ICS 275B Homework Assignment 3 Spring 2005

Instructor: Rina Dechter Due: Wednesday, April 27

Relevant reading:

Pearl, chapter 4 (4.1-4.3), Bucket-elimination paper, Koller's handout numbers 11, 13, handout on induced-graphs, bucket-tree elimination paper.

1. question 4.1 in Pearl's book.

You can answer this question, either using the poly-tree propagation, or elim-bel or bucket-tree propagation. Explain the network that you are solving.

- 2. Consider the polytree in Figure below.
 - (a) Apply the poly-tree algorithm or the bucket-tree propagation to obtain the marginal probabilities of each variable. You can do calculation by hand or use Hugin or JavaBayes to solve the computational parts of this question.
 - (b) Draw the necessary messages and the order in which they are computed.
 - (c) Suppose now that the evidence $\{D=0,C=1\}$ has been observed. Repeat the calculation to obtain the conditional probabilities of the nodes given this evidence.

A	
В	
D	
\mathbf{F}	

a	p(a)	b	p(b)	e	p(d)
0	0.3	0	0.6	0	0.7
1	0.7	1	0.4	1	0.3

a	c	p(c a)	e	g	$p(g \epsilon$
0	0	0.15	0	0	0.10
0	1	0.85	0	1	0.90
1	0	0.25	1	0	0.30
1	1	0.75	1	1	0.70

b	c	e	p(e b,c)
0	0	0	0.40
0	0	1	0.60
0	1	0	0.45
0	1	1	0.55
1	0	0	0.60
1	0	1	0.40
1	1	0	0.30
1	1	1	0.70

b	c	e	p(e b,c)
0	0	0	0.25
0	0	1	0.75
0	1	0	0.60
0	1	1	0.40
1	0	0	0.10
1	0	1	0.90
1	1	0	0.20
1	1	1	0.80

Figure 1:

- 3. Given the directed graph G in Figure 2,
 - (a) Compute the induced-graph along ordering: $d_1 = F, C, A, G, D, H, E, B$ and the induced-width for each variable. What is its induced-width of G?
 - (b) Use min-induced width to compute an ordered graph, called d_2 . Compute the induced-width along d_2 .
 - (c) What is the induced width of G? Explain your answer.
 - (d) Apply elim-bel along the two orderings d_1 and d_2 and show the λ functions created, their placement and the expressions for deriving the functions.
 - (e) Show the bucket-tree associated with each ordering and display all the massages $(\pi s \text{ and } \lambda s)$ along the tree.
 - (f) Assuming you performed all the computation without any evidence. How can you extract the marginal probability of D? Explain.
 - (g) Assuming you observed F = 1 and B = 1, explain how would you would compute (update) BEL(D). Explain.
 - (h) Give a bound on the time and space complexity for solving this problem using O notation.

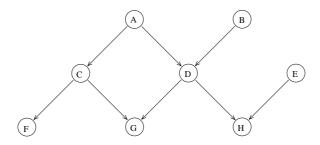


Figure 2: A directed graph

4. (extra credit) Let (G, P) be a Bayesian network and let T be a bucket-tree obtained by applying the bucket-elimination algorithm along an ordering d. Prove that T is an i-map of G.