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lotype data defi nes the nearest fl anking recombination 
events and consequently the smallest interval containing 
a disease gene. This allows tracing disease genes more 
easily and cheaply. Other uses of haplotyping include 
family based statistical tests such as TDT ( Transmission 
Disequilibrium Test ) which require haplotype data as in-
put [Ewens and Spielman, 1995], or as a means for detect-
ing genotyping errors, which are usually expressed as an 
excess of recombination events [Lin and Speed, 1997]. 

 The input data for a haplotyping problem can be di-
vided into two categories: pedigree genotype data and 
population genotype data. The haplotyping problem is to 
infer the two haplotypes of each individual from the mea-
sured unordered genotypes. Haplotype information from 
population data is often reconstructed using some evolu-
tionary model and is usually applied to data with a dense 
map of markers [e.g., Stephens et al., 2001; Gusfi eld, 
2002; Greenspan and Geiger, 2003]. On the other hand, 
haplotype information from pedigrees is reconstructed 
using the information that can be inferred on each indi-
vidual from his relatives’ genotypes, and can be used to 
reconstruct haplotypes from either dense or widely spaced 
marker data. 

 The haplotyping problem can be defi ned via maximiz-
ing a suitable likelihood function or via a combinatorial 
optimization problem. A common combinatorial ap-
proach, called the  Minimum Recombinant Haplotype 
Confi guration (MHRC)  problem, is to seek those haplo-
type confi gurations that minimize the total number of 
recombination events observed in the pedigree. Another 
common combinatorial approach is to seek those haplo-
type confi gurations that show no recombination events. 

 Key Words 
 Haplotyping  �  Linkage analysis  �  Pedigree  �  SUPERLINK

  Abstract 
 Haplotype data is valuable in mapping disease-suscep-
tibility genes in the study of Mendelian and complex dis-
eases. We present algorithms for inferring a most likely 
haplotype confi guration for general pedigrees, imple-
mented in the newest version of the genetic linkage anal-
ysis system SUPERLINK. In SUPERLINK, genetic linkage 
analysis problems are represented internally using 
Bayesian networks. The use of Bayesian networks en-
ables effi cient maximum likelihood haplotyping for more 
complex pedigrees than was previously possible. Fur-
thermore, to support effi cient haplotyping for larger ped-
igrees, we have also incorporated a novel algorithm for 
determining a better elimination order for the variables 
of the Bayesian network. The presented optimization al-
gorithm also improves likelihood computations. We 
present experimental results for the new algorithms on 
a variety of real and semiartifi cial data sets, and use our 
software to evaluate MCMC approximations for haplo-
typing. 

 Copyright © 2005 S. Karger AG, Basel 

 Introduction 

 Haplotype data is valuable in mapping disease-suscep-
tibility genes in the study of Mendelian and complex dis-
eases [Oehlman et al., 1993; Litt et al., 1994]. Such hap-
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Approaches to solve such combinatorial optimization 
problems include rule-based systems [Wisjman, 1987; 
Qian and Beckmann, 2002; Li and Jiang, 2003a], graph-
theoretic approaches [Gusfi eld, 2002], dynamic program-
ming [Li and Jiang, 2003b], or linear programming [Li 
and Jiang, 2004]. These approaches are most appropriate 
when the expected number of recombination events is 
small. 

 The statistical approach for haplotyping by maximiz-
ing a suitable likelihood function has been pursued quite 
extensively [Sobel et al., 1995; Lin and Speed, 1997] and 
implemented in programs that perform exact computa-
tions, such as GENEHUNTER [Kruglyak et al., 1996; 
Kruglyak and Lander, 1998], ALLEGRO [Gudbjartsson 
et al., 2000], and MERLIN [Abecasis et al., 2002], as well 
as in programs that perform approximate computations, 
such as SIMWALK2 [Sobel and Lange, 1996]. All these 
methods take into account intermarker recombination 
fractions or intermarker genetic distances. The objective 
of these algorithms is to fi nd one or several haplotype 
confi gurations of maximum probability given the ob-
served data on the pedigree. 

 In this paper, we focus on improving exact approaches 
for generating a maximum likelihood haplotype confi gu-
ration for larger pedigrees. We present a haplotyping al-
gorithm which we have incorporated into the freely avail-
able newest version of SUPERLINK (v1.4), reported 
herein. SUPERLINK uses Bayesian networks as the in-
ternal representation of pedigrees, which allows one to 
handle a wide variety of linkage problems [Fishelson and 
Geiger, 2002]. In particular, this representation allowed 
us to naturally implement a maximum likelihood ap-
proach for haplotyping. Furthermore, to support effi cient 
haplotyping on larger pedigrees, we have also incorpo-
rated a novel algorithm for determining a better elimina-
tion order for the variables of the Bayesian network. This 
algorithm is especially important when solving linkage 
problems since the Bayesian networks created for such 
problems are very large. The presented optimization al-
gorithm also improves LOD score computations. In ad-
dition, we have adapted the allele recoding algorithm, 
presented by O’Connell and Weeks [1995], for the haplo-
typing task, achieving further reduction in time and space 
complexity. We present experimental results for the new 
algorithms on a variety of real and semi-artifi cial data 
sets, and use our software to evaluate MCMC approxima-
tions for haplotyping via SIMWALK2 [Sobel et al., 1995; 
Sobel and Lange, 1996]. 

   The Haplotyping Problem 

 Problem Defi nition 
 The sequence of alleles at different loci inherited by an 

individual from one parent is called a  haplotype , and the 
two haplotypes of an individual constitute this individu-
al’s  genotype . A  recombination  is said to have occurred 
between two loci, if an haplotype of an individual con-
tains two alleles that resided in different haplotypes of the 
individual’s parent. The  recombination fraction  �   is the 
probability that a recombination occurs between two loci. 
For a comprehensive background on human genetic link-
age analysis consult Ott [1999]. 

 When genotypes are measured by standard measure-
ment procedures, the result is a list of unordered pairs of 
alleles, one pair for each locus. The  Maximum Likelihood 
Haplotype Confi guration  problem consists of fi nding a 
joint haplotype confi guration for all members of the ped-
igree which maximizes the probability of the data. The 
haplotyping problem often does not have a unique solu-
tion. 

   Bayesian Networks 
 Our model for representing pedigree data is a  Bayesian 

network . A Bayesian network is a directed graph with no 
directed cycles, where each vertex  v =  1, ...;  n  corresponds 
to a discrete variable  X  v    and each directed edge represents 
conditional dependencies between the variables it con-
nects [Pearl, 1988; Lauritzen, 1996]. The distribution of 
each variable  X  v    is conditional upon the variables in  Pa v  , 
which is defi ned as the set of vertices from which there 
are edges leading into  v  in the graph. The joint probabil-
ity of a full assignment  x  1 , ...,  x  n    to variables  X  1 , ...,  X  n    is 
the product of these conditional probabilities. In other 
words, 

 where  pa v   is the joint assignment { x  i  �  X  i  D  Pa v  }   to the vari-
ables in  Pa v  . From here on, we will use the notation  Pr ( y  �  z ) 
as an abbreviated form of  Pr ( Y  =  y  �  Z  =  z ) for any sets of 
variables  Y  and  Z . For example, the joint probability 
could be rewritten as  Pr ( X  1 , ...,  X  n ) =  �  v   Pr ( X  v  �  Pa v  ). Note 
also, that we use capital letters for variable names and 
lowercase letters to denote specifi c values taken by those 
variables. Sets of variables are denoted by boldface capi-
tal letters, and assignments of values to the variables in 
these sets are denoted by boldface lower case letters. 

 For haplotyping, we consider the  Most Probable Ex-
planation (MPE)  problem for Bayesian networks [e.g., 

� � � �� �����
v

vvnn xXPrxX...,,xXPr vv paPa11 ,
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Dechter, 1996]. That is, fi nding an assignment  X = x 0   such 
that 

� � � � � � ,,max,max, �����
v

v �XPr�Pr�Pr v
xx

0 PaxXxX

 where  X  = { X  1 , ...,  X  n }   is the set of variables in the Bayes-
ian network, and  �    denotes a particular assignment of 
values to some of the variables in  X . The assignment  �    is 
called  evidence . In the case of haplotyping, the evidence 
is a partial assignment � of alleles at some or all loci to 
people in the pedigree under study. 

 Another relevant problem for haplotyping is the  Max-
imum Aposteriori Hypothesis (MAP)  problem [Dechter, 
1998], of which  MPE  is a special case. The input to this 
problem is the same as for the  MPE  problem, with the 
addition of a set of focus variables  A  = { A  1 , ...,  A  k } ,   A  ⊆ 
 X , for which the most probable assignment, given the 
evidence, is desired. The MAP problem is to fi nd an as-
signment  a 0   = ( a  1 , ...,  a  k ), such that 

� � � �
� �
� �
�

��
AX

v
a

0 PaaA
/

  ,max,
jX v

v �XPr�Pr

   Note that when  A  =  X , MPE is identical to MAP. It 
has been shown that solving the MAP problem is signifi -
cantly harder than solving the MPE problem or comput-
ing the probability of evidence [Park, 2002]. Consequent-
ly, MPE is often solved instead of MAP, and the most 
likely assignment of all variables is projected on the focus 
set of variables  A . 

   Methods 

 Haplotyping in SUPERLINK 
 Three types of random variables are used in the representation 

of pedigrees as Bayesian networks in SUPERLINK:  genetic loci 
 variables which represent the genotypes of the individuals in the 
pedigree (two genetic loci variables per individual per locus, one 
for the paternal allele and one for the maternal allele),  phenotype 
 variables, and  selector  variables which are auxiliary variables used 
to represent the gene fl ow in the pedigree. For example, the paternal 
selector of individual  i  at locus  j  indicates whether the paternal al-
lele of individual  i  at locus  j  came from his father’s paternal haplo-
type or from his father’s maternal haplotype. A similar representa-
tion for inheritance within pedigrees has been used previously [e.g., 
Lander and Green, 1987; Thompson, 1994; Thompson and Heath, 
1999].  Figure 1  presents a fragment of a network that describes 
parents-child interaction in a simple 3-loci analysis. The genetic 
loci variables of individual  i  at locus  j  are denoted by  G  i,jp    and  G  i,jm . 
Variables  P  i,j ,  S  i,jp , and  S  i,jm    denote the phenotype variable, the pa-
ternal selector variable and the maternal selector variable of indi-
vidual  i  at locus  j , respectively. The probability tables that relate 
these variables are of the following forms: 

  Transmission Models:   Pr ( G  i,jp  �  G  a,jp ,  G  a,jm ,  S  i,jp ),  Pr ( G  i,jm   � G  b,jp , 
 G  b,jm ,  S  i,jm ), where  a  and  b  are  i ’s parents in the pedigree. These 
tables are deterministic, namely, consist solely of zeroes and ones. 
The fi rst probability table equals 1, if  G  i,jp   = G  a,jp    and  S  i,jp   =  0, or if 
 G  i,jp   = G  a,jm    and  S  i,jp   =  1. In all other cases, this probability table 
equals 0. The second probability table is defi ned analogously. 

  Population Allele Frequencies:   Pr ( G  i,jp ),  Pr ( G  i,jm ) are allele fre-
quencies, where  i  is a  founder , namely, an individual in the pedigree 
whose biological parents are not included in the pedigree. The use 
of these models is based on the assumptions of Hardy-Weinberg 
and linkage equilibriums. 

  Marker Models:   Pr ( P  i,j  �  G  i,jp ,  G  i,jm ). These tables are also deter-
ministic. The probability table equals 1 if  P  i,j   =  ( G  i,jp ,  G  i,jm ), or if 
 P  i,j   =  ( G  i,jm ,  G  i,jp ). Otherwise it equals 0. The assumption underly-
ing these models is that there are no measurement errors. 

  Recombination Models:   Pr ( S  i,  1  p ) =  Pr ( S  i,  1  m ) = 0.5,  Pr ( S  i,jp   � S  i,j–  1  p ,  
 �   j–  1 ) and  Pr ( S  i  ,  jm  �  S  i,j–  1  m ,   �   j–  1 ), where   �   j–  1  is the recombination frac-
tion between locus  j –  1 and locus  j . The recombination fractions 
between the markers are specifi ed by the user in the input to SU-
PERLINK. These recombination models do not take genetic inter-
ference into account. 

 Each of these probability tables is called a  factor . For more de-
tails on the structure of the Bayesian network, consult [Fishelson 
and Geiger, 2002]. 

 We use the following notation to refer to the different variables: 
 S  for the set of all selector variables,  F  for the set of genetic loci 
variables of individuals with no parents in the pedigree (founders), 
and  N  for the set of genetic loci variables of non-founders. For hap-
lotyping, phenotypes are unordered genotypes of typed individuals, 
and are included in the evidence   �  . The Bayesian network of SU-
PERLINK represents the joint distribution  Pr ( S ,  F ,  N ,   �  ) in fac-
tored form: 

      Pr ( S ,  N ,  F ,   �  ) =  Pr ( S ,  �   ) Pr ( F   �  �  ) Pr ( N  �  F ,  S ,   �  ) .                           (1) 
  
 A maximum-likelihood haplotype confi guration of a pedigree is 

a maximum-likelihood assignment to all the genetic loci variables, 
namely a joint assignment { N  =  n 0  ,  F  =  f 0  }   which satisfi es: 

� � � �.�PrPr ����
sfn,00  n, f, s,fFnN max,

 Since we are interested in determining the most likely gene fl ow 
in addition to the most likely assignment to all the haplotypes, we 
seek a joint maximum-likelihood assignment to the selector vari-
ables and the genetic loci variables of founders, namely a joint as-
signment { S  =  s 0  ,  F  =  f 0  }   which satisfi es: 

                                                                                                      (2)� � � �  n, f, s,fFsS
nfs,00 .�PrPr ���� max  ,

 The genetic loci variables of non-founders,  N , are a function of the 
genetic loci variables of founders and the selector variables, which, 
for every  s ,    f , is zero for all values  n  except one. Consequently, solv-
ing eq. (2) is equivalent to: 

                                                                                                 (3)� � � �  n, f, s,nN fFsS
nf,s,000 ,�PrPr max, , ����

 which is an MPE problem. Thus the MAP problem, defi ned by eq. 
(2), is essentially an MPE problem which can be solved more easily. 

 Our algorithm for solving eq. (3) consists of several stages. The 
fi rst stage is a preprocessing step of value elimination on the graph 
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representation of the pedigree [Fishelson and Geiger, 2002]. At this 
stage inconsistent values for each variable given the evidence are 
removed, and the values of some of the genetic loci and selector 
variables can be determined unambiguously from the evidence, 
namely when all values except one are removed. Mendelian incon-
sistencies are also discovered at this stage. The value elimination 
performed is based on the well-known observation that the possible 
genotypes of an individual can be inferred from the genotypes of 
his relatives [e.g. Lange and Goradia, 1987]. When the value of a 
selector variable is determined by value elimination it implies that 
the parental origin of the corresponding allele is known, i.e., wheth-
er it came from the paternal or maternal haplotype of the parent. 

 After value elimination, we perform allele recoding. In this 
stage, the genotype lists of untyped individuals are recoded, result-
ing in a reduction in the number of genotypes that need to be 
summed over, and hence, in an acceleration of the computations. 
Our allele recoding algorithm, which is an adaptation of the ideas 
presented in [O’Connell and Weeks, 1995] to the task of haplotyp-
ing, is fully described in the next section. 

 Finally, haplotyping is done via performing the  Elim-Max  al-
gorithm [Dechter, 1998] on the Bayesian network to determine a 
maximum-likelihood assignment to the remaining variables. The 
Elim-Max algorithm, described in the appendix, is a variable elim-
ination algorithm in which variables are eliminated one after an-

other, each time computing the effect of the eliminated variable on 
the rest of the problem. The order by which variables are elimi-
nated greatly affects both time and space requirements of the com-
putations. In many cases, the memory limitation does not allow 
solving the problem using variable elimination alone, and hence, 
variable elimination is combined with conditioning. By condition-
ing, one means to instantiate some of the variables, perform the 
rest of the computations for each possible instantiation, and then 
merge the results. The order of variable elimination and condition-
ing is determined by a new algorithm described below. 

   Allele Recoding 
 When performing likelihood computations or haplotyping, all 

possible genotype combinations for the individuals in the pedigree 
need to be iterated over. When using highly polymorphic markers, 
any person who is untyped at some locus will have a large number 
of possible genotypes. A possible way to accelerate these computa-
tions is to recode alleles and thus reduce the number of possible 
genotypes that need to be iterated on. Several different methods 
have been proposed. One method is lumping all alleles that do not 
appear in the pedigree into a single allele whose population fre-
quency is the sum of frequencies of the lumped alleles [Lange et al., 
1988; Schäffer, 1996]. A more effi cient method, which recodes the 
paternal and maternal allele lists of each individual separately, has 
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  Fig. 1.  A fragment of a Bayesian network representation of parents-child interaction in a 3-loci analysis [adapted 
from Friedman et al., 2000]. The genetic loci variables of individual  i  at locus  j  are denoted by  G  i  ,  jp    and  G  i  ,  jm . 
Variables  P  i  ,  j ,  S  i  ,  jp , and  S  i  ,  jm    denote the phenotype variable, the paternal selector variable and the maternal selec-
tor variable of individual  i  at locus  j , respectively. 
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Algorithm Allele-Recoding

Input: A pedigree P of size n, where each individual is associated with a list of possible

paternal alleles and a list of possible maternal alleles at a given locus l.

Output: Each of the two allele lists of each individual is replaced by a list of sets of

alleles.

1. For i← 1 to n do {Initialize}
• If individual i is typed at locus l, then

Mark all the alleles in both his allele lists as transmitted.

Else

Mark all the alleles in both his allele lists as non-transmitted.

2. Traverse P in a bottom-up manner. Update untyped individual i as follows:{Mark}
• For each child j of i do

If i is a male, then

Mark each allele of i which appears as transmitted in j’s paternal allele

list as transmitted in i as well.

Else

Mark each allele of i which appears as transmitted in j’s maternal allele

list as transmitted in i as well.

•If i is an untyped founder, then {Only for haplotyping}
Let Ant be the set of non-transmitted alleles of i at locus l, and let

ak ∈ Ant be the allele with the highest population frequency in Ant.

Remove all alleles am ∈ Ant, am �= ak.

3. For i← 1 to n do {Recode}
• Replace each transmitted allele T by the set {T}.
• Replace all non-transmitted paternal alleles by one set Pn, which consists
of these alleles.

• Replace all non-transmitted maternal alleles by one set Mn, which consists

of these alleles.

4. Return.

  Fig. 2.  The allele recoding algorithm for the haplotyping problem. For likelihood computations, the second stage of 
step 2 is removed. 
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been suggested by O’Connell and Weeks [1995], and implemented 
in VITESSE. The allele recoding algorithm implemented in SU-
PERLINK is based on the ideas of  set-recoding  and  fuzzy inheri-
tance  defi ned in VITESSE. These defi nitions are repeated here for 
completeness. Our contribution is the adaptation of this algorithm 
to the task of maximum likelihood haplotyping for general pedi-
grees. 

 The allele-recoding algorithm is based on the observations that 
alleles have two roles in likelihood computations, and that valid 
recoding does not alter these roles: 

 1. Determine prior probabilities of founders’ genotypes. The gen-
otype frequency of a founder is computed using the population 
frequencies of the two alleles that constitute the genotype, assum-
ing Hardy-Weinberg equilibrium. 

2.  Determine recombination events. A recombination event is 
determined by identifying the parental origin of the child’s alleles, 
namely, whether the child’s alleles came from the paternal or ma-
ternal haplotype of his parent. Note that the allele identity does not 
matter here; only whether the allele matches the parent’s paternal 
or maternal allele. 

 An allele is defi ned to be  transmitted  if the following two condi-
tions are fulfi lled: (i) the allele appears in the ordered genotype list 
of a  typed  descendant  D  of  P , as inherited from; (ii) there is some 
path from  P  to  D  containing only  untyped  descendants in the ped-
igree, namely,  D  is the nearest typed descendant of  P  on that path. 
The remaining alleles are defi ned to be  non-transmitted . In terms 
of determining recombination events, a person’s non-transmitted 
alleles are indistinguishable from one another by data, and can 
therefore be combined into a single representative allele. 

 The allele recoding algorithm ( fi g. 2 ) is executed after initial 
value elimination is performed on the input pedigree as described 
in the previous section. At this stage, each individual is associated 
with two allele lists at each locus, a paternal allele list and a mater-
nal allele list. In the fi rst stage of the allele recoding algorithm, all 
alleles of typed individuals are marked as transmitted, and all al-
leles of untyped individuals are marked as non-transmitted. Next, 
the pedigree is traversed in a bottom-up manner where each un-
typed person is updated after his children have been updated. The 
update is performed as follows: each allele of the father which ap-
pears as transmitted in the paternal allele list of the child is marked 
as transmitted in the father as well. A similar update is done for 
mothers. After an untyped founder has been updated by all his chil-
dren, a fi nal processing is performed on the founder’s two non-
transmitted allele lists. In this stage, only the highest frequency 
allele in each of the two lists is kept. At the end of the algorithm, 
each set of non-transmitted alleles forms a set (e.g., { A, B, C }), and 
each transmitted allele  A  forms a set including only itself, i.e., { A }. 
Recall that, if a parent has the ordered genotype  A  �  B  and his child 
has allele  C , then  C  is inherited from the parent if  A = C  or  B = C . 
After allele recoding, however,  A ,  B , and  C  are now sets of alleles, 
and hence  C  is inherited from the parent if  A ⊆   C  or  B ⊆   C . This 
is termed  fuzzy inheritance  in [O’Connell and Weeks, 1995]. 

 In the appendix, we prove that the probability of the assignment 
found for the regular case (without allele recoding) is the same as 
the one found in the case of allele recoding. This claim proves the 
correctness of the allele recoding algorithm for maximum likeli-
hood haplotyping. Note that there is often more than one maximum 
likelihood assignment, but the algorithm described herein produc-
es only one. To produce all possible maximum likelihood assign-
ments, one needs to change the Elim-Max algorithm, described in 

the appendix, to store all optimizing values of each variable  X  v   
 rather than storing a single optimizing value. This addition increas-
es the time and space complexity of the computations. 

   Computation Order 
 The problem of determining a good combined order of variable 

elimination and conditioning is important for both likelihood com-
putations and haplotyping, since the chosen order has a major effect 
on both time and memory requirements of the computations. This 
problem has been addressed quite extensively in the context of ge-
netic linkage analysis. The two main approaches for performing 
likelihood computations on pedigrees are the Elston-Stewart algo-
rithm [Elston and Stewart, 1971] which peels one nuclear family 
after another, and the Lander-Green algorithm [Lander and Green, 
1987] which peels one locus after another. Another approach, pro-
posed by Lange and Boehnke [1983], is to peel one person after 
another. These approaches are all variants of variable elimination 
methods which use different fi xed elimination orders. Finding a 
good elimination order is also essential in a variety of combinato-
rial problems, such as: constraint satisfaction, independent set, 
dominating set, graph K-colorability and Hamiltonian circuit [Arn-
borg, 1985; Dechter, 1998], as well as in other applications of Bayes-
ian networks. 

 The problem of determining a good combined order of variable 
elimination and conditioning can be reduced to a graph-theoretic 
problem, namely, all elimination and conditioning operations are 
performed on the undirected graph representation of the Bayesian 
network. The undirected graph representation is obtained from the 
Bayesian network by connecting each pair of vertices that have 
edges leading into a common vertex, and removing the directional-
ity of the edges [Pearl, 1988]. 

 When a vertex is eliminated from the graph, its set of neighbors 
are connected to form a clique. By a clique we mean that every 
vertex in the set is connected with an edge to every other vertex in 
the set. The cost of eliminating vertex  v  from graph  G  i    is cGi

(v) = 
�uDN

–
Gi

(v) w(u),   where N
–

Gi
(v)   represents the set of neighbors of  v  includ-

ing  v  itself, and  w ( v ) is the weight of  v , namely, the number of pos-
sible values of variable  X  v . In the case when there is no memory 
limitation, we aim to fi nd an elimination order X̂  

�   which satisfi es   
X̂ �  = arg min� C(X�), where 

                                                                                                  (4)� � � �� �XcXC
n

i
i�G� i

1
�
�

� ,

 and   �   denotes a permutation on {1, ...,  n }. In eq. (4),  G  i ,  i =  2, ...,  n 
 denotes the sequence of residual graphs obtained from a given 
graph  G  1  =  G  by eliminating its vertices in the order  X   �   (1) , ..., 
 X   �   (  i–  1) . 

 This cost function, which is often referred to as the  total state 
space  (Kjærulff, 1990], is an approximated measure of the time and 
space complexity of the computations, provided that the heaviest 
clique created fi ts into the RAM size of the working environment. 
If this is not the case, then conditioning is needed and a more elab-
orate cost function, described in [Fishelson and Geiger, 2003], is 
required. In this case, we obtain a constrained elimination order 
 X   � , �    =  (( X   �   (1) , ...,  X   �   (  n  ) ),   �  ), which is a sequence of vertices along 
with a binary vector   �   such that vertex  X   �   (  i  )  is eliminated if   �   i   =  0 
and conditioned on if   �   i   =  1. 

 If we replace the summation in eq. (4) with maximization, name-
ly with  C ( X   �  ) = max 1    ̂   i  ̂   n   c  G  i    ( X   �   (  i  ) ), then the resulting cost function 
represents the weight of the heaviest clique created during the elim-
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ination, which is called the  weighted treewidth  of the graph with 
respect to the specifi c elimination order. Our aim is to fi nd an elim-
ination order which produces the lightest heaviest clique among all 
elimination orders, namely, to fi nd the so called  weighted treewidth 
 of the graph. If, in addition to replacing the summation with maxi-
mization, the weight of all vertices is constant, then this problem is 
reduced to fi nding the  treewidth  of the graph, which is NP-complete 
[Arnborg et al., 1987]. The treewidth of a graph with respect to a 
given elimination order is the size of the largest clique created dur-
ing the elimination minus one. The treewidth of a graph is the min-
imal treewidth over all possible elimination orders for the graph. 

 We devised a new algorithm for fi nding a combined order of 
variable elimination and conditioning and applied it for both hap-
lotyping and likelihood computations. The algorithm is composed 
of two stages. First, a set of reduction rules are applied on the graph 
as a preprocessing step. Second, several stochastic-greedy algo-

rithms are applied sequentially to determine an elimination order 
for the residual graph. 

   Preprocessing Rules 
 Eijkhof et al. [2002] present a set of safe reduction rules for the 

 weighted treewidth  problem. Application of these rules can signifi -
cantly reduce the size of the graph, without increasing the weighted 
treewidth of the graph. We tested these rules for our optimization 
problem and found that two of these reduction rules, the  simplicial 
 and the  almost simplicial  rules, are worthy to incorporate. The run 
time of these rules is negligible compared to the total run time for 
fi nding an elimination order, and by reducing the size of the graph, 
each iteration of the stochastic-greedy algorithms applied later is 
shorter. Throughout the application of the reduction rules, a vari-
able  low  which represents the largest lower bound known for the 

Procedure SG(G, T, C1, C2)

Input: A weighted undirected graph G(V,E,w), a threshold T, and two cost

functions (C1, C2).

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Initialize vector β of size n with zeroes.

2. i← 1

3. G← Gi

4. While Gi is not the empty graph do

• forall X ∈ Vi compute the cost C1(X)

• Pick 3 vertices Xk1 , Xk2 , Xk3 with a minimum cost C1.

• Flip a coin, biased according to the costs of the 3 vertices, to choose Xk.

• If CGi(Xk) > T then {conditioning on Xk}
Pick Xk that optimizes C2 to condition on.

βi ← 1

Else {eliminating Xk}
Ei ← Ei

⋃ {(u, v)|u, v ∈ NGi(Xk)} (connect all the neighbors of Xk)

• Remove Xk and its incident edges from Gi

• α(i)← k

• i← i+ 1

5. Return Xα,β = ((Xα(1), . . . , Xα(n)), β)
  Fig. 3.  Procedure SG. 
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weighted treewidth of the original graph is maintained. We denote 
by  nw ( v ) the product �uDN

–
Gi

(v) w(u). 
   Simplicial Rule.   Let  v  be a  simplicial  vertex in  G  i , namely, its 

set of neighbors form a clique. Recall that a clique is a set of verti-
ces where every vertex is connected to every other vertex. The sim-
plicial rule removes  v  from the graph, and updates the variable  low : 
 low = max ( low ,  nw ( v )). 

   Almost Simplicial Rule .  A vertex  v  is called an  almost simplicial 
 vertex in  G  i    if all its neighbors, except one  u , form a clique. Vertex 
 v  is removed if  low   6   nw ( v ) and  w ( v )  6   w ( u ). 

   Stochastic-Greedy Algorithms 
 Three Stochastic-Greedy algorithms for fi nding a combined or-

der of variable elimination and conditioning, all based on the same 
common procedure SG ( fi g. 3 ), have been incorporated. The input 
to this procedure is a weighted undirected graph  G ( V ,  E ,  w ) result-
ing from the application of the reduction rules, a threshold  T  which 
represents the memory limitation, and two cost functions,  C  1  and 
 C  2 , that vary between the three algorithms. The threshold  T  is de-
termined dynamically according to the memory available at run 
time. According to cost function  C  1 , the next vertex to eliminate is 
chosen, and according to  C  2 , a vertex to condition on is chosen. In 
each iteration, three vertices with a minimal cost (according to  C  1 ) 
are selected, and a coin, biased according to the costs of the vertices, 
is fl ipped to choose between them. If in iteration  i , the weight of 
the clique created by the elimination of the chosen vertex is above 
the given threshold, a new vertex is chosen (according to  C  2 ) to 
condition on rather than eliminate. Procedure SG is run many 
times, each time fi nding a new elimination order, and comparing 
it to the best order found so far. If the cost of the new elimination 
order is smaller than that of the best previously found order, then 
the new order and cost are recorded. 

 The stochastic-greedy algorithms used are:  Min-Weight  (Min-
W),  Min-Fill , and  Weighted Min-Fill  (WMin-Fill). The fi rst two 
algorithms are based on known cost functions (Kjærulff, 1990], 
whereas the cost function of the  Weighted Min-Fill  algorithm is new 
and shows superior performance in many cases, as demonstrated 
by Experiment E. We now describe the different cost functions. The 
cost  C  1  of eliminating a vertex according to the  Min-Weight  heu-
ristic is the product of weights of its neighbors, whereas the cost of 
eliminating a vertex according to the Min-Fill heuristic is the num-
ber of edges that need to be added to the graph due to its elimina-
tion. The Weighted Min-Fill heuristic is a novel modifi cation of the 
Min-Fill heuristic to a weighted graph. If we defi ne the  weight of an 
edge  to be the product of weights of its constituent vertices, then 
the cost of eliminating a vertex according to the Weighted Min-Fill 
heuristic is the sum of weights of the edges that need to be added 
due to its elimination. The cost function  C  2  for the Min-Fill and 
Weighted Min-Fill algorithms is the same as the fi rst option de-
scribed in [Fishelson and Geiger, 2003], i.e., 

� � � � � �XCXNXC
iG 12 � ,

 where  N  G i  ( X ) represents the set of neighbors of  X  in  G  i , and  �  N  G i  ( X ) �  
represents the number of neighbors of  X  in  G  i . The cost function 
 C  2  for the Min-Weight algorithm is the same as the second option 
described in [Fishelson and Geiger, 2003], i.e., 

� � � � � �XCXfXC
iG 12 � ,

 where  f  G i  ( X ) are the probability tables that include  X  (called factors) 
accompanying graph  G  i . 

 The incorporation of these three algorithms and not others that 
were tried, such as Maximum Cardinality Search MCS [Tarjan and 
Yannakakis, 1984] or a weighted version of it (WMCS), is based 
on the fact that the other algorithms are superior in only a few 
cases. Neither of the three algorithms that were incorporated is bet-
ter than the others in all cases, and therefore, each of the algorithms 
is run a certain percentage of the total optimization time ( fi g. 4 ). 
We denote by %MW, %MF, and %WMF the percentage of itera-
tions spent on running the Min-Weight, Min-Fill, and Weighted 
Min-Fill algorithms respectively. These percentages have been de-
termined experimentally based on the relative performance of each 
algorithm. The total number of iterations  N  is determined accord-
ing to the complexity of the problem at hand, which is estimated 
according to the cost of the elimination order found by the  deter-
ministic-greedy  Min-Weight algorithm [Fishelson and Geiger, 
2003]. The only difference between the deterministic algorithm and 
the stochastic algorithm is that in each iteration, the deterministic 
algorithm chooses to eliminate a vertex with a minimal elimination 
cost according to the Min-Weight cost function, rather than fl ip a 
coin. If the cost of the elimination order found by this determinis-
tic algorithm is lower than some threshold  C  min    then no optimiza-
tion is performed. 

 The superior performance of the Min-Fill algorithms, as ob-
served from Experiment E, may stem from the following observa-
tion. Assume that there is a set of vertices that almost forms a clique. 
Despite the fact that the elimination of one of these vertices would 
add only a few edges to the graph, this vertex would not be a pre-
ferred vertex to eliminate by the Min-Weight heuristic if the clique 
that is created is heavy. Hence, the Min-Weight Heuristic may 
complicate the given graph by choosing in some early iterations 
vertices whose elimination creates light cliques but possibly adds 
many edges to the graph. 

   Complexity Analysis 
 As mentioned above, the Elston-Stewart algorithm proceeds by 

peeling one nuclear family after another, and hence, its complexity 
is linear in the pedigree size (for suffi ciently simple pedigrees), but 
exponential in the number of loci in the analysis. The Lander-Green 
algorithm, on the other hand, which proceeds by peeling one locus 
after another, is exponential in the number of individuals in the 
pedigree but linear in the number of loci. In the following, we argue 
that the time complexity of the Elston-Stewart and Lander-Green 
algorithms is in fact dominated by the sum of sizes of the factors 
created during the computation, each in a different but predeter-
mined order of variable elimination. Consequently, these algo-
rithms’ time complexity is a special case of our algorithm’s time 
complexity, which is also dominated by the sum of sizes of the fac-
tors created during the computation. The difference is that our al-
gorithm does not rely on a fi xed elimination order, but determines 
it automatically according to the problem at hand, so as to minimize 
the sum of sizes of the factors created during the computation, and 
hence, minimize the run time. 

 If we were to build a Bayesian network representation of the 
pedigree according to the Elston-Stewart algorithm, then each per-
son would be represented by a variable in the network. Since each 
variable represents a multi-locus genotype, the number of possible 
values of a variable is exponential in the number of loci in the 
analysis. The elimination order, according to the Elston-Stewart 
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algorithm, involves peeling one nuclear family at a time; namely, 
in each step, we create a factor which includes all variables of a 
nuclear family. The size of this factor is a product of the number 
of individuals in the nuclear family and the number of possible 
multi-locus genotypes for each family member. The complexity of 
the algorithm is dominated by the sum of sizes of the factors cre-
ated during the computation, which is on the order of the product 
of the number of individuals in the pedigree and the number of 
values of a variable. Hence, the complexity is exponential in the 
number of loci in the analysis and linear in the number of indi-
viduals in the pedigree. 

 If we were to build a Bayesian network representation of the 
pedigree according to the Lander-Green algorithm, then each sin-
gle-locus genotype would be represented by a variable in the net-
work. The elimination order, according to the Lander-Green algo-
rithm, involves peeling one locus at a time; namely, in each step, 
we create a factor which includes all variables representing a single 
locus. Hence, the size of the factor is exponential in the number of 
individuals in the pedigree. The complexity of the algorithm is 
dominated by the sum of the factors created during the computa-
tion, which is on the order of the product of the number of the loci 

in the analysis (or, equivalently, the number of factors created) and 
the size of a factor. Namely, the complexity is exponential in the 
number of individuals in the pedigree and linear in the number of 
loci in the analysis. 

 To summarize, the complexity of all three algorithms is domi-
nated by the sum of sizes of the factors created during the computa-
tion, which depends on the specifi c elimination order chosen by each 
algorithm. If our algorithm chooses an elimination order as in Elston-
Stewart, then its complexity is exponential in the number of loci and 
linear in the number of individuals. If it chooses an elimination order 
as in Lander-Green, then its complexity is exponential in the number 
of individuals and linear in the number of loci. For any intermediary 
order, the complexity is somewhere in the middle. 

 From a practical point of view, the complexity of our algorithm 
depends on the size of the pedigree, the complexity of the pedigree, 
the number of loci in the analysis, the number of typed individuals, 
and the elimination order found. It is hard to predict in advance 
the exact complexity of a given problem. In order to assist the user 
in determining the complexity of a given problem, SUPERLINK 
prints the complexity class of the elimination order  X   � , �   found, 
which is defi ned as log 10   X   � , �  . If the complexity class is 14 or 

  Fig. 4.  Algorithm Find-Order. 

Algorithm Find-Order(G, T ,Cmin)

Input: A weighted undirected graph G(V,E,w), a threshold T, and a

minimum cost Cmin.

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Xα,β ← deterministic-greedy(G, T )

2. If C(Xα,β) < Cmin then return Xα,β

3. Set N (total � of iterations) according to C(Xα,β)

• I [1]← �%MW ∗N�
• I [2]← �%MF ∗N�
• I [3]← �%WMF ∗N�

4. For j ← 1 to 3 do

For i ← 1 to I [j] do

• Find a candidate order:
Xtemp
α,β ← SG(G, T, Cj

1 , C
j
2)

• Update the best order:
If C(Xtemp

α,β ) < C(Xα,β) then

Xα,β ← Xtemp
α,β

5. Return Xα,β
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higher, then computations are very time consuming or even infea-
sible. In such a case, the user can use MCMC methods to generate 
an approximate maximum-likelihood haplotype confi guration. 

 It should be emphasized that with hundreds of SNP markers, it 
is not feasible to fi nd optimal haplotypes without resorting to the 
elimination order as in Lander-Green algorithm which works for 
small pedigrees. For larger pedigrees, approximation algorithms are 
needed. 

   Results 

 We performed several experiments to test the new al-
gorithms. The experiments can be divided into two class-
es. The fi rst class compares the performance of our hap-
lotyping algorithm to existing haplotyping algorithms. 
The second class is designed to test the performance of 
the new optimization algorithm. In all experiments in 
which pedigree data was simulated, the assumptions un-
derlying the simulation were: Hardy-Weinberg and link-
age equilibrium, no mutation and no interference. All 
input fi les and results of the experiments are readily avail-
able online. 

   Evaluation of the Haplotyping Algorithm 
 Experiment A (Simulation Study) 
 We tested our haplotyping algorithm on a complex 

pedigree of moderate size ( fi g. 5 ). This pedigree was 
adapted from  fi gure 2  in Lin [1996]. So far, only an ap-
proximate haplotype analysis was possible for this pedi-
gree. We simulated a random haplotype confi guration for 
this pedigree using the simulation guidelines described by 
Lin and Speed [1997], and obtained a maximum likeli-
hood haplotype confi guration in several minutes using 
SUPERLINK. This pedigree consists of 27 individuals 
and is highly inbred. All individuals, except for those in 
the fi rst two generations, were typed at 10 polymorphic 
markers, each with 5 alleles of equal frequencies. The re-
combination fraction between each pair of consecutive 
markers was set to 0.05. The progress made in resolving 
this pedigree can be appreciated by citing Lin and Speed 
[1997]:  ‘   This is a very complex though moderate sized 
pedigree, with 10 polymorphic markers, and it does not 
seem to us to be possible to carry out a haplotype analysis 
for it with existing non-simulation-based statistical meth-
ods. ’

   We note that GENEHUNTER removes 12 individu-
als from the pedigree in order to perform the computa-
tions. To the best of our knowledge, no previous exact 
algorithm can produce the maximum likelihood haplo-
type confi guration for this pedigree. 

   Experiment B (Testing Correctness) 
 We tested the correctness of our maximum likelihood 

haplotyping algorithm by implementing three indepen-
dent versions of the algorithm, and comparing the results 
obtained by all three versions. Each version was imple-
mented by different people, to assure an independent 
evaluation. By correctness we mean that the software 
fi nds a haplotype confi guration of maximum likelihood 
given the assumptions of Hardy-Weinberg and Linkage 
equilibrium. We tested 60 data sets consisting of 5 to 150 
individuals and up to 200 markers. In all tested data sets, 
all three versions produced haplotype confi gurations with 
the same likelihood. It should be noted that there is usu-
ally more than one maximum-likelihood haplotype con-
fi guration, and hence, various algorithms often produce 
different haplotype confi gurations. 

   Experiment C (Testing Accuracy) 
 Existing approximate methods for haplotyping pro-

vide no guarantee on the accuracy of the output. Using 
our haplotyping algorithm, approximated haplotyping 
can be compared with the optimal solution on larger ped-
igrees than was previously possible. This experiment test-
ed the accuracy of a state of the art program that uses 
MCMC, called SIMWALK2 [Sobel and Lange, 1996]. We 
tested 75 random data sets consisting of 15 to 50 indi-

  Fig. 5.  A complex pedigree of moderate size used for the simulation 
study in Experiment A. Adapted from  fi gure 2  in Lin [1996]. 
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viduals and up to 10 markers. SIMWALK2 found a max-
imum likelihood assignment in 45 out of the 75 data sets. 
In the other 30 data sets, the average difference in the log-
likelihood of the assignment reported by SIMWALK2 
compared to the maximum likelihood assignment was 
merely 1%. 

 An example for the different outputs of SUPERLINK 
and SIMWALK2 is shown in  fi gures 6  and  7 . These fi g-
ures show the haplotype confi gurations obtained by SU-
PERLINK and SIMWALK2 for one of the data sets used 

in this experiment (data set 14). This is a loopless pedigree 
with 30 individuals, typed at 6 polymorphic markers. The 
recombination fractions between the markers according 
to their linear order are: 0.154, 0.229, 0.225, 0.194, 0.17. 
As can be seen from  fi gures 6  and  7 , the two haplotype 
confi gurations are quite similar. Many of the differences 
involve different phases in the haplotypes of founders. 
Such information can not be discerned by the data, and 
hence, such differences are meaningless. However, the 
haplotype confi guration found by SIMWALK2 contains 
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  Fig. 6.  The maximum-likelihood haplotype confi guration obtained by SUPERLINK for one of the datasets in 
Experiment C (dataset 14). Its log 10  likelihood is –121.41774. It is 4.2 times more likely than the haplotype con-
fi guration reported by SIMWALK2 (see  fi g. 7 ). 
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9 recombination events whereas the haplotype confi gura-
tion found by SUPERLINK contains merely 7 recombi-
nation events. The positions of 5 of the recombination 
events found by both programs are the same. The other 
2 recombination events found by SUPERLINK are in 
different positions than those found by SIMWALK2. The 
likelihood of the haplotype confi guration found by SU-
PERLINK is 4.2 times higher than the one reported by 
SIMWALK2. In practice, one can not infer which haplo-
type confi guration is closer to the real confi guration; how-
ever, the haplotype confi guration obtained by SUPER-

LINK is always a haplotype confi guration of maximum-
likelihood, whereas SIMWALK2 does not always provide 
a haplotype confi guration of maximum-likelihood, as can 
be seen from this example. 

 The MRH software [Qian and Beckmann, 2002] could 
not run on any of the data sets used in this experiment. 
We also tested the Block-Extension option of pedphase 
[Li and Jiang, 2003b], running it 200 times on each data 
set. Coherent output was obtained in 37.64% of the runs. 
In those cases where coherent output was produced, SU-
PERLINK produced haplotype confi gurations with less 
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  Fig. 7.  The haplotype confi guration obtained by SIMWALK2 for one of the datasets in Experiment C (dataset 
14). The log 10  likelihood is –122.04171. 
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or equal number of recombination events compared to 
pedphase. This is interesting to note because the goal of 
pedphase is to minimize the number of recombination 
events while superink maximizes the likelihood of data. 

   Experiment D (Published Disease Data) 
 We analyzed two published data sets from a study of 

the Krabbe disease by Oehlman et al. [1993], and from a 
study on Episodic Ataxia (EA) by Litt et al. [1994]. In 
both analyses, we assumed linkage equilibrium between 
the analyzed markers. The Krabbe data set consists of 9 
individuals typed at 8 polymorphic markers on chromo-
some 14. The marker names, according to their linear 
order are: D14S47, D14S52, D14S43, D14S53, D14S55, 
D14S48, D14S45, D14S51. The respective sex-averaged 
recombination fractions between these markers are: 

0.1106, 0.1799, 0.0319, 0.0773, 0.0186, 0.1567, 0.0148. 
The most likely haplotype confi guration obtained by SU-
PERLINK for the Krabbe data set ( fi g. 8 ) is identical to 
the one obtained by MCMC via SIMWALK2 [Sobel et 
al., 1995; Sobel and Lange, 1996], by Lin and Speed 
[1997], and by pedphase [Li and Jiang, 2003b]. 

 The Episodic Ataxia data set consists of 29 individu-
als, which are all typed at 9 polymorphic markers on chro-
mosome 12 except for the fi rst two generation founders. 
The names of the markers, with respect to their linear 
order are: D12S91, D12S100, CACNL1A1, D12S372, 
pY2/1, pY21/1, KCNA5, D12S99, and S12S93. The re-
spective sex-averaged recombination fractions between 
these markers are: 0.01, 0.01, 0.03, 0.03, 0.01, 0.01, 0.01, 
and 0.01. The most probable confi guration found by SU-
PERLINK for this data set ( fi g. 9 ) is confi guration D in 
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  Fig. 8.  The maximum-likelihood haplotype 
confi guration obtained by SUPERLINK 
for the Krabbe dataset [Oehlman et al., 
1993]. 
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  Fig. 9.  The maximum-likelihood haplotype confi guration obtained by SUPERLINK for the Episodic Ataxia da-
taset [Litt et al., 1994]. All individuals are typed. Recombination is seen at individuals 100, 113, and 9004. 
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 fi gure 2  of Qian and Beckmann [2002], which differs from 
the one obtained by SIMWALK2 [Sobel et al., 1995; So-
bel and Lange, 1996] in the position of one recombination 
event. The only difference is the genotype phase in the 
fourth marker of individuals 1007 and 113. This confi gu-
ration is also very similar to the one found by Lin and 
Speed [1997]. 

   Evaluation of the Optimization Algorithm 
 Experiment E (Stochastic Algorithms) 
 This experiment compared the performance of differ-

ent stochastic-greedy algorithms ( table 1 ). Each of the sto-
chastic algorithms is run for 1000 iterations, after the 
reduction rules have been applied. We used graphs cre-
ated from simulated pedigree data. Note that this experi-
ment compares the elimination costs found by the algo-
rithms for the case where  T  = G, namely no conditioning 
is performed. The results presented in  table 1  are a rep-
resentative sample from the experiment that was per-
formed on 100 data sets. In 100 data sets, the distribution 
of algorithms that found the lowest cost was as follows: 
Min-Weight – 4%, MCS – 9%, WMCS – 7%, Min-Fill – 
25%, and Weighted Min-Fill – 76%. Note that these per-
centages do not sum to 100% since, for some data sets, 
several algorithms found a minimal cost elimination or-
der. As can be seen, the Min-Fill and Weighted Min-Fill 

are superior to the other heuristics. However, since the 
Min-Weight heuristic is the fastest and it works well when 
conditioning is needed (results not shown), it is profi table 
to fi rst run it and then run the Min-Fill and Weighted 
Min-Fill heuristics. The MCS and Weighted-MCS heu-
ristics have been found to hardly contribute when applied 
after the Min-Weight heuristic and are therefore not in-
corporated. To summarize, using an algorithm which 
combines the three algorithms, Min-Weight, Min-Fill, 
and Weighted Min-Fill, is superior to running only one 
of them, provided the optimization time is small enough 
compared to the total run time, as is the case for suffi -
ciently large pedigrees. 

   Experiment F (Total Run Time) 
 This experiment compared the run time of likelihood 

computation with the new optimization algorithm for de-
termining an elimination order presented herein, to the 
run time with the previous optimization algorithm. The 
total run time includes both optimization time and infer-
ence time. We demonstrate the performance of the opti-
mization algorithm using likelihood computations rather 
than haplotyping, since haplotyping was not implement-
ed in the previous version of SUPERLINK. We tested 50 
randomly simulated data sets chosen so that the run time 
in the new version is above 10 s and below 10 h. The graph 

#Locia #Peopleb %Typedc Min-Wd MCSe WMCSf Min-Fillg WMin-Fillh

12 25 80 3.97 5.15 5.36 3.94 3.93
14 27 63 17.00 15.54 22.27 14.17 14.22
16 22 89 5.30 8.08 8.61 5.22 5.22
20 31 71 10.99 12.62 15.67 10.38 10.03
17 29 56 12.77 11.41 20.15 11.14 10.56
19 33 95 6.19 7.03 7.55 5.70 5.91
18 31 47 8.36 10.27 13.01 8.23 7.90
13 30 30 2.79 2.81 2.81 2.80 2.80
22 38 86 6.72 9.41 13.85 6.46 6.37
20 48 91 9.28 14.73 13.45 7.84 7.61

The cost reported is the log10 of the sum of weights of cliques created during elimina-
tion. Best results are in bold. WMin-Fill is superior in most cases for a variety of pedigree 
problems.

a Number of loci being analyzed.
b Number of people in the pedigree.
c Percentage of typed people in the pedigree.
d Elimination cost obtained by the Min-Weight algorithm.
e Elimination cost obtained by the Maximum Cardinality Search algorithm.
f Elimination cost obtained by the Weighted Maximum Cardinality Search algo-

rithm.
g Elimination cost obtained by the Min-Fill algorithm.
h Elimination cost obtained by the Weighted Min-Fill algorithm.

Table 1. Comparing different stochastic-
greedy algorithms

HHE610.indd   15HHE610.indd   15 15.02.2005   12:18:0515.02.2005   12:18:05



P
R
O

O
F

P
R
O

O
F

 Fishelson/Dovgolevsky/Geiger

 

 Hum Hered 610 16

in  fi gure 10  shows that timing was improved in 47 out of 
50 data sets, often by an order of magnitude. 

   Experiment G (Benchmarks) 
 This experiment ( table 2 ) tested the performance of the 

three stochastic-greedy algorithms, on eight known bench-
marks for Bayesian networks inference. The stochastic al-
gorithms are run after the reduction rules have been ap-
plied. We present the best elimination cost found by the 
algorithms after 100 iterations and after 1000 iterations. 

Also presented for each benchmark are the best known 
elimination cost and the elimination cost found by 
 HUGIN6.1 [Andersen et al., 1989; Hugin, 2002], which is 
a leading software for Bayesian networks. As can be seen, 
in most cases, running a few iterations of the stochastic-
greedy algorithms is superior to the algorithm of  HUGIN6.1. 
Another conclusion that can be drawn from this experi-
ment is that the results of the stochastic-greedy algorithms 
are comparable to  simulated annealing  [Kjærulff, 1990] 
which is a very time consuming algorithm, and hence not 

Table 2. Testing some Stochastic-Greedy Algorithms on known benchmarks

Problem Known
costa

Hugin
costb

Cost after 100 iterations Cost after 1000 iterations

Min-Wc Min-Filld WMin-Fille Min-W Min-Fill WMin-Fill

Barley 1.71 E07 1.73 E07 1.95 E07 1.73 E07 1.82 E07 no change 1.71 E07 1.8 E07
Diabetes 9.83 E06 1.04 E07 1.03 E07 1.56 E07 1.24 E07 1.01 E07 1.38 E07 1.21 E07
Link 2.4 E07 2.62 E07 4.31 E07 2.76 E07 3.78 E07 4.15 E07 2.66 E07 3.14 E07
Munin1 8.69 E07 1.88 E08 1.84 E08 1.54 E08 1.39 E08 no change 8.76 E07 no change
Munin2 2.05 E06 2.76 E06 4.05 E06 3.53 E06 4.36 E06 3.79 E06 no change 4.35 E06
Munin3 3.08 E06 3.24 E06 3.28 E06 3.26 E06 3.11 E06 3.27 E06 3.2 E06 3.11 E06
Munin4 9.84 E06 1.64 E07 1.72 E07 2.0 E07 1.37 E07 1.58 E07 no change 1.34 E07
Water 3.03 E06 8.04 E06 3.66 E06 3.03 E06 3.47 E06 3.62 E06 no change no change

a Best known elimination cost.
b Elimination cost found by HUGIN6.1 [Andersen et al., 1989; Hugin, 2002].
c Elimination cost obtained by the Min-Weight algorithm.
d Elimination cost obtained by the Min-Fill algorithm.
e Elimination cost obtained by the Weighted Min-Fill algorithm.
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  Fig. 10.  Run time comparison of likelihood 
computation using the new optimization al-
gorithm versus the previous optimization 
algorithm. On each dataset, the old version 
was run for up to a couple of hours, and the 
total run time was estimated according to 
the percentage of the computation that was 
completed at that time. For those datasets 
where the estimated run time of the old ver-
sion was well over 300 h, the run time ap-
pears as 10 6  s. 
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a viable option for minimizing the total run time for ge-
netic linkage analysis. As can be seen from  table 2 , after 
100 iterations the best known cost for the Water problem 
is matched, and after 1000 iterations the best known cost 
for the Barley problem is also matched. 

   Experiment H (Reduction Rules) 
 This experiment tested the gain due to the reduction 

rules presented in Eijkhof et al. [2002]. The data sets used 
are 20 graphs, out of which 12 are created from simulated 
pedigree data and 8 are known benchmarks for Bayesian 
networks inference. We have found that two of the reduc-
tion rules, the  simplicial  rule and the  almost simplicial 
 rule, are worthy to apply in almost every problem. Apply-
ing these rules usually eliminated between 50 and 60% of 
the vertices in the data sets ( table 3 ). The other two reduc-
tion rules, the  buddies  rule and the  cube  rule, are more 
time consuming, and applying them does not yield suffi -
cient improvement; therefore we do not use these rules. 

   Discussion 

 The use of Bayesian networks enables effi cient maxi-
mum likelihood haplotyping for more complex pedigrees 
than was previously possible. We adapted and combined 
several algorithms, allele recoding, reduction rules, elim-
ination algorithms, and the Elim-Max inference algo-
rithm, into a working system for haplotyping readily 
available for use by geneticists. This advancement can 
also be utilized for checking approximate haplotyping al-
gorithms such as MCMC. 

 Several new features have been incorporated in the 
algorithm for optimizing the elimination order presented 
herein. First, reduction rules are applied to speed the 
computations. Second, several greedy algorithms are run, 
rather than one. Their allocated relative run time is based 
on experiments on many Bayesian networks. Third, 
among the greedy algorithms that are applied, a new 
greedy algorithm is introduced (Weighted Min-Fill). 

#Vertices #Edges Using two reduction rules Using four reduction rules

% of
vertices
eliminated

run
timea

% of
run
timeb

% of
vertices
eliminated

run
time

% of
run
time

48 126 39.6 0.00 0.00 39.6 0.00 0.00
413 819 19.6 0.00 0.00 19.6 0.01 4.76
724 1,738 53.2 0.00 0.00 53.2 0.02 7.13
189 366 52.2 0.00 0.00 52.2 0.00 0.00

1,003 1,662 68.4 0.00 0.00 68.4 0.03 9.56
1,044 1,745 82.4 0.00 0.00 83.5 0.03 9.18
1,041 1,843 74.0 0.00 0.00 74.0 0.02 6.83

32 123 31.3 0.00 0.00 31.3 0.00 0.00
1,676 2,987 58.0 0.03 5.54 58.0 0.10 18.7
2,449 4,320 57.7 0.06 6.74 57.7 0.34 33.2
3,224 5,641 54.5 0.08 7.14 54.7 0.30 16.7
3,254 5,754 59.0 0.06 4.41 59.0 0.30 21.9
4,720 8,211 57.8 0.15 7.58 57.8 0.75 29.8
6,242 10,814 54.7 0.16 4.98 55.2 0.63 18.3
4,859 8,517 59.6 0.12 6.85 59.6 0.56 23.6
7,040 12,104 60.0 0.28 9.14 60.0 1.32 31.7
9,276 15,926 55.3 0.30 7.47 55.6 1.56 24.3
6,372 11,198 57.8 0.17 5.87 57.8 1.56 24.3
9,292 16,096 57.9 0.37 7.73 57.9 2.23 38.9

12,278 21,215 54.3 0.54 7.78 54.5 6.02 73.2

Results in bold indicate problem instances where application of the four reduction rules 
eliminated more vertices than application of only two rules.

a Run time is specifi ed in seconds.
b The percentage of time spent on reduction rules out of the time required for fi nding 

an elimination order, when merely one iteration of the stochastic-greedy algorithm is per-
formed.

Table 3. Reduction rules experiments
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Fourth, the threshold which controls the time-space 
 tradeoff is determined at run time according to the mem-
ory of the computer, rather than fi xed a priori. Our new 
optimization algorithm is applied whenever the elimina-
tion cost found by a quick greedy algorithm is above a 
certain threshold (log 10   C   6    9 in the current implementa-
tion). The result is an optimization algorithm which is 
superior in total run time to the algorithm in Fishelson 
and Geiger [2003] in 47 of the 50 instances we tried, often 
by an order of magnitude (Experiment D). The presented 
order optimization algorithm is used in SUPERLINK for 
LOD score computations as well as for haplotyping. 
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Algorithm Elim-Max (Dechter, 1998)

Input: A Bayesian network 〈G,P 〉; an ordering d of the variables; evidence ε.
Output: The most probable assignment to the variables of the Bayesian network, and its

probability.

1. Initialize: Generate an ordered partition of the conditional probability tables {Pi}
into buckets, where bucket Bi contains all the probability tables and evidence whose

largest-index variable is Xi.

2. Backward phase (compilation phase):

For i = n to 1, process bucket Bi as follows:

Let h1, . . . , hk be all the probability tables (new and old) in Bi at the time it is

processed, and let S1, . . . , Sj be the subset of variables in Bi on which probability

tables (new and old) are defined.

• If Bi contains Xi = ai (Xi is observed), assign Xi = ai to each hl, and place it

in the bucket of the largest-index variable that appears in its scope.

• Else, Ui =
⋃k
j=1 Sj − {Xi}. Generate function hi = maxxi

∏k
l=1 hl, and place it

in the bucket of the largest-index variable in Ui. Store the optimizing value of

Xi for each tuple of Ui, X
opt
i (Ui) = argmaxxi

∏k
l=1 hl.

3. Store: the constant computed in B1. This is the probability of the most probable

assignment to the variables of the network.

4. Forward phase (process Xi after finding an assignment to X1, . . . , Xi−1):

For i = 1 to n, process bucket Bi as follows:

• Given the assignment Ui = ui, choose xi = Xopt
i (ui).

5. Return: the assignment selected for the variables of the network and its probability.

   Appendix A 
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   Appendix B 

  Proposition:  The probability of the haplotype confi guration 
found using allele recoding is the same as the probability of the 
haplotype confi guration found without allele recoding. 

  Proof:  Recall that a haplotype confi guration is an assignment of 
values to all genetic loci variables of individuals in the pedigree. 
For the proof, we use the word  assignment  rather than haplotype 
confi guration. We divide the set of all possible assignments to two 
sets:  A  1  and  A  2 . The set  A  1  consists of all assignments which fulfi ll 
the following conditions: (i) at least one allele assigned to a found-
er belongs to the set of non-transmitted alleles of this founder, and 
(ii) this allele is not the one with the highest frequency among the 
set of non-transmitted alleles of this founder. The set  A  2  consists of 
all other consistent assignments given the data, namely, all assign-
ments which fulfi ll the following condition: each allele assigned to 
a founder either belongs to the set of transmitted alleles of this 
founder, or it is the allele of maximum frequency among the list of 
non-transmitted alleles of this founder. The proof follows from the 
following two claims. 

  Claim 1:  The maximum likelihood assignment is in the set  A  2 . 
  Proof:  Assume to the contrary of the claim that the maximum-

likelihood assignment is in the set  A  1  and denote it by  a  0 . Suppose, 
without loss of generality, that for some founder  P  in locus i, there 
are two non-transmitted alleles,  N  1  and  N  2 . Assume that allele  N  1  
is chosen in assignment  a  0 , and that  Pr ( N  2 )   1  Pr ( N  1 ). Since  N  1  is 
non-transmitted, no typed descendant of  P  inherited this allele 
from  P . Hence, we can replace allele  N  1  with allele  N  2  in assignment 
 a  0  in all individuals that inherited this allele from  P  according to 
 a  0 , obtaining a consistent assignment denoted by  a  1 . The only dif-
ference in the likelihood of these two assignments is in the frequen-
cy of allele  N  2  compared to the frequency of allele  N  1 . Since 

 Pr ( N  2 )   1  Pr ( N  1 ), it follows that  Pr ( a  1 )   1  Pr ( a  0 ) in contrary to the as-
sumption that  a  0  is the maximum likelihood assignment. 

  Claim 2:  The probability of each assignment  a  D  A  2  using allele-
recoding is the same as without using allele recoding. 

  Proof:  There are three types of probability functions: 
 1.  Pr ( S ,   �  ) – this function does not change under allele recoding 

because selector variables do not change. 
 2.  Pr ( F ,   �  ) – this function is the product of frequencies of all al-

leles in the genotypes of founders determined by the given assign-
ment. These functions do not change under allele recoding. 

 3.  Pr ( N  �  F ,  S ,   �  ) – this probability equals 1 if the assignment is 
consistent and 0 otherwise. When using allele recoding, it is defi ned 
via fuzzy inheritance. If the assignment is consistent without allele 
recoding, it is consistent also with allelerecoding, since all founders’ 
alleles exist also after recoding by defi nition of the set  A  2 . In the 
case of non-founders, no allele is erased. The alleles are merely di-
vided into groups of transmitted and non-transmitted alleles. 

 To summarize, all probability functions, whose product consti-
tutes the probability of an assignment  a  D  A  2 , remain the same with 
allele recoding and without allele recoding, and hence, the probabil-
ity of assignment  a  is maintained under allele recoding. 

   Electronic-Database Information 

 The SUPERLINK program is available as an executable for 
Linux, Windows and Unix operating systems, at http://bioinfo.
cs.technion.ac.il/superlink/, along with user documentation. Also 
available are the input fi les and results of all the experiments per-
formed.   
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