$\psi_1(a,b) \cdot \psi_2(b,c) \cdot \psi_3(a,d) \cdot \psi_4(b,e) \cdot \psi_5(c,f) \cdot \psi_6(d,e) \cdot \psi_7(e,f) \cdot \psi_8(d,g)$$

$$\cdot \psi_9(e,h) \cdot \psi_{10}(f,i) \cdot \psi_{11}(g,h) \cdot \psi_{12}(h,I)$$
 where $Z = \sum_{a,b,c,d,e,f,g,h,i} F(a,b,c,d,e,f,g,h,i)$ is the partition function.

Mixed Networks

Definition 2.25 Mixed networks. Given a belief network $\mathcal{B} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}_G, \mathbf{\Pi} \rangle$ that expresses the joint probability $P_{\mathcal{B}}$ and given a constraint network $\mathcal{R} = \langle \mathbf{X}, \mathbf{D}, \mathbf{C}, \bowtie \rangle$ that expresses a set of solutions denoted ρ , a mixed network based on \mathcal{B} and \mathcal{R} denoted $\mathcal{M}_{(\mathcal{B},\mathcal{R})} = \langle \mathbf{X}, \mathbf{D}, \mathbf{P}, \mathbf{C} \rangle$ is created from the respective components of the constraint network and a Bayesian network as follows: the variables \mathbf{X} and their domains are shared (we could allow non-common variables and take the union), and the functions include the CPTs in \mathbf{P}_G and the constraints in \mathbf{C} . The mixed network expresses the conditional probability $P_{\mathcal{M}}(\mathbf{X})$:

$$P_{\mathcal{M}}(\mathbf{x}) = \begin{cases} P_{\mathcal{B}}(\mathbf{x} \mid \mathbf{x} \in \rho), & if \ \mathbf{x} \in \rho \\ 0, & otherwise. \end{cases}$$