Democratizing Machine Learning and Artificial Intelligence: Probabilistic Programming with Scala

Brian Ruttenberg, PhD
Charles River Analytics
bruttenberg@cra.com
Goals of This Talk

- Introduce basic modeling concepts in Machine Learning and Artificial Intelligence
- Detail some recent approaches and limitations in using these concepts to model real world problems
- Demonstrate how the Scala language helps Charles River Analytics apply our Machine Learning and Artificial Intelligence expertise to solve these problems
Outline

• Quick introduction to probabilistic models in Artificial Intelligence and Machine Learning
• Introduction to probabilistic programming
• Introduction to Figaro
 • Features, algorithms, examples and integration with Scala
 • Goals of the language
 • Many examples
• Future work & availability
What Do I Mean By Probabilistic Model?

- Let’s say I pick a person at random here
- There is some chance that this person is a student
 - True
 - Student
 - False
- This person may also be a programmer
 - True
 - Programmer
 - False
- This person may also be eating pizza
 - True
 - Pizza
 - False

- Now what if someone asks me “is this person a student”, and I just see them eating pizza, what do I tell them?
We can build a model of this “world” using probability theory.

How do we do that?

Start with Pizza

What makes someone eat pizza?
 - If they’re a student, they probably eat pizza
 - But if they are a programmer, they probably eat pizza too
 - Represent these influences by a directed arrow

But hold on!
 - This is a Scala meetup
 - If someone is a student, they are probably a programmer as well
 - So there is a dependency between the state of student and programmer
Adding Numbers

- So we’ve constructed a figure of the *dependencies* in our model.
- But we need to add some numbers to the model in order to be useful.

- Can do this through conditional probability tables.
 - Ie, what affects each variable state?
- Student depends on nothing (in our model).
- Programmer depends on student status.
- Eating pizza depends on both.

\[
\begin{array}{c|cc}
\text{Student} & T & F \\
\hline
F & 0.3 & 0.7 \\
T & 0.8 & 0.2 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\text{Programmer} & T & F \\
\hline
F & 0.4 & 0.6 \\
\end{array}
\]

\[
\begin{array}{c|cc}
\text{Pizza} & T & F \\
\hline
F & 0.1 & 0.9 \\
F & 0.7 & 0.3 \\
T & 0.6 & 0.4 \\
T & 0.99 & 0.01 \\
\end{array}
\]
Answering the Question

- Someone is eating pizza, what is the probability they are a student?
- We can infer or reason about the probability of a variable (student) given some evidence (they are eating pizza)
 - “reverse” the arrows in the model
 - Compute probability using mathematics of conditional probability distributions

Diagram:

- Programmer
- ?
- True
Answering the Question, Cont

- In theory, this is quite simple to answer
 - Encode the probabilities of each state in some programming language
 - Randomly generate states of the model by running the program
 - Record the number of times “Student” is true, divide by total states generated
How would the model look in Scala?

```scala
import scala.util._

def buildModel(iters: Int): Int = {
  if (iters == 0)
    0
  else {
    val prev: Int = buildModel(iters-1)
    val student: Boolean = if (Random.nextDouble() < 0.4) true else false
    val prog: Boolean = student match {
      case true => if (Random.nextDouble() < 0.8) true else false
      case false => if (Random.nextDouble() < 0.3) true else false
    }
    val pizza: Boolean = (prog, student) match {
      case (false, false) => if (Random.nextDouble() < 0.1) true else false
      case (false, true)  => if (Random.nextDouble() < 0.7) true else false
      case (true, false)  => if (Random.nextDouble() < 0.6) true else false
      case (true, true)   => if (Random.nextDouble() < 0.99) true else false
    }
    if (pizza) prev+1 else prev
  }
}

val probPizza = buildModel(100)/100
```
The code isn’t that bad
 * I could set Pizza to true and run the program
 * But the model is small

What if we had 10 variables? 100? 1000?
What if I wanted to know the probability of programmer instead?
What if each variable has 100 different states?
What if each variable was continuous (like a normal distribution)?

The major problem with probabilistic modeling:
 * Developing a new model is a significant task
 * Requires implementing representation, reasoning and learning algorithms for everything you want to model!
One Simple Extension

- Think of a simple extension to our model
- What if the big Harvard-Yale game is happening this weekend?
- Maybe that affects the number of students and pizza eaters
These are *not* the same models

- I have to recode what I just wrote
- Significant amount of wasted effort building models
 - Little re-use of algorithms between two models that are only slightly different
 - Adding a single variable to the model could precipitate reworking a significant amount of code
What if I could code up these probabilistic relationships in a simple and intuitive manner?

My Scala code could go from this:

```scala
import scala.util._

def buildModel(iters: Int): Int = {
  if (iters == 0)
    0
  else {
    val prev = buildModel(iters-1)
    val student: Boolean = if (Random.nextDouble() < 0.4) true else false
    val prog: Boolean = student match {
      case true => if (Random.nextDouble() < 0.8) true else false
      case false => if (Random.nextDouble() < 0.3) true else false
    }
    val pizza: Boolean = (prog, student) match {
      case (false, false) => if (Random.nextDouble() < 0.1) true else false
      case (false, true)  => if (Random.nextDouble() < 0.7) true else false
      case (true, false)  => if (Random.nextDouble() < 0.6) true else false
      case (true, true)   => if (Random.nextDouble() < 0.99) true else false
    }
    if (pizza) prev+1 else prev
  }
}

val probPizza = buildModel(100)/100
```
A Solution

• What if I could code up these probabilistic relationships in a simple and intuitive manner?
• My Scala code could go from this:

```scala
import com.cra.figaro.language._
import com.cra.figaro.algorithm.Importance._

val student = Flip(0.4)
val prog = If(student, Flip(0.8), Flip(0.3)
val pizza = CPD(prog, student,
  ((false, false), Flip(0.1)), ((false, true), Flip(0.7)),
  ((true, false), Flip(0.6)), ((true, true), Flip(0.99)))
val alg = Importance(100, pizza)
val probPizza = alg.probability(pizza, true)
```

• This way of encoding models is known as probabilistic programming using a probabilistic programming language
Probabilistic Programming Languages

- Probabilistic programming languages (PPLs)
 - Represent models using the full power of programming languages
 - Data structures, control flow, abstraction, rich typing
 - Facilitate code re-use
 - Provide a suite of built-in inference and learning algorithms that can be automatically applied to new models
 - Provide a language with which to imagine new models and representations
Probabilistic models have many strengths
- Succinctness - relationships between random variables simple
- Powerful – can scale up to thousands of variables
- Learnable – easily learned from data
- Solvable – many effective algorithms to reason on these models

They can be very rich and model a variety of situations
- hierarchical
- recursive
- spatio-temporal
- relational
- infinite

The easier it is to build models, the more we can take advantage of their power
Some Example Models

- Popular models that may (or may not) be familiar to people include:
 - Bayesian networks
 - Markov networks/random fields
 - Kalman filters
 - Probabilistic Relational Models
 - Hidden Markov Models
 - Influence Diagrams
 - Many, many more....

- These models form the basis for many everyday automation tasks
 - Spam filters
 - Speech recognition
 - Computer Vision
 - Decision making
PPLs aim to “democratize” model building
• One should not need extensive training in ML or AI to build and code a model
• This means that a PPL should (broadly) satisfy two main goals:
 • Usability
 • Intuitive to use
 • Common design patterns easily expressed
 • Integration into other/existing applications
 • Extensible language
 • Extensible reasoning
 • Power
 • Ability to represent a wide variety of models, data, etc
 • Powerful and practical inference techniques
A “world” can be any data structure
- A single real value, array, a complete graph
- A “program” is a model of how a world is randomly generated
 - Imagine executing the program to obtain a world

```
val student = Flip(0.4)
val prog = If(student, Flip(0.8), Flip(0.3)
val pizza = CPD(prog, student,
               ((false, false), Flip(0.1)), ((false, true), Flip(0.7)),
               ((true, false), Flip(0.6)), ((true, true), Flip(0.99)))
```
Basic Idea of Probabilistic Programming

- A “world” can be any data structure
 - A single real value, array, a complete graph
- A “program” is a model of how a world is randomly generated
 - Imagine executing the program to obtain a world

```python
student.generate()
prog.generate()
pizza.generate()
```
Basic Idea of Probabilistic Programming

• But programs are not intended to be executed but to be analyzed
 • Not really interested in a single “run” of this program
 • Want to know the behavior of the “program” over many worlds, or analyze a single world
 • Compute a probability distribution over a single world, given observations
 • Compute a distribution over all possible worlds generated from the program
Introducing Figaro

- Figaro is an object-functional PPL
 - Developed by Dr. Avi Pfeffer at Harvard and Charles River Analytics

- An “object-functional” programming language combines functional and object-oriented styles
 - E.g. Scala

- Functional programming provides
 - Powerful representational constructs
 - Reasoning building blocks

- Object-orientation provides
 - Easy representation of common designs
 - Extensibility

- Figaro is currently implemented as a library in...
 - Scala!
Goals of the Figaro Language

- Implement a PPL in a widely-used language
 - Scala is widely-used
 - Scala interoperability with Java also gives Figaro access to an even larger library
- Provide a language to describe models with interacting components
 - Object-oriented
- Provide a means to expressed directed and undirected models with general constraints
 - Functional
- Extensibility and reuse of inference algorithms
 - Object-oriented, traits
- Using Scala helps achieve all of these goals!
Goal 1: Implement a PPL in a widely-used language
Figaro is a library in Scala
- com.cra.figaro.language -> Figaro internals
- com.cra.figaro.library -> Library of existing distributions/models
- com.cra.figaro.algorithm -> Library of inference algorithms

We’ve seen building a model in Figaro is easy

```scala
val student = Flip(0.4)
val prog = If(student, Flip(0.8), Flip(0.3))
val pizza = CPD(prog, student,
    ((false, false), Flip(0.1)), ((false, true), Flip(0.7)),
    ((true, false), Flip(0.6)), ((true, true), Flip(0.99)))
```

But what does all of this mean?
Figaro Internals

- Flip, If, CPD are Figaro elements
- This is a core concept in Figaro
 - Represented by class `Element[T]`
 - An element represents a process that produces a value of type `T`
 - Can be stochastic or non-stochastic
 - An element can also use other elements as arguments to produce an output value
- All Figaro library elements are subclasses of `Element[T]`

```scala
abstract class Element[T] {
  var value: T = _
  type Randomness
  def generateRandomness(): Randomness
  def generateValue(r: Randomness): T
}
```
The `Element[T]` Class

- Two functions need to be defined in an instantiation of an element
 - `generateRandomness`: function that randomly generates a value \(r \) according to some probability distribution
 - `generateValue`: function that `deterministically` computes the value of the element given \(r \) and the values of its arguments

- Example: Normal distribution

```scala
class AtomicNormal(val mean: Double, val standardDeviation: Double) extends Element[Double] {
  Randomness = Double
  def generateRandomness(): Double = {
    val u1 = random.nextDouble
    val u2 = random.nextDouble
    val w = sqrt(-2.0 * log(u1)) * sin(2.0 * Pi * u2) * w
  }
  def generateValue(r: Double) = r * standardDeviation + mean
```
To generate a value from an element

Call `generate()` which does

```scala
def generate(): Unit = {
  r = generateRandomness()
  value = generateValue(r)
}
```

Elements are parameterized by the types of values they produce

- E.g. `Element[Boolean]` is the type of elements that produce Boolean values
- Parameterization one of the major strengths of Figaro over other PPLs
 - Can create elements over basic types, other classes, entire processes, etc
 - Graphs or DNA sequences
Element Classes

• Figaro comes with many elements for common processes

• Simple Elements
 • $\text{Constant}(x)$ – a distribution that always returns the value x
 • $\text{Flip}(p)$ – a Bernoulli trial, i.e., return true with probability p, false otherwise
 • $\text{Select}(\text{clauses}*)$ – select a value at random from a list according to given probabilities
 • $\text{If}(\text{testElement}, \text{thenClause}, \text{elseClause})$ – Not the scala “if”; choose between thenClause and elseClause depending on the current value of testElement, which is an Element[Boolean]

• Many discrete and continuous probability distributions
 • Uniform
 • Normal
 • Poisson
 • Gamma
 • Binomial
 • Many more...
Many of these distributions come in two flavors

- Atomic – their parameters are fixed values, e.g., mean and std dev of normal distribution is fixed at instantiation time
- Compound – their parameters are themselves other elements.
 - `Normal(meanElement, stddev)` represents a normal distributions whose mean depends on the current value of `meanElement`

```scala
val mean = Uniform(0, 10)
val norm = Normal(mean, 1.0)
```
Adding New Elements

- Most of the internal Figaro workings are defined in the `Element[T]` class
- Creating new elements very easy
- Let’s say we want model the distribution of the maximum value of X draws from zero to an upper bound
 - Eg, pull 10 random integers from 0 to 100, return the largest value

```scala
class MaxValue(val numTries: Int, val UpperBound: Int) extends Element[Int] {
  type Randomness = List[Int]
  def generateRandomness(): List[Int] = {
    List.tabulate(numTries)(i => Random.nextInt(UpperBound))
  }
  def generateValue(r: List[Int]) = r.max
}
```
Adding New Elements

- We just added an *atomic* element
- What about compound elements?

```scala
val mean = Uniform(0.0, 10.0)
val norm = Normal(mean, 1.0)
```

- To do this, we borrow from functional programming

Function Programming Monad

Probabilistic Programming Probability Monad
The Probability Monad

- Figaro makes extensive use of probability monads
 - Monads: lift computation from space of values to space of concepts over values
 - Probability monad: lifts computation from values to probabilistic models over values

- Figaro implements three monadic operations in three different elements:
 - Monadic unit -> Constant
 - Monadic bind -> Chain
 - Monadic fmap -> Apply

- Many Figaro elements are implemented through a combination of these three element classes

- \texttt{Constant(x)}: lifts the value \(x \) to the probability model that returns \(x \) with probability 1
Chain

- **Chain**[T, U] represents a computation from an **Element**[T] to an **Element**[U]
- It literally chains together probabilistic computations

- **Takes two arguments:**
 - `parent`, a **Element**[T]
 - `fcn`, a function that takes a value of type T and returns an **Element**[U]
Calling `generateValue` on a Chain is a three step process:

1. Retrieve a value `t` from parent
2. Generate an `Element[U]` by calling `fcn(t)`
3. Return a value `u` from the returned `Element[U]`

```scala
class Chain[T,U](val parent: Element[T], fcn: T => Element[U]) extends Element[U] {
  def generateValue() = {
    fcn(parent.value).value
  }
}
```
Many model classes are implemented using Chain, e.g.

If

```scala
class If[T](testElement: Element[Boolean],
            thenClause: Element[T],
            elseClause: Element[T])
extends Chain[Boolean,T](
    testElement,
    (b: Boolean) => if (b) thenClause; else elseClause)
```
Chain Examples

- Normals where the mean changes

```scala
class NormalCompoundMean(val mean: Element[Double],
val stdDev: Double)
extends Chain(mean,
(m: Double) => new AtomicNormal(m, stdDev))
```

- Normals where the mean and std dev changes
 - Chain of Chain

```scala
class NormalCompound(val mean: Element[Double],
val stdDev: Element[Double])
extends Chain(mean,
(m: Double) => new Chain(stdDev,
(s: Double) => new AtomicNormal(m, s)))
```
Apply

- Represents the monadic *fmap*
- Apply is a element class that allows Scala functions to be integrated into Figaro models
- It can be thought of as “lifting” a function from the space of values to the space of elements
- Like Chain, it takes two arguments
 - *parent*, a `Element[T]`
 - *fcn*, a function that takes a value of type *T* and *value* of type *U*
• Example: Distribution over the sum of two normals

```scala
val norm1 = Normal(0.0, 1.0)
val norm2 = Normal(-1.0, 2.0)
val sum = Apply(norm1, norm2, (x: Double, y: Double) => x + y)
```

Note: Scala’s type inference is handy here, since we don’t need to explicitly declare all the parameterization.
Some other handy examples

- Use Apply to convert tuples of elements into elements of tuples

 val e1: Element[Int] = ...
 val e2: Element[Double] = ...
 val tupleElement: Element[(Int, Double)] = ^(e1, e2)

 Where ```^``` = Apply(arg1, arg2, (t1: T1, t2: T2) => (t1, t2))

- Use Chain to create conditional probability distributions (CPDs)

 class CPD[T,U](arg1: Element[T], clauses: Seq[(T, Element[U])])
 extends Chain[T,U](arg1, (t: T) => getMatch(clauses, t))

 Where `getMatch` is just a function that matches the value of arg1 to the clause values

Note that multi-argument versions of Chain and Apply are available
Does Figaro Meet the Two PPL Goals?

- Usability?
 - Writing models in Figaro easily accomplished by stitching together elements
- Earlier Example:

```scala
val student = Flip(0.4)
val prog = If(student, Flip(0.8), Flip(0.3))
val pizza = CPD(prog, student,
  ((false, false), Flip(0.1)), ((false, true), Flip(0.7)),
  ((true, false), Flip(0.6)), ((true, true), Flip(0.99)))
```
Goals, cont

• Power?
 • Absolutely: Chain + recursion = Huge potential
Example: PageRank

- Google’s PageRank is a model of a probabilistic process on a graph
- We can model this process in Figaro
 - Do a slightly modified version for simplicity

- Each webpage on the internet is a node in a graph
- Draw an edge between each node if the webpages link to each other
 - Real PageRank uses directed edges
PageRank

- The probabilistic process is known as a *random walk*

- Start at some node on the graph
- Randomly move to one of the node’s neighbors
- Repeat the process for some time steps
- Record all the nodes visited
- The more times a node is visited, the higher its PageRank
Random Walk in Figaro

• Start by defining some data structures for a webpage graph

```scala
class Edge(from: Int, to: Int)

class Node(ID: int, edges: Set[Edge])

class Graph(nodes: Set[Nodes]) {
  def get(id: Int) = // return Node with ID == id
}

// some function that builds a graph given some params
def graphGenProcess(params*): Graph
```
Random Walk

- Define some parameters of the random walk

val numSteps: Int = 10
val startNode: Int = 0
Val inputGraph: Graph = graphGenProcess(...)

- Now that we have these parameters, we have to “lift” them into the space of elements

val inputGraphElem: Element[Graph] = Constant(inputGraph)
val numStepsElem: Element[Int] = Constant(numSteps)
val startNodeElem: Element[Int] = Constant(startNode)

- If I choose, can also model the parameters to the random walk as a probabilistic process
Random Walk in Figaro

val rWalk = Chain(inputGraphElem, numStepsElem, startNodeElem, rFcn)

def rFcn(g: Graph, remain: Int, n: Int): Element[List[Int]] = {
 if (remainSteps == 1)
 val curr = step(Constant(List(n)), g)
 Apply(curr, (i: Int) => List(i))
 else {
 val prev = rFcn(g, remain-1, n)
 val curr = step(prev, g)
 Apply(curr, prev, (i: Int, l: List[Int]) => List(i):::l)
 }
}
def step(hist: Element[List[Int]], g: Graph): Element[Int] = {
 Chain(hist, (i: List[Int]) =>
 lastNode = g.get(i.head)
 Select(lastNode.edges.map(e =>(e.to, 1/lastNode.edges.size)))
}
Goal 2: Interacting Objects

- Since Scala is OO, can create complex Class-Element relationships
 - Classes containing elements
 - Elements of classes
 - Highly reusable, flexible and scalable

- Figaro and Scala are natural means to build Probabilistic Relational Models (PRMs)
 - Describe world in terms of objects and relationships
 - Graphical model representation of relational database
 - Probability models associated with classes
 - small and self-contained
 - apply to many situations and instances
 - PRMs difficult to represent in other PPLs
 - No encapsulation
Example PRM

- For time purposes, will not delve into this
- Good examples of PRMs in code with release
Goal 3: Directed and Undirected Models with Constraints
• Functional nature of Figaro lets us define conditions and constraints on our models
• A *condition* is a function f from a value to a Boolean
 • Think of this as an observation of some variable
 • But can be any arbitrary function that returns a boolean from a value of the element
• A (soft) *constraint* is a function f from a value to a real number
 • f can be any programmable function
 • Essentially saying “some value of element e is x times more likely than another value”
Undirected Models

- Constraints and conditions are particularly useful on *undirected* models
 - Undirected can model some dependencies that directed models cannot
 - Also known as Markov networks, Markov random fields
- Example
 - Smokers and Friendship
 - People who smoke tend to have friends that smoke (and vice-versa)
class Person {
 val smokes = Flip(0.6)
}
val alice, bob, clara = new Person
val friends = List((alice, bob), (bob, clara))

def smokeInfluence(pair: (Boolean, Boolean)) =
 if (pair._1 == pair._2) 3.0 else 1.0
for {(p1, p2) <- friend} {
 ^(p1.smokes, p2.smokes).constraint(smokeInfluence)
 // creates an element tuple for each friendship and
 // constrains its value
}
clara.smokes.condition((b: Boolean) => b == true)
// run inference
Goal 4: Extensibility and Reuse of Inference Algorithms
So far we have just talked about building models
But most people want to do something with the models they build
Generally want to infer or reason with the model, for example
 • The distribution over some variable in the model, given some evidence
 • Some statistics about the model – mean, variance, etc

This is where many of the benefits of PPLs are realized
 • Most algorithms work “out of the box” for any model that a user creates!
 • Very extensible algorithm library using traits and inheritance
Main Ideas of Figaro Algorithms

• New algorithms are constantly being developed
• Different algorithms are good for different problems
 ⇒ Anyone should be able to implement new algorithms
 ⇒ Algorithms should be implemented as a service
 ⇒ Algorithms should specify declaratively when they work

• Several completely implemented inference algorithms included in Figaro
 • Variable Elimination
 • Importance and Forward Sampling
 • Metropolis-Hastings
 • Particle Filtering
Extensibility

- These algorithms built on a framework of classes and traits
 - trait Algorithm
 - traits OneTime and AnyTime define how the algorithm is run
 - ProbQueryAlgorithm and ProbEvidenceAlgorithm are two bases classes define the information the algorithm is computing
 - Sampler trait that defines interface for sampling algorithms...
 - Many more...

- General idea is that creating a new algorithm should be done through existing traits and by subclassing
How the Algorithm is Run

- Figaro breaks algorithms into two runnable types
 - OneTime
 - Run the algorithm once, produce answer
 - Anytime
 - Run the algorithm continuously
 - At any time the algorithm is interrupted, produce the best answer achieved so far
 - User can continue the algorithm where it left off
Recall the smoking example

```scala
class Person {
  val smokes = Flip(0.6)
}
val alice, bob, clara = new Person
val friends = List((alice, bob), (bob, clara))
// constraints...
clara.smokes.condition((b: Boolean) => b == true)
```
Running Algorithms

- Want to infer the probability that alice smokes:

```scala
val alg = Importance(10000, alice.smokes)
alg.start()
alg.probability(alice.smokes, true)
```

Run once for 10,000 iterations

```scala
val alg = Importance(alice.smokes)
alg.start()
Thread.sleep(1000)
alg.stop()
alg.probability(alice.smokes, true)
```

Run continuously, stop after 1 second
What’s Next?

- We are constantly updating and improving Figaro
- Major improvements we are working include:
 - Better debugging tools
 - Distributed models
 - Parameter learning
 - Intelligent Metropolis-Hastings
 - Automatic proposal distributions
Some reflections on my experience with Figaro and Scala

First: I am new to Scala – learned Scala when I learned Figaro
- Came from a heavy C/C++/Matlab background
- The verdict: Scala is great!
- While those languages have their use, I’m pretty much a Scala convert
Lessons Learned

- I don’t think something like Figaro could be written in another language
 - Object-oriented is essentially *required* to build some models
 - Could we do this with Java? Maybe
 - But functional aspects of Scala make creating Figaro much easier
Lessons Learned

- In Figaro, implicits are our friends
 - We make heavy use of implicit arguments and conversions
 - Want to make Figaro as easy as possible for the everyday user, but allow power for the experienced user
- However, sometimes we can’t hide everything from the user

```scala
class DecisionPolicyExact[T, U](policy: Map[T, (U, Double)]) extends DecisionPolicy
class DecisionPolicyApprox[T <% Distance[T], U](policy: Map[T, (U, Double)]) extends DecisionPolicy

trait PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]): DecisionPolicy[T,U]
}
```
We’d prefer to not have users doing the instantiation of Exact or Approx classes
So we make a trait to do the instantiation

```scala
trait ExactPolicyMaker[T,U] extends PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]) =
    DecisionPolicyExact(policyMap)
}

trait ApproxPolicyMaker[T,U] extends PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]) =
    DecisionPolicyApprox(policyMap)
}
```

Doesn’t work because the view bounds on the Approx must be defined at instantiation time
So the user has to do a little more work in their code
More Lessons Learned

• Chain is powerful, but problematic
• Mainly:

• Scala scope of objects

• Just because element is created or used in a chain, does not mean it goes out of model scope when the chain function call is complete

val f1 = Flip(0.1)
val f2 = Flip(0.2)
val c = Chain(Flip(0.3), (b: Boolean) => if (b) f1 else f2)
More Lessons Learned

• More problematic (but a valid program):

```scala
val c = Chain(Flip(0.3), (b: Boolean) =>
    if (b) Flip(0.2)("true") else Flip(0.3)("false"))
val t = Universe.getElement("true")
```

• Once an element created, we must ensure that it always remains referenced since it may be used later!
 • Especially in inference algorithms
• Requires us to use lots of data structures to keep track of elements
 • Ie, we are taking a more active control of memory management

• Leads to some memory leaks in Figaro!
More Lessons Learned

- Finally with Chain, consider:

  ```scala
  val c = Chain(Normal(0, 1), (d: Double) => Constant(d))
  ```

- A normal distribution is a continuous value
- Repeated sampling of c will constantly create new elements
- Object creation imparts some overhead from Scala, *as well as* our element management
 - This becomes a significant bottleneck in sampling algorithms
 - So we implement limited caching – on this example, not every useful, but for discrete values it is
 - We still have not solved the problem of speeding up Chain execution

- *Vast majority of Figaro bugs are found in element memory management and Chain caching!*
Implied Goal 5: Get People to Use Figaro!

- Many more features of Figaro that I haven’t touched upon
 - Element references – naming elements, collections of elements, aggregation of elements with the same name
 - Universes – where an element “lives”, running algorithms between universes
 - List elements – lists of random length and value
 - Decision-making New!
 - Library added to reason about structured decision problems
 - Bayesian networks with decisions known as Influence Diagrams
 - Can compute optimal decisions over complicated data structures like graphs or DNA sequences (examples included in the code)
Availability

- Figaro is open source
- Version available now has most of the features I talked about (except decision-making)
- New release very soon, hopefully within a month or two
 - Lots of bug fixes, decision-making, Scala 2.10 support
- Request a copy by going to
 - www.cra.com/figaro and filling out the form
 - Email me: bruttenberg@cra.com
 - Contains a short tutorial
 - For more information also see Avi’s paper “Creating and Manipulating Probabilistic Programs with Figaro” in UAI Workshop on Statistical Relational Artificial Intelligence 2012
- We are discussing setting up a GitHub project for Figaro
 - Not finalized, so may not happen
- We welcome feedback and improvements!
Figaro is open source, Scala library where one can create probabilistic models with little AI and ML experience

Can we say that “practical” probabilistic programming has been reached?
- Probably not, but certainly Figaro is a huge step in that direction

Figaro is a language and platform with which one can explore new types, paradigms and ways of building probabilistic models
- Can build models in Figaro that model other Figaro models!?!?
- Many more things possible that we haven’t even thought of yet

We hope other people can find it useful as well
Thank You and Questions