
P
R
O

O
F

P
R
O

O
F

Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper

 Hum Hered 610
 DOI: 10.1159/0000XXXXX

 Maximum Likelihood Haplotyping for
General Pedigrees

 Ma’ayan Fishelson Nickolay Dovgolevsky Dan Geiger

 Computer Science Department Technion, Haifa , Israel

lotype data defi nes the nearest fl anking recombination
events and consequently the smallest interval containing
a disease gene. This allows tracing disease genes more
easily and cheaply. Other uses of haplotyping include
family based statistical tests such as TDT (Transmission
Disequilibrium Test) which require haplotype data as in-
put [Ewens and Spielman, 1995], or as a means for detect-
ing genotyping errors, which are usually expressed as an
excess of recombination events [Lin and Speed, 1997].

 The input data for a haplotyping problem can be di-
vided into two categories: pedigree genotype data and
population genotype data. The haplotyping problem is to
infer the two haplotypes of each individual from the mea-
sured unordered genotypes. Haplotype information from
population data is often reconstructed using some evolu-
tionary model and is usually applied to data with a dense
map of markers [e.g., Stephens et al., 2001; Gusfi eld,
2002; Greenspan and Geiger, 2003]. On the other hand,
haplotype information from pedigrees is reconstructed
using the information that can be inferred on each indi-
vidual from his relatives’ genotypes, and can be used to
reconstruct haplotypes from either dense or widely spaced
marker data.

 The haplotyping problem can be defi ned via maximiz-
ing a suitable likelihood function or via a combinatorial
optimization problem. A common combinatorial ap-
proach, called the Minimum Recombinant Haplotype
Confi guration (MHRC) problem, is to seek those haplo-
type confi gurations that minimize the total number of
recombination events observed in the pedigree. Another
common combinatorial approach is to seek those haplo-
type confi gurations that show no recombination events.

 Key Words
 Haplotyping � Linkage analysis � Pedigree � SUPERLINK

 Abstract
 Haplotype data is valuable in mapping disease-suscep-
tibility genes in the study of Mendelian and complex dis-
eases. We present algorithms for inferring a most likely
haplotype confi guration for general pedigrees, imple-
mented in the newest version of the genetic linkage anal-
ysis system SUPERLINK. In SUPERLINK, genetic linkage
analysis problems are represented internally using
Bayesian networks. The use of Bayesian networks en-
ables effi cient maximum likelihood haplotyping for more
complex pedigrees than was previously possible. Fur-
thermore, to support effi cient haplotyping for larger ped-
igrees, we have also incorporated a novel algorithm for
determining a better elimination order for the variables
of the Bayesian network. The presented optimization al-
gorithm also improves likelihood computations. We
present experimental results for the new algorithms on
a variety of real and semiartifi cial data sets, and use our
software to evaluate MCMC approximations for haplo-
typing.

 Copyright © 2005 S. Karger AG, Basel

 Introduction

 Haplotype data is valuable in mapping disease-suscep-
tibility genes in the study of Mendelian and complex dis-
eases [Oehlman et al., 1993; Litt et al., 1994]. Such hap-

 Received: June 30, 2004
 Accepted after revision: December 22, 2004

 Dan Geiger
Computer Science Department
Technion, Technion City
Haifa 32000 (Israel)
Tel. +972 4 829 4339, Fax +972 4 829 3900, E-Mail dang@cs.technion.ac.il

 © 2005 S. Karger AG, Basel
0001–5652/05/0000–0000$22.00/0

 Accessible online at:
www.karger.com/hhe

HHE610.indd 1HHE610.indd 1 15.02.2005 12:16:4815.02.2005 12:16:48

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 2

Approaches to solve such combinatorial optimization
problems include rule-based systems [Wisjman, 1987;
Qian and Beckmann, 2002; Li and Jiang, 2003a], graph-
theoretic approaches [Gusfi eld, 2002], dynamic program-
ming [Li and Jiang, 2003b], or linear programming [Li
and Jiang, 2004]. These approaches are most appropriate
when the expected number of recombination events is
small.

 The statistical approach for haplotyping by maximiz-
ing a suitable likelihood function has been pursued quite
extensively [Sobel et al., 1995; Lin and Speed, 1997] and
implemented in programs that perform exact computa-
tions, such as GENEHUNTER [Kruglyak et al., 1996;
Kruglyak and Lander, 1998], ALLEGRO [Gudbjartsson
et al., 2000], and MERLIN [Abecasis et al., 2002], as well
as in programs that perform approximate computations,
such as SIMWALK2 [Sobel and Lange, 1996]. All these
methods take into account intermarker recombination
fractions or intermarker genetic distances. The objective
of these algorithms is to fi nd one or several haplotype
confi gurations of maximum probability given the ob-
served data on the pedigree.

 In this paper, we focus on improving exact approaches
for generating a maximum likelihood haplotype confi gu-
ration for larger pedigrees. We present a haplotyping al-
gorithm which we have incorporated into the freely avail-
able newest version of SUPERLINK (v1.4), reported
herein. SUPERLINK uses Bayesian networks as the in-
ternal representation of pedigrees, which allows one to
handle a wide variety of linkage problems [Fishelson and
Geiger, 2002]. In particular, this representation allowed
us to naturally implement a maximum likelihood ap-
proach for haplotyping. Furthermore, to support effi cient
haplotyping on larger pedigrees, we have also incorpo-
rated a novel algorithm for determining a better elimina-
tion order for the variables of the Bayesian network. This
algorithm is especially important when solving linkage
problems since the Bayesian networks created for such
problems are very large. The presented optimization al-
gorithm also improves LOD score computations. In ad-
dition, we have adapted the allele recoding algorithm,
presented by O’Connell and Weeks [1995], for the haplo-
typing task, achieving further reduction in time and space
complexity. We present experimental results for the new
algorithms on a variety of real and semi-artifi cial data
sets, and use our software to evaluate MCMC approxima-
tions for haplotyping via SIMWALK2 [Sobel et al., 1995;
Sobel and Lange, 1996].

 The Haplotyping Problem

 Problem Defi nition
 The sequence of alleles at different loci inherited by an

individual from one parent is called a haplotype , and the
two haplotypes of an individual constitute this individu-
al’s genotype . A recombination is said to have occurred
between two loci, if an haplotype of an individual con-
tains two alleles that resided in different haplotypes of the
individual’s parent. The recombination fraction � is the
probability that a recombination occurs between two loci.
For a comprehensive background on human genetic link-
age analysis consult Ott [1999].

 When genotypes are measured by standard measure-
ment procedures, the result is a list of unordered pairs of
alleles, one pair for each locus. The Maximum Likelihood
Haplotype Confi guration problem consists of fi nding a
joint haplotype confi guration for all members of the ped-
igree which maximizes the probability of the data. The
haplotyping problem often does not have a unique solu-
tion.

 Bayesian Networks
 Our model for representing pedigree data is a Bayesian

network . A Bayesian network is a directed graph with no
directed cycles, where each vertex v = 1, ...; n corresponds
to a discrete variable X v and each directed edge represents
conditional dependencies between the variables it con-
nects [Pearl, 1988; Lauritzen, 1996]. The distribution of
each variable X v is conditional upon the variables in Pa v ,
which is defi ned as the set of vertices from which there
are edges leading into v in the graph. The joint probabil-
ity of a full assignment x 1 , ..., x n to variables X 1 , ..., X n is
the product of these conditional probabilities. In other
words,

 where pa v is the joint assignment { x i � X i D Pa v } to the vari-
ables in Pa v . From here on, we will use the notation Pr (y � z)
as an abbreviated form of Pr (Y = y � Z = z) for any sets of
variables Y and Z . For example, the joint probability
could be rewritten as Pr (X 1 , ..., X n) = � v Pr (X v � Pa v). Note
also, that we use capital letters for variable names and
lowercase letters to denote specifi c values taken by those
variables. Sets of variables are denoted by boldface capi-
tal letters, and assignments of values to the variables in
these sets are denoted by boldface lower case letters.

 For haplotyping, we consider the Most Probable Ex-
planation (MPE) problem for Bayesian networks [e.g.,

� � � �� �����
v

vvnn xXPrxX...,,xXPr vv paPa11 ,

HHE610.indd 2HHE610.indd 2 15.02.2005 12:17:5815.02.2005 12:17:58

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 3

Dechter, 1996]. That is, fi nding an assignment X = x 0 such
that

� � � � � � ,,max,max, �����
v

v �XPr�Pr�Pr v
xx

0 PaxXxX

 where X = { X 1 , ..., X n } is the set of variables in the Bayes-
ian network, and � denotes a particular assignment of
values to some of the variables in X . The assignment � is
called evidence . In the case of haplotyping, the evidence
is a partial assignment � of alleles at some or all loci to
people in the pedigree under study.

 Another relevant problem for haplotyping is the Max-
imum Aposteriori Hypothesis (MAP) problem [Dechter,
1998], of which MPE is a special case. The input to this
problem is the same as for the MPE problem, with the
addition of a set of focus variables A = { A 1 , ..., A k } , A ⊆
 X , for which the most probable assignment, given the
evidence, is desired. The MAP problem is to fi nd an as-
signment a 0 = (a 1 , ..., a k), such that

� � � �
� �
� �
�

��
AX

v
a

0 PaaA
/

 ,max,
jX v

v �XPr�Pr

 Note that when A = X , MPE is identical to MAP. It
has been shown that solving the MAP problem is signifi -
cantly harder than solving the MPE problem or comput-
ing the probability of evidence [Park, 2002]. Consequent-
ly, MPE is often solved instead of MAP, and the most
likely assignment of all variables is projected on the focus
set of variables A .

 Methods

 Haplotyping in SUPERLINK
 Three types of random variables are used in the representation

of pedigrees as Bayesian networks in SUPERLINK: genetic loci
 variables which represent the genotypes of the individuals in the
pedigree (two genetic loci variables per individual per locus, one
for the paternal allele and one for the maternal allele), phenotype
 variables, and selector variables which are auxiliary variables used
to represent the gene fl ow in the pedigree. For example, the paternal
selector of individual i at locus j indicates whether the paternal al-
lele of individual i at locus j came from his father’s paternal haplo-
type or from his father’s maternal haplotype. A similar representa-
tion for inheritance within pedigrees has been used previously [e.g.,
Lander and Green, 1987; Thompson, 1994; Thompson and Heath,
1999]. Figure 1 presents a fragment of a network that describes
parents-child interaction in a simple 3-loci analysis. The genetic
loci variables of individual i at locus j are denoted by G i,jp and G i,jm .
Variables P i,j , S i,jp , and S i,jm denote the phenotype variable, the pa-
ternal selector variable and the maternal selector variable of indi-
vidual i at locus j , respectively. The probability tables that relate
these variables are of the following forms:

 Transmission Models: Pr (G i,jp � G a,jp , G a,jm , S i,jp), Pr (G i,jm � G b,jp ,
 G b,jm , S i,jm), where a and b are i ’s parents in the pedigree. These
tables are deterministic, namely, consist solely of zeroes and ones.
The fi rst probability table equals 1, if G i,jp = G a,jp and S i,jp = 0, or if
 G i,jp = G a,jm and S i,jp = 1. In all other cases, this probability table
equals 0. The second probability table is defi ned analogously.

 Population Allele Frequencies: Pr (G i,jp), Pr (G i,jm) are allele fre-
quencies, where i is a founder , namely, an individual in the pedigree
whose biological parents are not included in the pedigree. The use
of these models is based on the assumptions of Hardy-Weinberg
and linkage equilibriums.

 Marker Models: Pr (P i,j � G i,jp , G i,jm). These tables are also deter-
ministic. The probability table equals 1 if P i,j = (G i,jp , G i,jm), or if
 P i,j = (G i,jm , G i,jp). Otherwise it equals 0. The assumption underly-
ing these models is that there are no measurement errors.

 Recombination Models: Pr (S i, 1 p) = Pr (S i, 1 m) = 0.5, Pr (S i,jp � S i,j– 1 p ,
 � j– 1) and Pr (S i , jm � S i,j– 1 m , � j– 1), where � j– 1 is the recombination frac-
tion between locus j – 1 and locus j . The recombination fractions
between the markers are specifi ed by the user in the input to SU-
PERLINK. These recombination models do not take genetic inter-
ference into account.

 Each of these probability tables is called a factor . For more de-
tails on the structure of the Bayesian network, consult [Fishelson
and Geiger, 2002].

 We use the following notation to refer to the different variables:
 S for the set of all selector variables, F for the set of genetic loci
variables of individuals with no parents in the pedigree (founders),
and N for the set of genetic loci variables of non-founders. For hap-
lotyping, phenotypes are unordered genotypes of typed individuals,
and are included in the evidence � . The Bayesian network of SU-
PERLINK represents the joint distribution Pr (S , F , N , �) in fac-
tored form:

 Pr (S , N , F , �) = Pr (S , �) Pr (F � �) Pr (N � F , S , �) . (1)

 A maximum-likelihood haplotype confi guration of a pedigree is

a maximum-likelihood assignment to all the genetic loci variables,
namely a joint assignment { N = n 0 , F = f 0 } which satisfi es:

� � � �.�PrPr ����
sfn,00 n, f, s,fFnN max,

 Since we are interested in determining the most likely gene fl ow
in addition to the most likely assignment to all the haplotypes, we
seek a joint maximum-likelihood assignment to the selector vari-
ables and the genetic loci variables of founders, namely a joint as-
signment { S = s 0 , F = f 0 } which satisfi es:

 (2)� � � � n, f, s,fFsS
nfs,00 .�PrPr ���� max ,

 The genetic loci variables of non-founders, N , are a function of the
genetic loci variables of founders and the selector variables, which,
for every s , f , is zero for all values n except one. Consequently, solv-
ing eq. (2) is equivalent to:

 (3)� � � � n, f, s,nN fFsS
nf,s,000 ,�PrPr max, , ����

 which is an MPE problem. Thus the MAP problem, defi ned by eq.
(2), is essentially an MPE problem which can be solved more easily.

 Our algorithm for solving eq. (3) consists of several stages. The
fi rst stage is a preprocessing step of value elimination on the graph

HHE610.indd 3HHE610.indd 3 15.02.2005 12:17:5815.02.2005 12:17:58

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 4

representation of the pedigree [Fishelson and Geiger, 2002]. At this
stage inconsistent values for each variable given the evidence are
removed, and the values of some of the genetic loci and selector
variables can be determined unambiguously from the evidence,
namely when all values except one are removed. Mendelian incon-
sistencies are also discovered at this stage. The value elimination
performed is based on the well-known observation that the possible
genotypes of an individual can be inferred from the genotypes of
his relatives [e.g. Lange and Goradia, 1987]. When the value of a
selector variable is determined by value elimination it implies that
the parental origin of the corresponding allele is known, i.e., wheth-
er it came from the paternal or maternal haplotype of the parent.

 After value elimination, we perform allele recoding. In this
stage, the genotype lists of untyped individuals are recoded, result-
ing in a reduction in the number of genotypes that need to be
summed over, and hence, in an acceleration of the computations.
Our allele recoding algorithm, which is an adaptation of the ideas
presented in [O’Connell and Weeks, 1995] to the task of haplotyp-
ing, is fully described in the next section.

 Finally, haplotyping is done via performing the Elim-Max al-
gorithm [Dechter, 1998] on the Bayesian network to determine a
maximum-likelihood assignment to the remaining variables. The
Elim-Max algorithm, described in the appendix, is a variable elim-
ination algorithm in which variables are eliminated one after an-

other, each time computing the effect of the eliminated variable on
the rest of the problem. The order by which variables are elimi-
nated greatly affects both time and space requirements of the com-
putations. In many cases, the memory limitation does not allow
solving the problem using variable elimination alone, and hence,
variable elimination is combined with conditioning. By condition-
ing, one means to instantiate some of the variables, perform the
rest of the computations for each possible instantiation, and then
merge the results. The order of variable elimination and condition-
ing is determined by a new algorithm described below.

 Allele Recoding
 When performing likelihood computations or haplotyping, all

possible genotype combinations for the individuals in the pedigree
need to be iterated over. When using highly polymorphic markers,
any person who is untyped at some locus will have a large number
of possible genotypes. A possible way to accelerate these computa-
tions is to recode alleles and thus reduce the number of possible
genotypes that need to be iterated on. Several different methods
have been proposed. One method is lumping all alleles that do not
appear in the pedigree into a single allele whose population fre-
quency is the sum of frequencies of the lumped alleles [Lange et al.,
1988; Schäffer, 1996]. A more effi cient method, which recodes the
paternal and maternal allele lists of each individual separately, has

G

G

GG

Child’s Genotype (ind #3)

Mother’s Genotype (ind #2)

G

G

2,1p

2,2p

2,3p

2,1m

2,2m

2,3m

1,1p

1,2p

1,3p G

3,1m

Child’s

Father’s Mother’s

G

Phenotype

P

Phenotype

Phenotype

G G

G

G G G

G

G

G

1,1m

2,1

2,2

2,3

3,1 3,2 3,3

S

S

SS

S

S3,1p

3,2p

3,3p

3,1m

3,2m

3,3m

1,3

1,2m

1,3m

3,1p

3,2p

3,3p

Father’s Genotype (ind #1)

3,2m

3,3m

P

P

P

P

P

PPP

1,1

1,2

G

 Fig. 1. A fragment of a Bayesian network representation of parents-child interaction in a 3-loci analysis [adapted
from Friedman et al., 2000]. The genetic loci variables of individual i at locus j are denoted by G i , jp and G i , jm .
Variables P i , j , S i , jp , and S i , jm denote the phenotype variable, the paternal selector variable and the maternal selec-
tor variable of individual i at locus j , respectively.

HHE610.indd 4HHE610.indd 4 15.02.2005 12:18:0015.02.2005 12:18:00

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 5

Algorithm Allele-Recoding

Input: A pedigree P of size n, where each individual is associated with a list of possible

paternal alleles and a list of possible maternal alleles at a given locus l.

Output: Each of the two allele lists of each individual is replaced by a list of sets of

alleles.

1. For i← 1 to n do {Initialize}
• If individual i is typed at locus l, then

Mark all the alleles in both his allele lists as transmitted.

Else

Mark all the alleles in both his allele lists as non-transmitted.

2. Traverse P in a bottom-up manner. Update untyped individual i as follows:{Mark}
• For each child j of i do

If i is a male, then

Mark each allele of i which appears as transmitted in j’s paternal allele

list as transmitted in i as well.

Else

Mark each allele of i which appears as transmitted in j’s maternal allele

list as transmitted in i as well.

•If i is an untyped founder, then {Only for haplotyping}
Let Ant be the set of non-transmitted alleles of i at locus l, and let

ak ∈ Ant be the allele with the highest population frequency in Ant.

Remove all alleles am ∈ Ant, am �= ak.

3. For i← 1 to n do {Recode}
• Replace each transmitted allele T by the set {T}.
• Replace all non-transmitted paternal alleles by one set Pn, which consists
of these alleles.

• Replace all non-transmitted maternal alleles by one set Mn, which consists

of these alleles.

4. Return.

 Fig. 2. The allele recoding algorithm for the haplotyping problem. For likelihood computations, the second stage of
step 2 is removed.

HHE610.indd 5HHE610.indd 5 15.02.2005 12:18:0015.02.2005 12:18:00

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 6

been suggested by O’Connell and Weeks [1995], and implemented
in VITESSE. The allele recoding algorithm implemented in SU-
PERLINK is based on the ideas of set-recoding and fuzzy inheri-
tance defi ned in VITESSE. These defi nitions are repeated here for
completeness. Our contribution is the adaptation of this algorithm
to the task of maximum likelihood haplotyping for general pedi-
grees.

 The allele-recoding algorithm is based on the observations that
alleles have two roles in likelihood computations, and that valid
recoding does not alter these roles:

 1. Determine prior probabilities of founders’ genotypes. The gen-
otype frequency of a founder is computed using the population
frequencies of the two alleles that constitute the genotype, assum-
ing Hardy-Weinberg equilibrium.

2. Determine recombination events. A recombination event is
determined by identifying the parental origin of the child’s alleles,
namely, whether the child’s alleles came from the paternal or ma-
ternal haplotype of his parent. Note that the allele identity does not
matter here; only whether the allele matches the parent’s paternal
or maternal allele.

 An allele is defi ned to be transmitted if the following two condi-
tions are fulfi lled: (i) the allele appears in the ordered genotype list
of a typed descendant D of P , as inherited from; (ii) there is some
path from P to D containing only untyped descendants in the ped-
igree, namely, D is the nearest typed descendant of P on that path.
The remaining alleles are defi ned to be non-transmitted . In terms
of determining recombination events, a person’s non-transmitted
alleles are indistinguishable from one another by data, and can
therefore be combined into a single representative allele.

 The allele recoding algorithm (fi g. 2) is executed after initial
value elimination is performed on the input pedigree as described
in the previous section. At this stage, each individual is associated
with two allele lists at each locus, a paternal allele list and a mater-
nal allele list. In the fi rst stage of the allele recoding algorithm, all
alleles of typed individuals are marked as transmitted, and all al-
leles of untyped individuals are marked as non-transmitted. Next,
the pedigree is traversed in a bottom-up manner where each un-
typed person is updated after his children have been updated. The
update is performed as follows: each allele of the father which ap-
pears as transmitted in the paternal allele list of the child is marked
as transmitted in the father as well. A similar update is done for
mothers. After an untyped founder has been updated by all his chil-
dren, a fi nal processing is performed on the founder’s two non-
transmitted allele lists. In this stage, only the highest frequency
allele in each of the two lists is kept. At the end of the algorithm,
each set of non-transmitted alleles forms a set (e.g., { A, B, C }), and
each transmitted allele A forms a set including only itself, i.e., { A }.
Recall that, if a parent has the ordered genotype A � B and his child
has allele C , then C is inherited from the parent if A = C or B = C .
After allele recoding, however, A , B , and C are now sets of alleles,
and hence C is inherited from the parent if A ⊆ C or B ⊆ C . This
is termed fuzzy inheritance in [O’Connell and Weeks, 1995].

 In the appendix, we prove that the probability of the assignment
found for the regular case (without allele recoding) is the same as
the one found in the case of allele recoding. This claim proves the
correctness of the allele recoding algorithm for maximum likeli-
hood haplotyping. Note that there is often more than one maximum
likelihood assignment, but the algorithm described herein produc-
es only one. To produce all possible maximum likelihood assign-
ments, one needs to change the Elim-Max algorithm, described in

the appendix, to store all optimizing values of each variable X v
 rather than storing a single optimizing value. This addition increas-
es the time and space complexity of the computations.

 Computation Order
 The problem of determining a good combined order of variable

elimination and conditioning is important for both likelihood com-
putations and haplotyping, since the chosen order has a major effect
on both time and memory requirements of the computations. This
problem has been addressed quite extensively in the context of ge-
netic linkage analysis. The two main approaches for performing
likelihood computations on pedigrees are the Elston-Stewart algo-
rithm [Elston and Stewart, 1971] which peels one nuclear family
after another, and the Lander-Green algorithm [Lander and Green,
1987] which peels one locus after another. Another approach, pro-
posed by Lange and Boehnke [1983], is to peel one person after
another. These approaches are all variants of variable elimination
methods which use different fi xed elimination orders. Finding a
good elimination order is also essential in a variety of combinato-
rial problems, such as: constraint satisfaction, independent set,
dominating set, graph K-colorability and Hamiltonian circuit [Arn-
borg, 1985; Dechter, 1998], as well as in other applications of Bayes-
ian networks.

 The problem of determining a good combined order of variable
elimination and conditioning can be reduced to a graph-theoretic
problem, namely, all elimination and conditioning operations are
performed on the undirected graph representation of the Bayesian
network. The undirected graph representation is obtained from the
Bayesian network by connecting each pair of vertices that have
edges leading into a common vertex, and removing the directional-
ity of the edges [Pearl, 1988].

 When a vertex is eliminated from the graph, its set of neighbors
are connected to form a clique. By a clique we mean that every
vertex in the set is connected with an edge to every other vertex in
the set. The cost of eliminating vertex v from graph G i is cGi

(v) =
�uDN

–
Gi

(v) w(u), where N
–

Gi
(v) represents the set of neighbors of v includ-

ing v itself, and w (v) is the weight of v , namely, the number of pos-
sible values of variable X v . In the case when there is no memory
limitation, we aim to fi nd an elimination order X̂

� which satisfi es
X̂ � = arg min� C(X�), where

 (4)� � � �� �XcXC
n

i
i�G� i

1
�
�

� ,

 and � denotes a permutation on {1, ..., n }. In eq. (4), G i , i = 2, ..., n
 denotes the sequence of residual graphs obtained from a given
graph G 1 = G by eliminating its vertices in the order X � (1) , ...,
 X � (i– 1) .

 This cost function, which is often referred to as the total state
space (Kjærulff, 1990], is an approximated measure of the time and
space complexity of the computations, provided that the heaviest
clique created fi ts into the RAM size of the working environment.
If this is not the case, then conditioning is needed and a more elab-
orate cost function, described in [Fishelson and Geiger, 2003], is
required. In this case, we obtain a constrained elimination order
 X � , � = ((X � (1) , ..., X � (n)), �), which is a sequence of vertices along
with a binary vector � such that vertex X � (i) is eliminated if � i = 0
and conditioned on if � i = 1.

 If we replace the summation in eq. (4) with maximization, name-
ly with C (X �) = max 1 ̂ i ̂ n c G i (X � (i)), then the resulting cost function
represents the weight of the heaviest clique created during the elim-

HHE610.indd 6HHE610.indd 6 15.02.2005 12:18:0115.02.2005 12:18:01

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 7

ination, which is called the weighted treewidth of the graph with
respect to the specifi c elimination order. Our aim is to fi nd an elim-
ination order which produces the lightest heaviest clique among all
elimination orders, namely, to fi nd the so called weighted treewidth
 of the graph. If, in addition to replacing the summation with maxi-
mization, the weight of all vertices is constant, then this problem is
reduced to fi nding the treewidth of the graph, which is NP-complete
[Arnborg et al., 1987]. The treewidth of a graph with respect to a
given elimination order is the size of the largest clique created dur-
ing the elimination minus one. The treewidth of a graph is the min-
imal treewidth over all possible elimination orders for the graph.

 We devised a new algorithm for fi nding a combined order of
variable elimination and conditioning and applied it for both hap-
lotyping and likelihood computations. The algorithm is composed
of two stages. First, a set of reduction rules are applied on the graph
as a preprocessing step. Second, several stochastic-greedy algo-

rithms are applied sequentially to determine an elimination order
for the residual graph.

 Preprocessing Rules
 Eijkhof et al. [2002] present a set of safe reduction rules for the

 weighted treewidth problem. Application of these rules can signifi -
cantly reduce the size of the graph, without increasing the weighted
treewidth of the graph. We tested these rules for our optimization
problem and found that two of these reduction rules, the simplicial
 and the almost simplicial rules, are worthy to incorporate. The run
time of these rules is negligible compared to the total run time for
fi nding an elimination order, and by reducing the size of the graph,
each iteration of the stochastic-greedy algorithms applied later is
shorter. Throughout the application of the reduction rules, a vari-
able low which represents the largest lower bound known for the

Procedure SG(G, T, C1, C2)

Input: A weighted undirected graph G(V,E,w), a threshold T, and two cost

functions (C1, C2).

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Initialize vector β of size n with zeroes.

2. i← 1

3. G← Gi

4. While Gi is not the empty graph do

• forall X ∈ Vi compute the cost C1(X)

• Pick 3 vertices Xk1 , Xk2 , Xk3 with a minimum cost C1.

• Flip a coin, biased according to the costs of the 3 vertices, to choose Xk.

• If CGi(Xk) > T then {conditioning on Xk}
Pick Xk that optimizes C2 to condition on.

βi ← 1

Else {eliminating Xk}
Ei ← Ei

⋃ {(u, v)|u, v ∈ NGi(Xk)} (connect all the neighbors of Xk)

• Remove Xk and its incident edges from Gi

• α(i)← k

• i← i+ 1

5. Return Xα,β = ((Xα(1), . . . , Xα(n)), β)
 Fig. 3. Procedure SG.

HHE610.indd 7HHE610.indd 7 15.02.2005 12:18:0115.02.2005 12:18:01

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 8

weighted treewidth of the original graph is maintained. We denote
by nw (v) the product �uDN

–
Gi

(v) w(u).
 Simplicial Rule. Let v be a simplicial vertex in G i , namely, its

set of neighbors form a clique. Recall that a clique is a set of verti-
ces where every vertex is connected to every other vertex. The sim-
plicial rule removes v from the graph, and updates the variable low :
 low = max (low , nw (v)).

 Almost Simplicial Rule . A vertex v is called an almost simplicial
 vertex in G i if all its neighbors, except one u , form a clique. Vertex
 v is removed if low 6 nw (v) and w (v) 6 w (u).

 Stochastic-Greedy Algorithms
 Three Stochastic-Greedy algorithms for fi nding a combined or-

der of variable elimination and conditioning, all based on the same
common procedure SG (fi g. 3), have been incorporated. The input
to this procedure is a weighted undirected graph G (V , E , w) result-
ing from the application of the reduction rules, a threshold T which
represents the memory limitation, and two cost functions, C 1 and
 C 2 , that vary between the three algorithms. The threshold T is de-
termined dynamically according to the memory available at run
time. According to cost function C 1 , the next vertex to eliminate is
chosen, and according to C 2 , a vertex to condition on is chosen. In
each iteration, three vertices with a minimal cost (according to C 1)
are selected, and a coin, biased according to the costs of the vertices,
is fl ipped to choose between them. If in iteration i , the weight of
the clique created by the elimination of the chosen vertex is above
the given threshold, a new vertex is chosen (according to C 2) to
condition on rather than eliminate. Procedure SG is run many
times, each time fi nding a new elimination order, and comparing
it to the best order found so far. If the cost of the new elimination
order is smaller than that of the best previously found order, then
the new order and cost are recorded.

 The stochastic-greedy algorithms used are: Min-Weight (Min-
W), Min-Fill , and Weighted Min-Fill (WMin-Fill). The fi rst two
algorithms are based on known cost functions (Kjærulff, 1990],
whereas the cost function of the Weighted Min-Fill algorithm is new
and shows superior performance in many cases, as demonstrated
by Experiment E. We now describe the different cost functions. The
cost C 1 of eliminating a vertex according to the Min-Weight heu-
ristic is the product of weights of its neighbors, whereas the cost of
eliminating a vertex according to the Min-Fill heuristic is the num-
ber of edges that need to be added to the graph due to its elimina-
tion. The Weighted Min-Fill heuristic is a novel modifi cation of the
Min-Fill heuristic to a weighted graph. If we defi ne the weight of an
edge to be the product of weights of its constituent vertices, then
the cost of eliminating a vertex according to the Weighted Min-Fill
heuristic is the sum of weights of the edges that need to be added
due to its elimination. The cost function C 2 for the Min-Fill and
Weighted Min-Fill algorithms is the same as the fi rst option de-
scribed in [Fishelson and Geiger, 2003], i.e.,

� � � � � �XCXNXC
iG 12 � ,

 where N G i (X) represents the set of neighbors of X in G i , and � N G i (X) �
represents the number of neighbors of X in G i . The cost function
 C 2 for the Min-Weight algorithm is the same as the second option
described in [Fishelson and Geiger, 2003], i.e.,

� � � � � �XCXfXC
iG 12 � ,

 where f G i (X) are the probability tables that include X (called factors)
accompanying graph G i .

 The incorporation of these three algorithms and not others that
were tried, such as Maximum Cardinality Search MCS [Tarjan and
Yannakakis, 1984] or a weighted version of it (WMCS), is based
on the fact that the other algorithms are superior in only a few
cases. Neither of the three algorithms that were incorporated is bet-
ter than the others in all cases, and therefore, each of the algorithms
is run a certain percentage of the total optimization time (fi g. 4).
We denote by %MW, %MF, and %WMF the percentage of itera-
tions spent on running the Min-Weight, Min-Fill, and Weighted
Min-Fill algorithms respectively. These percentages have been de-
termined experimentally based on the relative performance of each
algorithm. The total number of iterations N is determined accord-
ing to the complexity of the problem at hand, which is estimated
according to the cost of the elimination order found by the deter-
ministic-greedy Min-Weight algorithm [Fishelson and Geiger,
2003]. The only difference between the deterministic algorithm and
the stochastic algorithm is that in each iteration, the deterministic
algorithm chooses to eliminate a vertex with a minimal elimination
cost according to the Min-Weight cost function, rather than fl ip a
coin. If the cost of the elimination order found by this determinis-
tic algorithm is lower than some threshold C min then no optimiza-
tion is performed.

 The superior performance of the Min-Fill algorithms, as ob-
served from Experiment E, may stem from the following observa-
tion. Assume that there is a set of vertices that almost forms a clique.
Despite the fact that the elimination of one of these vertices would
add only a few edges to the graph, this vertex would not be a pre-
ferred vertex to eliminate by the Min-Weight heuristic if the clique
that is created is heavy. Hence, the Min-Weight Heuristic may
complicate the given graph by choosing in some early iterations
vertices whose elimination creates light cliques but possibly adds
many edges to the graph.

 Complexity Analysis
 As mentioned above, the Elston-Stewart algorithm proceeds by

peeling one nuclear family after another, and hence, its complexity
is linear in the pedigree size (for suffi ciently simple pedigrees), but
exponential in the number of loci in the analysis. The Lander-Green
algorithm, on the other hand, which proceeds by peeling one locus
after another, is exponential in the number of individuals in the
pedigree but linear in the number of loci. In the following, we argue
that the time complexity of the Elston-Stewart and Lander-Green
algorithms is in fact dominated by the sum of sizes of the factors
created during the computation, each in a different but predeter-
mined order of variable elimination. Consequently, these algo-
rithms’ time complexity is a special case of our algorithm’s time
complexity, which is also dominated by the sum of sizes of the fac-
tors created during the computation. The difference is that our al-
gorithm does not rely on a fi xed elimination order, but determines
it automatically according to the problem at hand, so as to minimize
the sum of sizes of the factors created during the computation, and
hence, minimize the run time.

 If we were to build a Bayesian network representation of the
pedigree according to the Elston-Stewart algorithm, then each per-
son would be represented by a variable in the network. Since each
variable represents a multi-locus genotype, the number of possible
values of a variable is exponential in the number of loci in the
analysis. The elimination order, according to the Elston-Stewart

HHE610.indd 8HHE610.indd 8 15.02.2005 12:18:0215.02.2005 12:18:02

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 9

algorithm, involves peeling one nuclear family at a time; namely,
in each step, we create a factor which includes all variables of a
nuclear family. The size of this factor is a product of the number
of individuals in the nuclear family and the number of possible
multi-locus genotypes for each family member. The complexity of
the algorithm is dominated by the sum of sizes of the factors cre-
ated during the computation, which is on the order of the product
of the number of individuals in the pedigree and the number of
values of a variable. Hence, the complexity is exponential in the
number of loci in the analysis and linear in the number of indi-
viduals in the pedigree.

 If we were to build a Bayesian network representation of the
pedigree according to the Lander-Green algorithm, then each sin-
gle-locus genotype would be represented by a variable in the net-
work. The elimination order, according to the Lander-Green algo-
rithm, involves peeling one locus at a time; namely, in each step,
we create a factor which includes all variables representing a single
locus. Hence, the size of the factor is exponential in the number of
individuals in the pedigree. The complexity of the algorithm is
dominated by the sum of the factors created during the computa-
tion, which is on the order of the product of the number of the loci

in the analysis (or, equivalently, the number of factors created) and
the size of a factor. Namely, the complexity is exponential in the
number of individuals in the pedigree and linear in the number of
loci in the analysis.

 To summarize, the complexity of all three algorithms is domi-
nated by the sum of sizes of the factors created during the computa-
tion, which depends on the specifi c elimination order chosen by each
algorithm. If our algorithm chooses an elimination order as in Elston-
Stewart, then its complexity is exponential in the number of loci and
linear in the number of individuals. If it chooses an elimination order
as in Lander-Green, then its complexity is exponential in the number
of individuals and linear in the number of loci. For any intermediary
order, the complexity is somewhere in the middle.

 From a practical point of view, the complexity of our algorithm
depends on the size of the pedigree, the complexity of the pedigree,
the number of loci in the analysis, the number of typed individuals,
and the elimination order found. It is hard to predict in advance
the exact complexity of a given problem. In order to assist the user
in determining the complexity of a given problem, SUPERLINK
prints the complexity class of the elimination order X � , � found,
which is defi ned as log 10 X � , � . If the complexity class is 14 or

 Fig. 4. Algorithm Find-Order.

Algorithm Find-Order(G, T ,Cmin)

Input: A weighted undirected graph G(V,E,w), a threshold T, and a

minimum cost Cmin.

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Xα,β ← deterministic-greedy(G, T)

2. If C(Xα,β) < Cmin then return Xα,β

3. Set N (total � of iterations) according to C(Xα,β)

• I [1]← �%MW ∗N�
• I [2]← �%MF ∗N�
• I [3]← �%WMF ∗N�

4. For j ← 1 to 3 do

For i ← 1 to I [j] do

• Find a candidate order:
Xtemp
α,β ← SG(G, T, Cj

1 , C
j
2)

• Update the best order:
If C(Xtemp

α,β) < C(Xα,β) then

Xα,β ← Xtemp
α,β

5. Return Xα,β

HHE610.indd 9HHE610.indd 9 15.02.2005 12:18:0215.02.2005 12:18:02

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 10

higher, then computations are very time consuming or even infea-
sible. In such a case, the user can use MCMC methods to generate
an approximate maximum-likelihood haplotype confi guration.

 It should be emphasized that with hundreds of SNP markers, it
is not feasible to fi nd optimal haplotypes without resorting to the
elimination order as in Lander-Green algorithm which works for
small pedigrees. For larger pedigrees, approximation algorithms are
needed.

 Results

 We performed several experiments to test the new al-
gorithms. The experiments can be divided into two class-
es. The fi rst class compares the performance of our hap-
lotyping algorithm to existing haplotyping algorithms.
The second class is designed to test the performance of
the new optimization algorithm. In all experiments in
which pedigree data was simulated, the assumptions un-
derlying the simulation were: Hardy-Weinberg and link-
age equilibrium, no mutation and no interference. All
input fi les and results of the experiments are readily avail-
able online.

 Evaluation of the Haplotyping Algorithm
 Experiment A (Simulation Study)
 We tested our haplotyping algorithm on a complex

pedigree of moderate size (fi g. 5). This pedigree was
adapted from fi gure 2 in Lin [1996]. So far, only an ap-
proximate haplotype analysis was possible for this pedi-
gree. We simulated a random haplotype confi guration for
this pedigree using the simulation guidelines described by
Lin and Speed [1997], and obtained a maximum likeli-
hood haplotype confi guration in several minutes using
SUPERLINK. This pedigree consists of 27 individuals
and is highly inbred. All individuals, except for those in
the fi rst two generations, were typed at 10 polymorphic
markers, each with 5 alleles of equal frequencies. The re-
combination fraction between each pair of consecutive
markers was set to 0.05. The progress made in resolving
this pedigree can be appreciated by citing Lin and Speed
[1997]: ‘ This is a very complex though moderate sized
pedigree, with 10 polymorphic markers, and it does not
seem to us to be possible to carry out a haplotype analysis
for it with existing non-simulation-based statistical meth-
ods. ’

 We note that GENEHUNTER removes 12 individu-
als from the pedigree in order to perform the computa-
tions. To the best of our knowledge, no previous exact
algorithm can produce the maximum likelihood haplo-
type confi guration for this pedigree.

 Experiment B (Testing Correctness)
 We tested the correctness of our maximum likelihood

haplotyping algorithm by implementing three indepen-
dent versions of the algorithm, and comparing the results
obtained by all three versions. Each version was imple-
mented by different people, to assure an independent
evaluation. By correctness we mean that the software
fi nds a haplotype confi guration of maximum likelihood
given the assumptions of Hardy-Weinberg and Linkage
equilibrium. We tested 60 data sets consisting of 5 to 150
individuals and up to 200 markers. In all tested data sets,
all three versions produced haplotype confi gurations with
the same likelihood. It should be noted that there is usu-
ally more than one maximum-likelihood haplotype con-
fi guration, and hence, various algorithms often produce
different haplotype confi gurations.

 Experiment C (Testing Accuracy)
 Existing approximate methods for haplotyping pro-

vide no guarantee on the accuracy of the output. Using
our haplotyping algorithm, approximated haplotyping
can be compared with the optimal solution on larger ped-
igrees than was previously possible. This experiment test-
ed the accuracy of a state of the art program that uses
MCMC, called SIMWALK2 [Sobel and Lange, 1996]. We
tested 75 random data sets consisting of 15 to 50 indi-

 Fig. 5. A complex pedigree of moderate size used for the simulation
study in Experiment A. Adapted from fi gure 2 in Lin [1996].

HHE610.indd 10HHE610.indd 10 15.02.2005 12:18:0315.02.2005 12:18:03

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 11

viduals and up to 10 markers. SIMWALK2 found a max-
imum likelihood assignment in 45 out of the 75 data sets.
In the other 30 data sets, the average difference in the log-
likelihood of the assignment reported by SIMWALK2
compared to the maximum likelihood assignment was
merely 1%.

 An example for the different outputs of SUPERLINK
and SIMWALK2 is shown in fi gures 6 and 7 . These fi g-
ures show the haplotype confi gurations obtained by SU-
PERLINK and SIMWALK2 for one of the data sets used

in this experiment (data set 14). This is a loopless pedigree
with 30 individuals, typed at 6 polymorphic markers. The
recombination fractions between the markers according
to their linear order are: 0.154, 0.229, 0.225, 0.194, 0.17.
As can be seen from fi gures 6 and 7 , the two haplotype
confi gurations are quite similar. Many of the differences
involve different phases in the haplotypes of founders.
Such information can not be discerned by the data, and
hence, such differences are meaningless. However, the
haplotype confi guration found by SIMWALK2 contains

3 2

27

2 6
2 2
2 2
6 1
3 2
1 1

25

6 2
2 2
2 2
2 2
3 3
2 4

2 3

2 2
2 1
3 3
4 1

18

2 6
1 1
2 2
2 5
2 3
3 2

17

2 2
1 5
2 2
2 5

26

1 5
2 2
5 5
3 3
2 2

14

4 2
5 1
2 2
1 2
3 2
1 3

15

4 1
5 2

6 2 6 2
2 2
2 2
2 2
3 3
2 4

8

1 2
2 5
3 1
1 1
3 5
1 1

16

2 2
2 6
2 2
2 2
2 1
3 3
4 1

28

6 2
2 2
2 2
2 6
3 3
2 1

30

2 6

29

2 3

2 6
5 2
4 2
2 2
3 2
2 1

4

6 2
2 2
2 1
1 2
5 3
1 1

3

2 1

3 1

12

1 1
1 3
3 2
5 2
2 3
3 2

20

5 1
6 1
2 1
1 1
2 3
1 1

19

5 2

3 3

2

6 1
2 2
2 3
2 1
2 4
1 1

1

1 2
3 5
2 4
2 2
2 3
1 2

2 2

4 3
2 1
3 4
2 1

9

1 1
3 2
2 3
2 1
3 4
2 1

10

2 1
1 1
2 3
2 5

2 4

24

5 2
6 2
2 2
1 2
2 3
1 4

21

1 6
1 2
1 2
1 2
3 3
1 2 1 2

1 1
3 2
1 3

23

1 6
1 2
1 4
1 2
3 3
1 2

22

1 2
1 5
1 4
1 2
3 3

7

2 4
1 2
5 3
1 2

13

5 4
6 5
2 2
1 1
2 3
1 1

11

2 1
1 2
2 3
2 1

2 5
5 2
6 5
2 1
1 1
2 5
1 1

5

2 1
2 2
1 3
2 1
3 4
1 2

6

6 2

 Fig. 6. The maximum-likelihood haplotype confi guration obtained by SUPERLINK for one of the datasets in
Experiment C (dataset 14). Its log 10 likelihood is –121.41774. It is 4.2 times more likely than the haplotype con-
fi guration reported by SIMWALK2 (see fi g. 7).

HHE610.indd 11HHE610.indd 11 15.02.2005 12:18:0315.02.2005 12:18:03

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 12

9 recombination events whereas the haplotype confi gura-
tion found by SUPERLINK contains merely 7 recombi-
nation events. The positions of 5 of the recombination
events found by both programs are the same. The other
2 recombination events found by SUPERLINK are in
different positions than those found by SIMWALK2. The
likelihood of the haplotype confi guration found by SU-
PERLINK is 4.2 times higher than the one reported by
SIMWALK2. In practice, one can not infer which haplo-
type confi guration is closer to the real confi guration; how-
ever, the haplotype confi guration obtained by SUPER-

LINK is always a haplotype confi guration of maximum-
likelihood, whereas SIMWALK2 does not always provide
a haplotype confi guration of maximum-likelihood, as can
be seen from this example.

 The MRH software [Qian and Beckmann, 2002] could
not run on any of the data sets used in this experiment.
We also tested the Block-Extension option of pedphase
[Li and Jiang, 2003b], running it 200 times on each data
set. Coherent output was obtained in 37.64% of the runs.
In those cases where coherent output was produced, SU-
PERLINK produced haplotype confi gurations with less

2 2
2 2
3 2
4 1

25

1 2
1 2
1 2
1 6
3 3
1 1

26

6 5
2 6
2 2

2 2

2 6
2 2
2 2
6 2
3 3
1 4

30

2 6
2 2
2 2
1 2
3 3
1 4

27

6 2

2 1

5 2
6 2
2 2
1 6
2 3
1 1

21

1 6
1 2
1 2
1 2
3 3
1 2

20

24

3 2
2 1

23

1 6
1 2
1 4
1 2
3 3
1 2

22

1 2
1 5
1 4
1 2
3 3
1 2

28

3

8

1 2
2 5
3 1
1 1
3 5
1 1

29

2 2
2 2
2 2
6 2
3 3
1 4

4

2 6
2 2
1 2
2 1
3 5
1 1

7

2 5
5 6
1 2
1 1
5 2
1 1

5

1 2

2 1
3 4
2 1

10

1 5
1 6
3 2
5 1
2 2
3 1

6

6 2
2 5
2 4
1 2
5 3

2 1

2

6 1
2 2
2 3
2 1
2 4
1 1

1

2 1
5 3
4 2
2 2
3 2
2 1

3 4

2 1
2 2
1 3
2 1
3 4
1 2

19

2 6
5 2
4 2
2 2
3 2
2 1

2 1
5 2
4 3
2 1

2 3

1 5
3 3
2 2

16

6 2
1 5
2 2
5 5
3 3
2 2

14

2 1
1 2
2 3
2 1

3 2

1 5
1 6
1 2
1 1
3 2
1 1

18

2 6
1 1
2 2
2 5
2 3
3 2

17

1 6
2 1

2 3

1 1
1 2
3 3
5 1
2 3
3 2

12

1 1
1 3
3 2
5 2
2 3
3 2

9

1 1
3 2

3 2

15

4 1
5 2
2 3
1 1
2 3
1 3

13

2 4
1 5
2 2
2 1
2 2
3 1

11

 Fig. 7. The haplotype confi guration obtained by SIMWALK2 for one of the datasets in Experiment C (dataset
14). The log 10 likelihood is –122.04171.

HHE610.indd 12HHE610.indd 12 15.02.2005 12:18:0315.02.2005 12:18:03

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 13

or equal number of recombination events compared to
pedphase. This is interesting to note because the goal of
pedphase is to minimize the number of recombination
events while superink maximizes the likelihood of data.

 Experiment D (Published Disease Data)
 We analyzed two published data sets from a study of

the Krabbe disease by Oehlman et al. [1993], and from a
study on Episodic Ataxia (EA) by Litt et al. [1994]. In
both analyses, we assumed linkage equilibrium between
the analyzed markers. The Krabbe data set consists of 9
individuals typed at 8 polymorphic markers on chromo-
some 14. The marker names, according to their linear
order are: D14S47, D14S52, D14S43, D14S53, D14S55,
D14S48, D14S45, D14S51. The respective sex-averaged
recombination fractions between these markers are:

0.1106, 0.1799, 0.0319, 0.0773, 0.0186, 0.1567, 0.0148.
The most likely haplotype confi guration obtained by SU-
PERLINK for the Krabbe data set (fi g. 8) is identical to
the one obtained by MCMC via SIMWALK2 [Sobel et
al., 1995; Sobel and Lange, 1996], by Lin and Speed
[1997], and by pedphase [Li and Jiang, 2003b].

 The Episodic Ataxia data set consists of 29 individu-
als, which are all typed at 9 polymorphic markers on chro-
mosome 12 except for the fi rst two generation founders.
The names of the markers, with respect to their linear
order are: D12S91, D12S100, CACNL1A1, D12S372,
pY2/1, pY21/1, KCNA5, D12S99, and S12S93. The re-
spective sex-averaged recombination fractions between
these markers are: 0.01, 0.01, 0.03, 0.03, 0.01, 0.01, 0.01,
and 0.01. The most probable confi guration found by SU-
PERLINK for this data set (fi g. 9) is confi guration D in

 4 4

78

 5 5

 4 4
 5 1
 5 7
 2 2
 8 4
 9 9
 5 5

 4 3
 4 2
 1 4
 2 3
 4 7
 2 4
 5 5
 5 5

6

2

 5 7

 4 5
 1 1
 7 4
 2 3
 4 8
 9 3
 5 7
 5 4

9

 4 5
 4 1
 1 4
 1 3
 6 8
 9 3

 5 4

5

 4 5
 4 1
 1 4
 1 3
 6 7
 9 4
 5 5
 4 5

43

 5 5
 5 1
 1 4
 1 3
 6 7
 9 4
 5 5
 4 4 4 4

 5 4
 5 4
 1 1
 2 1
 4 6
 2 9
 5 5

1

 3 5
 2 1
 3 4
 2 3
 8 7
 3 4
 7 5
 4 5

 5 3
 5 2
 1 3
 2 2
 4 8
 2 3
 5 7

 Fig. 8. The maximum-likelihood haplotype
confi guration obtained by SUPERLINK
for the Krabbe dataset [Oehlman et al.,
1993].

HHE610.indd 13HHE610.indd 13 15.02.2005 12:18:0415.02.2005 12:18:04

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 14

 4 1

 4 4

 3 1

 4 4

 4 4
 5 5

 6 5

 3 2
 4 5

117

 6 3

 1 3

 7 8

 1 1
 5 9

 6 6

 3 2
 5 5

 4 3

104

 1 4

 6 4
 3 3

 7 8

 1 5

 2 4

 6 6

 4 3

9098

 6 1

 1 4

 1 4
 3 3

 4 4

 6 2

 5 3

 5 5

 3 3

9097

 4 4

 3 2

 3 5

 2 4

 7 9

 2 1

 3 2
 6 3

 6 5

2001

 4 7

 1 1

 4 6

 4 3

 5 7

 5 1

 2 2

 5 6

 1 4

2002

 1 1

 4 4

 4 4

 3 3
 4 8

 2 5

 3 4
 5 6

 3 3

199

 6 7

 1 1

 1 6

 3 3
 4 7

 6 1

 5 2
 5 6

 3 4

100

 7 1 6 6

 1 1

 1 7
 3 1

 3 5

 6 6

 5 3

 5 5

 3 4

9006

 3 3

 3 4
 2 3

 7 4

 2 6

 3 4

 6 6

 6 2

9003
 1 4

 6 1

 1 4
 3 3

 4 4

 6 2

 5 3

 5 5

 3 3

9099
 3 2

 4 6

 3 1

 3 7
 2 1

 7 5

 2 6

 3 3

 6 5

 6 4

9005

 6 4

 3 1

 5 6
 4 1

 4 3

 6 6

 3 3

 6 6

 6 3

9004

 4 6

 2 1

 2 1

 2 5

 1 2

 5 4

 1 1

 3 2

 2 5
 3 3

1009

 7 4

 1 3

 6 3

 3 2

 7 7

 1 2

 2 3

 6 6
 4 6

1006

 4 4

 3 3

 4 3

 4 1

 5 4

 6 1

 3 3

 4 5
 4 2

1011

 4 4

 1 3

 4 3

 4 2

 5 7

 5 2

 2 3

 5 6
 1 6

1008

 7 4

 1 3

 6 3

 3 2

 7 7

 1 2

 2 3

 6 6
 4 6

1000

 6 6

 1 3

 1 5

 3 4

 3 4

 6 6

 5 4

 5 5
 3 3

1001

 3 4

 3 3

 6 3

 4 2

 7 4

 6 6

 2 3

 4 1
 6 4

1007

 7 4

 1 2

 6 5

 3 4

 7 9

 1 1

 2 2

 6 3
 4 5

1002

 4 4

 3 3

 3 3

 2 2
 4 7

 6 2

 3 3
 4 6

 6 6

114

 4 7

 3 6

 2 3
 4 7

 6 1

 3 2
 1 6

 4 6

1131

 4 4

 3 3

 3 3

 1 2
 4 7

 1 2

 3 3
 5 6

 2 6

116

 1 4

 1 3

 5 3

 2 2
 4 7

 1 2

 2 3
 5 6

 3 6

115

 6 4 6 4

 3 3

 5 3

 4 2
 4 7

 6 2

 4 3
 5 6

 3 6

102

 4 4

 1 3

 4 3

 4 2

 5 7

 5 2

 2 3

 5 6
 1 6

1010

103
 1 3

 1 3

 3 2
 3 7

 6 2

 5 3
 5 6

 3 6

 4 6

 1 2

 6 4

 1 3
 3 4

 6 6

 3 4
 6 6

 3 2

 Fig. 9. The maximum-likelihood haplotype confi guration obtained by SUPERLINK for the Episodic Ataxia da-
taset [Litt et al., 1994]. All individuals are typed. Recombination is seen at individuals 100, 113, and 9004.

HHE610.indd 14HHE610.indd 14 15.02.2005 12:18:0415.02.2005 12:18:04

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 15

 fi gure 2 of Qian and Beckmann [2002], which differs from
the one obtained by SIMWALK2 [Sobel et al., 1995; So-
bel and Lange, 1996] in the position of one recombination
event. The only difference is the genotype phase in the
fourth marker of individuals 1007 and 113. This confi gu-
ration is also very similar to the one found by Lin and
Speed [1997].

 Evaluation of the Optimization Algorithm
 Experiment E (Stochastic Algorithms)
 This experiment compared the performance of differ-

ent stochastic-greedy algorithms (table 1). Each of the sto-
chastic algorithms is run for 1000 iterations, after the
reduction rules have been applied. We used graphs cre-
ated from simulated pedigree data. Note that this experi-
ment compares the elimination costs found by the algo-
rithms for the case where T = G, namely no conditioning
is performed. The results presented in table 1 are a rep-
resentative sample from the experiment that was per-
formed on 100 data sets. In 100 data sets, the distribution
of algorithms that found the lowest cost was as follows:
Min-Weight – 4%, MCS – 9%, WMCS – 7%, Min-Fill –
25%, and Weighted Min-Fill – 76%. Note that these per-
centages do not sum to 100% since, for some data sets,
several algorithms found a minimal cost elimination or-
der. As can be seen, the Min-Fill and Weighted Min-Fill

are superior to the other heuristics. However, since the
Min-Weight heuristic is the fastest and it works well when
conditioning is needed (results not shown), it is profi table
to fi rst run it and then run the Min-Fill and Weighted
Min-Fill heuristics. The MCS and Weighted-MCS heu-
ristics have been found to hardly contribute when applied
after the Min-Weight heuristic and are therefore not in-
corporated. To summarize, using an algorithm which
combines the three algorithms, Min-Weight, Min-Fill,
and Weighted Min-Fill, is superior to running only one
of them, provided the optimization time is small enough
compared to the total run time, as is the case for suffi -
ciently large pedigrees.

 Experiment F (Total Run Time)
 This experiment compared the run time of likelihood

computation with the new optimization algorithm for de-
termining an elimination order presented herein, to the
run time with the previous optimization algorithm. The
total run time includes both optimization time and infer-
ence time. We demonstrate the performance of the opti-
mization algorithm using likelihood computations rather
than haplotyping, since haplotyping was not implement-
ed in the previous version of SUPERLINK. We tested 50
randomly simulated data sets chosen so that the run time
in the new version is above 10 s and below 10 h. The graph

#Locia #Peopleb %Typedc Min-Wd MCSe WMCSf Min-Fillg WMin-Fillh

12 25 80 3.97 5.15 5.36 3.94 3.93
14 27 63 17.00 15.54 22.27 14.17 14.22
16 22 89 5.30 8.08 8.61 5.22 5.22
20 31 71 10.99 12.62 15.67 10.38 10.03
17 29 56 12.77 11.41 20.15 11.14 10.56
19 33 95 6.19 7.03 7.55 5.70 5.91
18 31 47 8.36 10.27 13.01 8.23 7.90
13 30 30 2.79 2.81 2.81 2.80 2.80
22 38 86 6.72 9.41 13.85 6.46 6.37
20 48 91 9.28 14.73 13.45 7.84 7.61

The cost reported is the log10 of the sum of weights of cliques created during elimina-
tion. Best results are in bold. WMin-Fill is superior in most cases for a variety of pedigree
problems.

a Number of loci being analyzed.
b Number of people in the pedigree.
c Percentage of typed people in the pedigree.
d Elimination cost obtained by the Min-Weight algorithm.
e Elimination cost obtained by the Maximum Cardinality Search algorithm.
f Elimination cost obtained by the Weighted Maximum Cardinality Search algo-

rithm.
g Elimination cost obtained by the Min-Fill algorithm.
h Elimination cost obtained by the Weighted Min-Fill algorithm.

Table 1. Comparing different stochastic-
greedy algorithms

HHE610.indd 15HHE610.indd 15 15.02.2005 12:18:0515.02.2005 12:18:05

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 16

in fi gure 10 shows that timing was improved in 47 out of
50 data sets, often by an order of magnitude.

 Experiment G (Benchmarks)
 This experiment (table 2) tested the performance of the

three stochastic-greedy algorithms, on eight known bench-
marks for Bayesian networks inference. The stochastic al-
gorithms are run after the reduction rules have been ap-
plied. We present the best elimination cost found by the
algorithms after 100 iterations and after 1000 iterations.

Also presented for each benchmark are the best known
elimination cost and the elimination cost found by
 HUGIN6.1 [Andersen et al., 1989; Hugin, 2002], which is
a leading software for Bayesian networks. As can be seen,
in most cases, running a few iterations of the stochastic-
greedy algorithms is superior to the algorithm of HUGIN6.1.
Another conclusion that can be drawn from this experi-
ment is that the results of the stochastic-greedy algorithms
are comparable to simulated annealing [Kjærulff, 1990]
which is a very time consuming algorithm, and hence not

Table 2. Testing some Stochastic-Greedy Algorithms on known benchmarks

Problem Known
costa

Hugin
costb

Cost after 100 iterations Cost after 1000 iterations

Min-Wc Min-Filld WMin-Fille Min-W Min-Fill WMin-Fill

Barley 1.71 E07 1.73 E07 1.95 E07 1.73 E07 1.82 E07 no change 1.71 E07 1.8 E07
Diabetes 9.83 E06 1.04 E07 1.03 E07 1.56 E07 1.24 E07 1.01 E07 1.38 E07 1.21 E07
Link 2.4 E07 2.62 E07 4.31 E07 2.76 E07 3.78 E07 4.15 E07 2.66 E07 3.14 E07
Munin1 8.69 E07 1.88 E08 1.84 E08 1.54 E08 1.39 E08 no change 8.76 E07 no change
Munin2 2.05 E06 2.76 E06 4.05 E06 3.53 E06 4.36 E06 3.79 E06 no change 4.35 E06
Munin3 3.08 E06 3.24 E06 3.28 E06 3.26 E06 3.11 E06 3.27 E06 3.2 E06 3.11 E06
Munin4 9.84 E06 1.64 E07 1.72 E07 2.0 E07 1.37 E07 1.58 E07 no change 1.34 E07
Water 3.03 E06 8.04 E06 3.66 E06 3.03 E06 3.47 E06 3.62 E06 no change no change

a Best known elimination cost.
b Elimination cost found by HUGIN6.1 [Andersen et al., 1989; Hugin, 2002].
c Elimination cost obtained by the Min-Weight algorithm.
d Elimination cost obtained by the Min-Fill algorithm.
e Elimination cost obtained by the Weighted Min-Fill algorithm.

1

10

100

1000

10000

100000

106

0 5 10 15 20 25 30 35 40 45 50

R
u

n
 t

im
e

(s
)

Datasets

New version
Old version

 Fig. 10. Run time comparison of likelihood
computation using the new optimization al-
gorithm versus the previous optimization
algorithm. On each dataset, the old version
was run for up to a couple of hours, and the
total run time was estimated according to
the percentage of the computation that was
completed at that time. For those datasets
where the estimated run time of the old ver-
sion was well over 300 h, the run time ap-
pears as 10 6 s.

HHE610.indd 16HHE610.indd 16 15.02.2005 12:18:0515.02.2005 12:18:05

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 17

a viable option for minimizing the total run time for ge-
netic linkage analysis. As can be seen from table 2 , after
100 iterations the best known cost for the Water problem
is matched, and after 1000 iterations the best known cost
for the Barley problem is also matched.

 Experiment H (Reduction Rules)
 This experiment tested the gain due to the reduction

rules presented in Eijkhof et al. [2002]. The data sets used
are 20 graphs, out of which 12 are created from simulated
pedigree data and 8 are known benchmarks for Bayesian
networks inference. We have found that two of the reduc-
tion rules, the simplicial rule and the almost simplicial
 rule, are worthy to apply in almost every problem. Apply-
ing these rules usually eliminated between 50 and 60% of
the vertices in the data sets (table 3). The other two reduc-
tion rules, the buddies rule and the cube rule, are more
time consuming, and applying them does not yield suffi -
cient improvement; therefore we do not use these rules.

 Discussion

 The use of Bayesian networks enables effi cient maxi-
mum likelihood haplotyping for more complex pedigrees
than was previously possible. We adapted and combined
several algorithms, allele recoding, reduction rules, elim-
ination algorithms, and the Elim-Max inference algo-
rithm, into a working system for haplotyping readily
available for use by geneticists. This advancement can
also be utilized for checking approximate haplotyping al-
gorithms such as MCMC.

 Several new features have been incorporated in the
algorithm for optimizing the elimination order presented
herein. First, reduction rules are applied to speed the
computations. Second, several greedy algorithms are run,
rather than one. Their allocated relative run time is based
on experiments on many Bayesian networks. Third,
among the greedy algorithms that are applied, a new
greedy algorithm is introduced (Weighted Min-Fill).

#Vertices #Edges Using two reduction rules Using four reduction rules

% of
vertices
eliminated

run
timea

% of
run
timeb

% of
vertices
eliminated

run
time

% of
run
time

48 126 39.6 0.00 0.00 39.6 0.00 0.00
413 819 19.6 0.00 0.00 19.6 0.01 4.76
724 1,738 53.2 0.00 0.00 53.2 0.02 7.13
189 366 52.2 0.00 0.00 52.2 0.00 0.00

1,003 1,662 68.4 0.00 0.00 68.4 0.03 9.56
1,044 1,745 82.4 0.00 0.00 83.5 0.03 9.18
1,041 1,843 74.0 0.00 0.00 74.0 0.02 6.83

32 123 31.3 0.00 0.00 31.3 0.00 0.00
1,676 2,987 58.0 0.03 5.54 58.0 0.10 18.7
2,449 4,320 57.7 0.06 6.74 57.7 0.34 33.2
3,224 5,641 54.5 0.08 7.14 54.7 0.30 16.7
3,254 5,754 59.0 0.06 4.41 59.0 0.30 21.9
4,720 8,211 57.8 0.15 7.58 57.8 0.75 29.8
6,242 10,814 54.7 0.16 4.98 55.2 0.63 18.3
4,859 8,517 59.6 0.12 6.85 59.6 0.56 23.6
7,040 12,104 60.0 0.28 9.14 60.0 1.32 31.7
9,276 15,926 55.3 0.30 7.47 55.6 1.56 24.3
6,372 11,198 57.8 0.17 5.87 57.8 1.56 24.3
9,292 16,096 57.9 0.37 7.73 57.9 2.23 38.9

12,278 21,215 54.3 0.54 7.78 54.5 6.02 73.2

Results in bold indicate problem instances where application of the four reduction rules
eliminated more vertices than application of only two rules.

a Run time is specifi ed in seconds.
b The percentage of time spent on reduction rules out of the time required for fi nding

an elimination order, when merely one iteration of the stochastic-greedy algorithm is per-
formed.

Table 3. Reduction rules experiments

HHE610.indd 17HHE610.indd 17 15.02.2005 12:18:0515.02.2005 12:18:05

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 18

Fourth, the threshold which controls the time-space
 tradeoff is determined at run time according to the mem-
ory of the computer, rather than fi xed a priori. Our new
optimization algorithm is applied whenever the elimina-
tion cost found by a quick greedy algorithm is above a
certain threshold (log 10 C 6 9 in the current implementa-
tion). The result is an optimization algorithm which is
superior in total run time to the algorithm in Fishelson
and Geiger [2003] in 47 of the 50 instances we tried, often
by an order of magnitude (Experiment D). The presented
order optimization algorithm is used in SUPERLINK for
LOD score computations as well as for haplotyping.

 Acknowledgments

 This research was supported by the Israel Science Foundation.
We thank Gil Rubin and Shaul Karni for ideas regarding effi cient
implementation of our haplotyping algorithm, and Sofi a Grinberg
and Adi Mano for implementing another version of our algorithm.
We thank Uffe Kjærulff and the Research Unit of Decision Support
Systems Aalborg University for providing us the datasets and sup-
port to conduct experiment G. We also thank Anna Tzemach for
computer assistance.

Algorithm Elim-Max (Dechter, 1998)

Input: A Bayesian network 〈G,P 〉; an ordering d of the variables; evidence ε.
Output: The most probable assignment to the variables of the Bayesian network, and its

probability.

1. Initialize: Generate an ordered partition of the conditional probability tables {Pi}
into buckets, where bucket Bi contains all the probability tables and evidence whose

largest-index variable is Xi.

2. Backward phase (compilation phase):

For i = n to 1, process bucket Bi as follows:

Let h1, . . . , hk be all the probability tables (new and old) in Bi at the time it is

processed, and let S1, . . . , Sj be the subset of variables in Bi on which probability

tables (new and old) are defined.

• If Bi contains Xi = ai (Xi is observed), assign Xi = ai to each hl, and place it

in the bucket of the largest-index variable that appears in its scope.

• Else, Ui =
⋃k
j=1 Sj − {Xi}. Generate function hi = maxxi

∏k
l=1 hl, and place it

in the bucket of the largest-index variable in Ui. Store the optimizing value of

Xi for each tuple of Ui, X
opt
i (Ui) = argmaxxi

∏k
l=1 hl.

3. Store: the constant computed in B1. This is the probability of the most probable

assignment to the variables of the network.

4. Forward phase (process Xi after finding an assignment to X1, . . . , Xi−1):

For i = 1 to n, process bucket Bi as follows:

• Given the assignment Ui = ui, choose xi = Xopt
i (ui).

5. Return: the assignment selected for the variables of the network and its probability.

 Appendix A

HHE610.indd 18HHE610.indd 18 15.02.2005 12:18:0615.02.2005 12:18:06

P
R
O

O
F

P
R
O

O
F

 Maximum Likelihood Haplotyping Hum Hered 610 19

 Appendix B

 Proposition: The probability of the haplotype confi guration
found using allele recoding is the same as the probability of the
haplotype confi guration found without allele recoding.

 Proof: Recall that a haplotype confi guration is an assignment of
values to all genetic loci variables of individuals in the pedigree.
For the proof, we use the word assignment rather than haplotype
confi guration. We divide the set of all possible assignments to two
sets: A 1 and A 2 . The set A 1 consists of all assignments which fulfi ll
the following conditions: (i) at least one allele assigned to a found-
er belongs to the set of non-transmitted alleles of this founder, and
(ii) this allele is not the one with the highest frequency among the
set of non-transmitted alleles of this founder. The set A 2 consists of
all other consistent assignments given the data, namely, all assign-
ments which fulfi ll the following condition: each allele assigned to
a founder either belongs to the set of transmitted alleles of this
founder, or it is the allele of maximum frequency among the list of
non-transmitted alleles of this founder. The proof follows from the
following two claims.

 Claim 1: The maximum likelihood assignment is in the set A 2 .
 Proof: Assume to the contrary of the claim that the maximum-

likelihood assignment is in the set A 1 and denote it by a 0 . Suppose,
without loss of generality, that for some founder P in locus i, there
are two non-transmitted alleles, N 1 and N 2 . Assume that allele N 1
is chosen in assignment a 0 , and that Pr (N 2) 1 Pr (N 1). Since N 1 is
non-transmitted, no typed descendant of P inherited this allele
from P . Hence, we can replace allele N 1 with allele N 2 in assignment
 a 0 in all individuals that inherited this allele from P according to
 a 0 , obtaining a consistent assignment denoted by a 1 . The only dif-
ference in the likelihood of these two assignments is in the frequen-
cy of allele N 2 compared to the frequency of allele N 1 . Since

 Pr (N 2) 1 Pr (N 1), it follows that Pr (a 1) 1 Pr (a 0) in contrary to the as-
sumption that a 0 is the maximum likelihood assignment.

 Claim 2: The probability of each assignment a D A 2 using allele-
recoding is the same as without using allele recoding.

 Proof: There are three types of probability functions:
 1. Pr (S , �) – this function does not change under allele recoding

because selector variables do not change.
 2. Pr (F , �) – this function is the product of frequencies of all al-

leles in the genotypes of founders determined by the given assign-
ment. These functions do not change under allele recoding.

 3. Pr (N � F , S , �) – this probability equals 1 if the assignment is
consistent and 0 otherwise. When using allele recoding, it is defi ned
via fuzzy inheritance. If the assignment is consistent without allele
recoding, it is consistent also with allelerecoding, since all founders’
alleles exist also after recoding by defi nition of the set A 2 . In the
case of non-founders, no allele is erased. The alleles are merely di-
vided into groups of transmitted and non-transmitted alleles.

 To summarize, all probability functions, whose product consti-
tutes the probability of an assignment a D A 2 , remain the same with
allele recoding and without allele recoding, and hence, the probabil-
ity of assignment a is maintained under allele recoding.

 Electronic-Database Information

 The SUPERLINK program is available as an executable for
Linux, Windows and Unix operating systems, at http://bioinfo.
cs.technion.ac.il/superlink/, along with user documentation. Also
available are the input fi les and results of all the experiments per-
formed.

 References

 Abecasis GR, Cherny SS, Cookson WO, Cardon
LR: Merlin-rapid analysis of dense genetic
maps using sparse gene fl ow trees. Nat Genet
2002; 58: 97–101.

 Andersen SK, Olesen KG, Jensen FV, Jensen F:
HUGIN – a shell for building Bayesian belief
universes for expert systems. Proc. of the 11th
International Joint Conference on Artifi cial In-
telligence (IJCAI), Vol 2, 1989, pp 1080–
1085.

 Arnborg S: Effi cient algorithms for combinatorial
problems on graphs with bounded decomposi-
bility. BIT 1985; 25: 2–23.

 Arnborg S, Corneil DG, Proskurowski A: Com-
plexity of fi nding embeddings in a k-tree.
SIAM J Alg Disc Meth 1987; 8: 277–284.

 Dechter R: Bucket elimination: A unifying frame-
work for probabilistic inference; in J M I (ed):
Learning in Graphical Models. Kluwer Aca-
demic Press, 1998, pp 75–104.

 Eijkhof F, Bodlaender H, Koster A: Safe reduction
rules for weighted treewidth. Technical Report
02-49, ZIB, Berlin, Germany, 2002.

 Elston RC, Stewart J: A general model for the anal-
ysis of pedigree data. Hum Hered 1971; 21:

 523–542.
 Ewens WJ, Spielman RS: The transmission/dis-

equilibrium test: History, subdivision, and ad-
mixture. Am J Hum Genet 1995; 57: 455–465.

 Fishelson M, Geiger D: Exact genetic linkage com-
putations for general pedigrees. Bioinformatics
2002; 18(suppl 1):S189–S198.

 Fishelson M, Geiger D: Optimizing exact genetic
linkage computations. Proc 7th Conf on Com-
putational Molecular Biology (RECOMB),
2003, pp 114–121.

 Friedman N, Geiger D, Lotner N: Likelihood com-
putation with value abstraction. Proc 16th
Conf on Uncertainty in Artifi cial Intelligence
(UAI), 2000.

 Greenspan G, Geiger D: Model-based inference of
haplotype block variation. Proc 7th Conf on
Computational Molecular Biology (RE-
COMB), 2003, pp 131–137.

 Gudbjartsson F, Jonasson K, Frigge ML, Kong A:
Allegro, a new computer program for multi-
point linkage analysis. Nat Genet 2000; 25: 12–
13.

 Gusfi eld D: Haplotyping as perfect phylogeny:
Conceptual framework and effi cient solutions.
Proc 6th Conf on Computational Molecular
Biology (RECOMB), 2002, pp 166–175.

 Hugin $ $: The API reference manual version 5.4,
2002.

 Kjærulff U: Triangulation of graph – algorithms
giving small total state space. Technical Report
R90-09, Department of Computer Science,
Aalborg University, Denmark, 1990.

 Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES:
Parametric and nonparametric linkage analy-
sis: A unifi ed multipoint approach. Am J Hum
Genet 1996; 58(6):1347–1363.

 Kruglyak L, Lander ES: Faster multipoint linkage
analysis using Fourier transform. J Comp Biol
1998; 5: 1–7.

 Lander ES, Green P: Construction of multilocus
genetic maps in humans. Proc Natl Acad Sci
USA 1987;84:2363–2367.

 Lange K, Boehnke M: Extensions to pedigree anal-
ysis v. optimal calculation of mendelian likeli-
hoods. Hum Hered 1983; 33: 291–301.

HHE610.indd 19HHE610.indd 19 15.02.2005 12:18:0615.02.2005 12:18:06

P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 Hum Hered 610 20

 Lange K, Goradia TM: An algorithm for automat-
ic genotype elimination. Am J Hum Genet
1987; 40: 250–256.

 Lange K, Weeks D, Boehnke M: Programs for ped-
igree analysis: Mendel, fi sher, and dgene. Gen-
et Epidemiol 1988; 5: 471–473.

 Lauritzen SL: Graphical Models. Oxford Univer-
sity Press, 1996.

 Li J, Jiang T: Effi cient rule-based haplotyping al-
gorithms for pedigree data. Proc 7th Conf on
Computational Molecular Biology (RE-
COMB), 2003, pp 197–206.

 Li J, Jiang T: Pedphase: haplotype inference for
pedigree data. Submitted, 2003.

 Li J, Jiang T: An exact solution for fi nding minim-
umrecombinant haplotype confi gurations on
pedigrees with missing data by integer linear
programming. Proc 8th Conf on Computation-
al Molecular Biology (RECOMB), 2004.

 Lin S: Multipoint linkage analysis via metropolis
jumping kernels. Biometrics 1996; 52: 299–
309.

 Lin S, Speed TP: An algorithm for haplotype anal-
ysis. J Comput Biol 1997; 4: 535–546.

 Litt M, Kramer P, Browne D, Gancher S, Brunt E,
Root D, Phromchotikul T, Dubay C, Nutt J: A
gene for episodic ataxia/myokymia maps to
chromosome. Am J Hum Genet 1994; 55: 702–
709.

 O’Connell JR, Weeks DE: The VITESSE algorithm
for rapid exact multilocus linkage analysis via
genotype set-recoding and fuzzy inheritance.
Nat Genet 1995; 11: 402–408.

 Oehlman R, Zlotogora J, Wenger D, Knowlton R:
Localization of the krabbe disease gene (galc)
on chromsome 14 by multipoint linkage analy-
sis. Am J Hum Genet 1993; 53: 1250–1255.

 Ott J: Analysis of Human Genetic Linkage. Johns
Hopkins University Press, Baltimore, 1999.

 Park J: Map complexity results and approximation
methods. Proc 18th Conf on Uncertainty in
Artifi cial Intelligence (UAI), 2002, pp 388–
396.

 Pearl J: Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, San Francisco,
1988.

 Qian D, Beckmann L: Minimum-recobinant hap-
lotyping in pedigrees. Am J Hum Genet 2002;

 70: 1434–1445.
 Schäffer AA: Faster linkage analysis computations

for pedigrees with loops or unused alleles. Hum
Hered 1996; 46: 226–235.

 Sobel E, Lange K: Descent graphs in pedigree anal-
ysis: Applications to haplotyping, location
scores, and marker sharing statistics. Am J
Hum Genet 1996; 58: 1323–1337.

 Sobel E, Lange K, O’Connell JR, Weeks DE: Hap-
lotyping algorithms. IMA Volumes in Mathe-
matics and Its Applications 1995; 81: 89–110.

 Stephens M, Smith NJ, Donnelly P: A new statisti-
cal method for haplotype reconstruction from
population data. Am J Hum Genet 2001; 68:

 978–989.
 Tarjan RE, Yannakakis M: Simple linear time al-

gorithm to test chordality of graphs, test acy-
clicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J Comput 1984; 13:

 566–579.
 Thompson EA: Monte Carlo likelihood in genetic

mapping. Stat Sci 1994; 9: 355–366.
 Thompson EA, Heath SC: Estimation of condi-

tional multilocus gene identity among rela-
tives; in Seillier-Moseiwitch PDF, Waterman
M (eds): Statistics in Molecular Biology.
Springer-Verlag, IMS Lecture Note Series,
1999, pp 95–113.

 Wisjman P: A deductive method of haplotype anal-
ysis in pedigrees. Am J Hum Genet 1987; 41:

 356–373.

HHE610.indd 20HHE610.indd 20 15.02.2005 12:18:0715.02.2005 12:18:07

