

Democratizing Machine Learning and Artificial Intelligence: Probabilistic Programming with Scala

Brian Ruttenberg, PhD Charles River Analytics bruttenberg@cra.com

Goals of This Talk

- Introduce basic modeling concepts in Machine Learning and Artificial Intelligence
- Detail some recent approaches and limitations in using these concepts to model real world problems
- Demonstrate how the Scala language helps Charles River Analytics apply our Machine Learning and Artificial Intelligence expertise to solve these problems

Outline

- Quick introduction to probabilistic models in Artificial Intelligence and Machine Learning
- Introduction to probabilistic programming
- Introduction to Figaro
 - Features, algorithms, examples and integration with Scala
 - Goals of the language
 - Many examples
- Future work & availability

What Do I Mean By Probabilistic Model?

- Let's say I pick a person at random here
- There is some chance that this person is student

This person may also be a programmer

This person may also be eating pizza

Now what if someone asks me "is this person a student", and I
just see them eating pizza, what do I tell them?

Build a Probabilistic Model!

- We can build a model of this "world" using probability theory
- How do we do that?
- Start with Pizza
- What makes someone eat pizza?
 - If they're a student, they probably eat pizza
 - But if they are a programmer, they probably eat pizza too
 - Represent these influences by a directed arrow
- But hold on!
 - This is a Scala meetup
 - If someone is a student, they are probably a programmer as well
 - So there is a dependency between the state of student and programmer

Adding Numbers

So we've constructed a figure of the dependencies in our model

But we need to add some numbers to the model in order to be

useful

- Can do this through conditional probability tables
 - Ie, what affects each variable state?
- Student depends on nothing (in our model)
- Programmer depends on student status
- Eating pizza depends on both

		Pizza	
Prog Stu	udent	Т	F
F	F	0.1	0.9
F	Т	0.7	0.3
Т	F	0.6	0.4
Т	Т	0.99	0.01

Answering the Question

- Someone is eating pizza, what is the probability they are a student?
- We can infer or reason about the probability of a variable (student) given some evidence (they are eating pizza)
 - "reverse" the arrows in the model
 - Compute probability using mathematics of conditional probability distributions

Answering the Question, Cont

- In theory, this is quite simple to answer
 - Encode the probabilities of each state in some programming language
 - Randomly generate states of the model by running the program
 - Record the number of times "Student" is true, divide by total states generated

Answering the Question, Cont

How would the model look in Scala?

```
import scala.util.
def buildModel(iters: Int): Int = {
  if (iters == 0)
    0
  else {
    val prev: Int = buildModel(iters-1)
    val student: Boolean = if (Random.nextDouble() < 0.4) true else false
    val prog: Boolean = student match {
      case true => if (Random.nextDouble() < 0.8) true else false
      case false => if (Random.nextDouble() < 0.3) true else false
    val pizza: Boolean = (prog, student) match {
      case (false, false) => if (Random.nextDouble() < 0.1) true else false
      case (false, true) => if (Random.nextDouble() < 0.7) true else false
      case (true, false) => if (Random.nextDouble() < 0.6) true else false</pre>
      case (true, true) => if (Random.nextDouble() < 0.99) true else false
    if (pizza) prev+1 else prev
val probPizza = buildModel(100)/100
```

Doesn't Seem So Bad...

- The code isn't that bad
 - I could set Pizza to true and run the program
 - But the model is small
- What if we had 10 variables? 100? 1000?
- What if I wanted to know the probability of programmer instead?
- What if each variable has 100 different states?
- What if each variable was continuous (like a normal distribution)?
- The major problem with probabilistic modeling:
 - Developing a new model is a significant task
 - Requires implementing representation, reasoning and learning algorithms for everything you want to model!

One Simple Extension

- Think of a simple extension to our model
 - What if the big Harvard-Yale game is happening this weekend?
 - Maybe that affects the number of students and pizza eaters

Extension

- These are not the same models
 - I have to recode what I just wrote
- Significant amount of wasted effort building models
 - Little re-use of algorithms between two models that are only slightly different
 - Adding a single variable to the model could precipitate reworking a significant amount of code

A Solution

- What if I could code up these probabilistic relationships in a simple and intuitive manner?
- My Scala code could go from this:

```
import scala.util.
def buildModel(iters: Int): Int = {
 if (iters == 0)
    0
  else {
    val prev = buildModel(iters-1)
    val student: Boolean = if (Random.nextDouble() < 0.4) true else false
    val prog: Boolean = student match {
      case true => if (Random.nextDouble() < 0.8) true else false</pre>
      case false => if (Random.nextDouble() < 0.3) true else false
    val pizza: Boolean = (prog, student) match {
      case (false, false) => if (Random.nextDouble() < 0.1) true else false</pre>
      case (false, true) => if (Random.nextDouble() < 0.7) true else false</pre>
      case (true, false) => if (Random.nextDouble() < 0.6) true else false</pre>
      case (true, true) => if (Random.nextDouble() < 0.99) true else false
    if (pizza) prev+1 else prev
val probPizza = buildModel(100)/100
```

A Solution

- What if I could code up these probabilistic relationships in a simple and intuitive manner?
- My Scala code could go from this:

 This way of encoding models is known as probabilistic programming using a probabilistic programming language

Probabilistic Programming Languages

- Probabilistic programming languages (PPLs)
 - Represent models using the full power of programming languages
 - Data structures, control flow, abstraction, rich typing
 - Facilitate code re-use
 - Provide a suite of built-in inference and learning algorithms that can be automatically applied to new models
 - Provide a language with which to imagine new models and representations

Why Do We Need PPLs?

- Probabilistic models have many strengths
 - Succinctness relationships between random variables simple
 - Powerful can scale up to thousands of variables
 - Learnable easily learned from data
 - Solvable many effective algorithms to reason on these models
- They can be very rich and model a variety of situations
 - hierarchical
 - recursive
 - spatio-temporal
 - relational
 - infinite
- The easier it is to build models, the more we can take advantage of their power

Some Example Models

- Popular models that may (or may not) be familiar to people include:
 - Bayesian networks
 - Markov networks/random fields
 - Kalman filters
 - Probabilistic Relational Models
 - Hidden Markov Models
 - Influence Diagrams
 - Many, many more....
- These models form the basis for many everyday automation tasks
 - Spam filters
 - Speech recognition
 - Computer Vision
 - Decision making

Making Probabilistic Programming Practical

- PPLs aim to "democratize" model building
 - One should not need extensive training in ML or AI to build and code a model
- This means that a PPL should (broadly) satisfy two main goals:
 - Usability
 - Intuitive to use
 - Common design patterns easily expressed
 - Integration into other/existing applications
 - Extensible language
 - Extensible reasoning
 - Power
 - Ability to represent a wide variety of models, data, etc
 - Powerful and practical inference techniques

Basic Idea of Probabilistic Programming

- A "world" can be any data structure
 - A single real value, array, a complete graph
- A "program" is a model of how a world is randomly generated
 - Imagine executing the program to obtain a world

Basic Idea of Probabilistic Programming

- A "world" can be any data structure
 - A single real value, array, a complete graph
- A "program" is a model of how a world is randomly generated
 - Imagine executing the program to obtain a world


```
student.generate ()
prog.generate ()
pizza.generate ()
```

Basic Idea of Probabilistic Programming

- But programs are not intended to be executed but to be analyzed
 - Not really interested in a single "run" of this program
 - Want to know the behavior of the "program" over many worlds, or analyze a single world
 - Compute a probability distribution over a single world, given observations
 - Compute a distribution over all possible worlds generated from the program

Introducing Figaro

- Figaro is an object-functional PPL
 - Developed by Dr. Avi Pfeffer at Harvard and Charles River Analytics
- An "object-functional" programming language combines functional and object-oriented styles
 - E.g. Scala
- Functional programming provides
 - Powerful representational constructs
 - Reasoning building blocks
- Object-orientation provides
 - Easy representation of common designs
 - Extensibility
- Figaro is currently implemented as a library in...
 - Scala!

Goals of the Figaro Language

- Implement a PPL in a widely-used language
 - Scala is widely-used
 - Scala interoperability with Java also gives Figaro access to an even larger library
- Provide a language to describe models with interacting components
 - Object-oriented
- Provide a means to expressed directed and undirected models with general constraints
 - Functional
- Extensibility and reuse of inference algorithms
 - Object-oriented, traits
- Using Scala helps achieve all of these goals!

Goal 1: Implement a PPL in a widely-used language

Design as a Library

- Figaro is a library in Scala
 - com.cra.figaro.language -> Figaro internals
 - com.cra.figaro.library -> Library of existing distributions/models
 - com.cra.figaro.algorithm -> Library of inference algorithms
- We've seen building a model in Figaro is easy

But what does all of this mean?

Figaro Internals

- Flip, If, CPD are Figaro elements
- This is a core concept in Figaro
 - Represented by class Element[T]
 - An element represents a process that produces a value of type T
 - Can be stochastic or non-stochastic
 - An element can also use other elements as arguments to produce an output value
- All Figaro library elements are subclasses of Element[T]

```
abstract class Element[T] {
  var value: T = _
  type Randomness
  def generateRandomness(): Randomness
  def generateValue(r: Randomness): T
}
```

The Element[T] Class

- Two functions need to be defined in an instantiation of an element
 - generateRandomness: function that randomly generates a value r according to some probability distribution
 - generateValue: function that deterministically computes the value of the element given r and the values of its arguments
 - Example: Normal distribution

The Element[T] Class

- To generate a value from an element
 - Call generate() which does

```
def generate(): Unit = {
   r = generateRandomness()
   value = generateValue(r)
}
```

- Elements are parameterized by the types of values they produce
 - E.g. Element [Boolean] is the type of elements that produce Boolean values
 - Parameterization one of the major strengths of Figaro over other PPLs
 - Can create elements over basic types, other classes, entire processes, etc.
 - Graphs or DNA sequences

Element Classes

- Figaro comes with many elements for common processes
- Simple Elements
 - Constant (x) a distribution that always returns the value x
 - Flip(p) a Bernoulli trial, i.e., return true with probability p, false otherwise
 - Select (clauses*) select a value at random from a list according to given probabilities
 - If (testElement, thenClause, elseClause) Not the scala "if"; choose between thenClause and elseClause depending on the current value of testElement, which is an Element [Boolean]
- Many discrete and continuous probability distributions
 - Uniform
 - Normal
 - Poisson
 - Gamma
 - Binomial
 - Many more...

Element Classes, Cont

- Many of these distributions come in two flavors
 - Atomic their parameters are fixed values, e.g., mean and std dev of normal distribution is fixed at instantiation time
 - Compound
 – their parameters are themselves other elements.
 - Normal(meanElement, stddev) represents a normal distributions whose mean depends on the current value of meanElement

```
val mean = Uniform(0, 10)
val norm = Normal(mean, 1.0)
```


Adding New Elements

- Most of the internal Figaro workings are defined in the Element[T] class
- Creating new elements very easy
- Let's say we want model the distribution of the maximum value of X draws from zero to an upper bound
 - Eg, pull 10 random integers from 0 to 100, return the largest value

```
class MaxValue(val numTries: Int, val UpperBound: Int)
    extends Element[Int] {
    type Randomness = List[Int]
    def generateRandomness(): List[Int] = {
        List.tabulate(numTries)(i => Random.nextInt(UpperBound))
    }
    def generateValue(r: List[Int]) = r.max
```

Adding New Elements

- We just added an atomic element
- What about compound elements?

```
val mean = Uniform(0.0, 10.0)
val norm = Normal(mean, 1.0)
```

To do this, we borrow from functional programming

Function Programming Monad

Probabilistic Programming Probability Monad

The Probability Monad

- Figaro makes extensive use of probability monads
 - Monads: lift computation from space of values to space of concepts over values
 - Probability monad: lifts computation from values to probabilistic models over values
- Figaro implements three monadic operations in three different elements:
 - Monadic unit -> Constant
 - Monadic bind -> Chain
 - Monadic fmap -> Apply
- Many Figaro elements are implemented through a combination of these three element classes
- Constant(x): lifts the value x to the probability model that returns x with probability 1

Chain

- Chain[T,U] represents a computation from an Element[T] to an Element[U]
 - It literally chains together probabilistic computations
- Takes two arguments:
 - parent, a Element[T]
 - fcn, a function that takes a value of type ${\mathbb T}$ and returns an

Chain

- Calling generateValue on a Chain is a three step process
 - Retrieve a value t from parent
 - Generate an Element[U] by calling fcn(t)
 - 3. Return a value u from the returned Element[U]

Chain Examples

Many model classes are implemented using Chain, e.g.

If

Chain Examples

Normals where the mean changes

- Normals where the mean and std dev changes
 - Chain of Chain

Apply

- Represents the monadic fmap
- Apply is a element class that allows Scala functions to be integrated into Figaro models
- It can be thought of as "lifting" a function from the space of values to the space of elements
- Like Chain, it takes two arguments
 - parent, a Element[T]
 - fcn, a function that takes a value of type ${\mathbb T}$ and **value** of type ${\mathbb U}$

Apply

Example: Distribution over the sum of two normals

```
val norm1 = Normal(0.0, 1.0)

val norm2 = Normal(-1.0, 2.0)

val sum = Apply(norm1, norm2, (x: Double, y: Double) => x + y)
```

Note: Scala's type inference is handy here, since we don't need to explicitly declare all the parameterization

Some other handy examples

Use Apply to convert tuples of elements into elements of tuples

```
val e1: Element[Int] = ...
val e2: Element[Double] = ...
val tupleElement: Element[(Int, Double)] = ^^(e1, e2)
Where ^^ = Apply(arg1, arg2, (t1: T1, t2: T2) => (t1, t2))
```

Use Chain to create conditional probability distributions (CPDs)

```
class CPD[T,U](arg1: Element[T], clauses: Seq[(T, Element[U])])
  extends Chain[T,U](arg1, (t: T) => getMatch(clauses, t))
```

Where getMatch is just a function that matches the value of arg1 to the clause values

Note that multi-argument versions of Chain and Apply are available

Does Figaro Meet the Two PPL Goals?

- Usability?
 - Writing models in Figaro easily accomplished by stitching together elements
- Earlier Example:

Goals, cont

- Power?
 - Absolutely: Chain + recursion = Huge potential

Example: PageRank

- Google's PageRank is a model of a probabilistic process on a graph
- We can model this process in Figaro
 - Do a slightly modified version for simplicity

- Each webpage on the internet is a node in a graph
- Draw an edge between each node if the webpages link to each other
 - Real PageRank uses directed edges

PageRank

The probabilistic process is known as a random walk

- Start at some node on the graph
- Randomly move to one of the node's neighbors
- Repeat the process for some time steps
- Record all the nodes visited
- The more times a node is visited, the higher its PageRank

Random Walk in Figaro

Start by defining some data structures for a webpage graph

```
class Edge(from: Int, to: Int)

class Node(ID: int, edges: Set[Edge])

class Graph(nodes: Set[Nodes]) {
  def get(id: Int) = // return Node with ID == id
}

// some function that builds a graph given some params
def graphGenProcess(params*): Graph
```

Random Walk

Define some parameters of the random walk

```
val numSteps: Int = 10
val startNode: Int = 0
Val inputGraph: Graph = graphGenProcess(...)
```

 Now that we have these parameters, we have to "lift" them into the space of elements

```
val inputGraphElem: Element[Graph] = Constant(inputGraph)
val numStepsElem: Element[Int] = Constant(numSteps)
val startNodeElem: Element[Int] = Constant(startNode)
```

 If I choose, can also model the parameters to the random walk as a probabilistic process

Random Walk in Figaro

```
val rWalk = Chain(inputGraphElem, numStepsElem, startNodeElem,
 rFcn)
def rFcn(g: Graph, remain: Int, n: Int): Element[List[Int]] = {
  if (remainSteps == 1)
    val curr = step(Constant(List(n)), q)
    Apply(curr, (i: Int) => List(i))
  else {
    val prev = rFcn(q, remain-1, n)
    val curr = step(prev, q)
    Apply(curr, prev, (i: Int, 1: List[Int]) => List(i):::1)
def step(hist: Element[List[Int]], g: Graph): Element[Int] = {
  Chain(hist, (i: List[Int]) =>
   lastNode = g.get(i.head)
   Select(lastNode.edges.map(e => (e.to, 1/lastNode.edges.size)))
```

Goal 2: Interacting Objects

- Since Scala is OO, can create complex Class-Element relationships
 - Classes containing elements
 - Elements of classes
 - Highly reusable, flexible and scalable
- Figaro and Scala are natural means to build Probabilistic Relational Models (PRMs)
 - Describe world in terms of objects and relationships
 - Graphical model representation of relational database
 - Probability models associated with classes
 - small and self-contained
 - apply to many situations and instances
 - PRMs difficult to represent in other PPLs
 - No encapsulation

Example PRM

- For time purposes, will not delve into this
 - Good examples of PRMs in code with release

Goal 3: Directed and Undirected Models with Constraints

Conditions and Constraints

- Functional nature of Figaro lets us define conditions and constraints on our models
- A condition is a function f from a value to a Boolean
 - Think of this as an observation of some variable
 - But can be any arbitrary function that returns a boolean from a value of the element
- A (soft) *constraint* is a function *f* from a value to a real number
 - f can be any programmable function
 - Essentially saying "some value of element e is x times more likely than another value"

Undirected Models

- Constraints and conditions are particularly useful on undirected models
 - Undirected can model some dependencies that directed models cannot
 - Also known as Markov networks, Markov random fields
- Example
 - Smokers and Friendship
 - People who smoke tend to have friends that smoke (and vice-versa)

Smokers Model

```
class Person {
 val smokes = Flip(0.6)
val alice, bob, clara = new Person
val friends = List((alice, bob), (bob, clara))
def smokeInfluence(pair: (Boolean, Boolean)) =
  if (pair. 1 == pair. 2) 3.0 else 1.0
for {(p1, p2) <- friend} {
  ^^(p1.smokes, p2.smokes).constraint(smokeInfluence)
  // creates an element tuple for each frienship and
 constrains its value
clara.smokes.condition((b: Boolean) => b == true)
// run inference
```

Goal 4: Extensibility and Reuse of Inference Algorithms

Inference

- So far we have just talked about building models
- But most people want to do something with the models they build
- Generally want to infer or reason with the model, for example
 - The distribution over some variable in the model, given some evidence
 - Some statistics about the model mean, variance, etc
- This is where many of the benefits of PPLs are realized
 - Most algorithms work "out of the box" for any model that a user creates!
 - Very extensible algorithm library using traits and inheritance

Main Ideas of Figaro Algorithms

- New algorithms are constantly being developed
- Different algorithms are good for different problems
 - ⇒ Anyone should be able to implement new algorithms
 - ⇒ Algorithms should be implemented as a service
 - ⇒ Algorithms should specify declaratively when they work
- Several completely implemented inference algorithms included in Figaro
 - Variable Elimination
 - Importance and Forward Sampling
 - Metropolis-Hastings
 - Particle Filtering

Extensibility

- These algorithms built on a framework of classes and traits
 - trait Algorithm
 - traits OneTime and AnyTime define how the algorithm is run
 - ProbQueryAlgorithm and ProbEvidenceAlgorithm are two bases classes define the information the algorithm is computing
 - Sampler trait that defines interface for sampling algorithms...
 - Many more...
- General idea is that creating a new algorithm should be done through existing traits and by subclassing

How the Algorithm is Run

- Figaro breaks algorithms into two runnable types
- OneTime
 - Run the algorithm once, produce answer
- Anytime
 - Run the algorithm continuously
 - At any time the algorithm is interrupted, produce the best answer achieved so far
 - User can continue the algorithm where it left off

Running Algorithms

Recall the smoking example

```
class Person { val smokes = Flip(0.6) }
val alice, bob, clara = new Person
val friends = List((alice,bob), (bob,clara))
// constraints...
clara.smokes.condition((b: Boolean) => b == true)
```

Running Algorithms

Want to infer the probability that alice smokes:

Target

```
val alg = Importance(10000, alice.smokes)
alg.start()
alg.probability(alice.smokes, true)
```

Run once for 10,000 iterations

```
val alg = Importance(alice.smokes)
alg.start()
Thread.sleep(1000)
alg.stop()
alg.probability(alice.smokes, true)
```

Run continuously, stop after 1 second

What's Next?

- We are constantly updating and improving Figaro
- Major improvements we are working include:
 - Better debugging tools
 - Distributed models
 - Parameter learning
 - Intelligent Metropolis-Hastings
 - Automatic proposal distributions

- Some reflections on my experience with Figaro and Scala
- First: I am new to Scala learned Scala when I learned Figaro
 - Came from a heavy C/C++/Matlab background
 - The verdict: Scala is great!
 - While those languages have their use, I'm pretty much a Scala convert

- I don't think something like Figaro could be written in another language
 - Object-oriented is essentially required to build some models
 - Could we do this with Java? Maybe
 - But functional aspects of Scala make creating Figaro much easier

- In Figaro, implicits are our friends
 - We make heavy use of implicit arguments and conversions
 - Want to make Figaro as easy as possible for the everyday user, but allow power for the experienced user
- However, sometimes we can't hide everything from the user

```
class DecisionPolicyExact[T, U] (policy: Map[T, (U, Double)])
  extends DecisionPolicy
class DecisionPolicyApprox[T <% Distance[T], U] (policy: Map[T,
    (U, Double)]) extends DecisionPolicy

trait PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]):
    DecisionPolicy[T,U]
}</pre>
```

- We'd prefer to not have users doing the instantiation of Exact or Approx classes
- So we make a trait to do the instantiation

```
trait ExactPolicyMaker[T,U] extends PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]) =
   DecisionPolicyExact(policyMap)
}
trait ApproxPolicyMaker[T,U] extends PolicyMaker[T,U] {
  def makePolicy(policyMap: Map[(T,U), DecisionSample]) =
   DecisionPolicyApprox(policyMap)
}
```

- Doesn't work because the view bounds on the Approx must be defined at instantiation time
- So the user has to do a little more work in their code

More Lessons Learned

- Chain is powerful, but problematic
- Mainly:
- Scala scope of objects

Figaro scope of objects

 Just because element is created or used in a chain, does not mean it goes out of model scope when the chain function call is complete

```
val f1 = Flip(0.1)

val f2 = Flip(0.2)

val c = Chain(Flip(0.3), (b: Boolean) => if (b) f1 else f2)
```

More Lessons Learned

More problematic (but a valid program):

- Once an element created, we must ensure that it always remains referenced since it may be used later!
 - Especially in inference algorithms
- Requires us to use lots of data structures to keep track of elements
 - Ie, we are taking a more active control of memory management
- Leads to some memory leaks in Figaro!

More Lessons Learned

Finally with Chain, consider:

```
val c = Chain(Normal(0, 1), (d: Double) => Constant(d))
```

- A normal distribution is a continuous value
- Repeated sampling of c will constantly create new elements
- Object creation imparts some overhead from Scala, as well as our element management
 - This becomes a significant bottleneck in sampling algorithms
 - So we implement limited caching on this example, not every useful, but for discrete values it is
 - We still have not solved the problem of speeding up Chain execution
- Vast majority of Figaro bugs are found in element memory management and Chain caching!

Implied Goal 5: Get People to Use Figaro!

- Many more features of Figaro that I haven't touched upon
 - Element references naming elements, collections of elements, aggregation of elements with the same name
 - Universes where an element "lives", running algorithms between universes
 - List elements lists of random length and value
 - Decision-making New!
 - Library added to reason about structured decision problems
 - Bayesian networks with decisions known as Influence Diagrams
 - Can compute optimal decisions over complicated data structures like graphs or DNA sequences (examples included in the code)

Availability

- Figaro is open source
- Version available now has most of the features I talked about (except decision-making)
- New release very soon, hopefully within a month or two
 - Lots of bug fixes, decision-making, Scala 2.10 support
- Request a copy by going to
 - www.cra.com/figaro and filling out the form
 - Email me: <u>bruttenberg@cra.com</u>
 - Contains a short tutorial
 - For more information also see Avi's paper "Creating and Manipulating Probabilistic Programs with Figaro" in UAI Workshop on Statistical Relational Artificial Intelligence 2012
- We are discussing setting up a GitHub project for Figaro
 - Not finalized, so may not happen
- We welcome feedback and improvements!

Conclusion

- Figaro is open source, Scala library where one can create probabilistic models with little AI and ML experience
- Can we say that "practical" probabilistic programming has been reached?
 - Probably not, but certainly Figaro is a huge step in that direction
- Figaro is a language and platform with which one can explore new types, paradigms and ways of building probabilistic models
 - Can build models in Figaro that model other Figaro models!?!?
 - Many more things possible that we haven't even thought of yet
- We hope other people can find it useful as well

Thank You and Questions