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Abstract

Haplotype data is valuable in mapping disease-susceptibility genes, especially

in the study of complex diseases. We present algorithms for inferring a most likely

haplotype configuration for general pedigrees, implemented in the newest version

of the genetic linkage analysis system superlink. In superlink, genetic linkage

analysis problems are represented internally using Bayesian networks. The use

of Bayesian networks enables efficient maximum likelihood haplotyping for more

complex pedigrees than was previously possible. Furthermore, to support efficient

haplotyping in larger pedigrees, we have also incorporated a novel algorithm for

determining a better elimination order for the variables of the Bayesian network.

The presented optimization algorithm also improves likelihood computations. We

present experimental results for the new algorithms on a variety of real and semi-

artificial data sets, and use our software to evaluate MCMC approximations for

haplotyping.
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1 INTRODUCTION

Haplotype data is valuable in mapping disease-related genes, especially in the study of

complex diseases (Oehlman et al., 1993; Litt et al., 1994). Such haplotype data defines

the nearest flanking recombination events and consequently the smallest interval con-

taining a disease gene. This allows tracing disease genes more easily and cheaply. Other

uses of haplotyping include family based statistical tests such as TDT (Transmission

Disequilibrium Test) which require haplotype data as input (Ewens and Spielman, 1995),

or as a means for detecting genotyping errors, which are usually expressed as an excess

of recombination events (Lin and Speed, 1997).

The input data for a haplotyping problem can be divided into two categories: pedigree

genotype data and population genotype data. The haplotyping problem is to infer the

two haplotypes of each individual from the measured unordered genotypes. Haplotype

information from population data is often reconstructed using some evolutionary model

and is usually applied to data with a dense map of markers (e.g., Stephens et al., 2001;

Gusfield, 2002; Greenspan and Geiger, 2003). On the other hand, haplotype information

from pedigrees is reconstructed using the information that can be inferred on each in-

dividual from his relatives’ genotypes, and can be used to reconstruct haplotypes from

either dense or widely spaced marker data.

The haplotyping problem can be defined via maximizing a suitable likelihood func-

tion or via a combinatorial optimization problem. A common combinatorial approach,

called the Minimum Recombinant Haplotype Configuration (MHRC) problem, is to seek

those haplotype configurations that minimize the total number of recombination events

observed in the pedigree. Another common combinatorial approach is to seek those hap-

lotype configurations that show no recombination events. Approaches to solve such com-

binatorial optimization problems include rule-based systems (Wisjman, 1987; Qian and

Beckmann, 2002; Li and Jiang, 2003a), graph-theoretic approaches (Gusfield, 2002), dy-

namic programming (Li and Jiang, 2003b), or linear programming (Li and Jiang, 2004).

These approaches are most appropriate when the expected number of recombination
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events is small.

The statistical approach for haplotyping by maximizing a suitable likelihood function

has been pursued quite extensively (Sobel et al., 1995; Lin and Speed, 1997) and imple-

mented in programs that perform exact computations, such as genehunter (Kruglyak

et al., 1996; Kruglyak and Lander, 1998), and allegro (Gudbjartsson et al., 2000), as

well as in programs that perform approximate computations, such as simwalk2 (Sobel

and Lange, 1996), and merlin (Abecasis et al., 2002). All these methods take into

account intermarker recombination fractions or intermarker genetic distances. The ob-

jective of these algorithms is to find one or several haplotype configurations of maximal

probability given the observed data on the pedigree.

In this paper we focus on improving exact approaches for generating a maximum

likelihood haplotype configuration for larger pedigrees. We present a haplotyping algo-

rithm which we have incorporated into the freely available newest version of superlink

(v1.4), reported herein. superlink uses Bayesian networks as the internal representa-

tion of pedigrees, which allows one to handle a wide variety of linkage problems (Fishelson

and Geiger, 2002). In particular, this representation allowed us to naturally implement a

maximum likelihood approach for haplotyping. Furthermore, to support efficient haplo-

typing on larger pedigrees, we have also incorporated a novel algorithm for determining

a better elimination order for the variables of the Bayesian network. This algorithm is

especially important when solving linkage problems since the Bayesian networks created

for such problems are very large. The presented optimization algorithm also improves

likelihood computations. In addition, we have adapted the allele recoding algorithm,

presented in (O’connell and Weeks, 1995), for the haplotyping task, achieving further

reduction in time and space complexity. We present experimental results for the new

algorithms on a variety of real and semi-artificial data sets, and use our software to eval-

uate MCMC approximations for haplotyping via simwalk2 (Sobel et al., 1995; Sobel

and Lange, 1996).
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2 THE HAPLOTYPING PROBLEM

2.1 PROBLEM DEFINITION

The sequence of alleles at different loci inherited by an individual from one parent is

called a haplotype, and the two haplotypes of an individual constitute this individual’s

genotype. A recombination is said to have occurred between two loci, if an haplotype of

an individual contains two alleles that resided in different haplotypes of the individual’s

parent. The recombination fraction θ is the probability that a recombination occurs

between two loci. For a comprehensive background on human genetic linkage analysis

consult (Ott, 1999).

When genotypes are measured by standard measurement procedures, the result is

a list of unordered pairs of alleles, one pair for each locus. The Maximum Likelihood

Haplotype Configuration problem, consists of finding a joint haplotype configuration for

all members of the pedigree which maximizes the probability of the data. The haplotyping

problem often does not have a unique solution.

2.2 BAYESIAN NETWORKS

Our model for representing pedigree data is a Bayesian network. A Bayesian network

is a directed acyclic graph, where each vertex v = 1, . . . , n corresponds to a discrete

variable Xv and each directed edge represents conditional dependencies between the

variables it connects (Pearl, 1988; Lauritzen, 1996). The distribution of each variable Xv

is conditional upon the variables in Pav, which is defined as the set of vertices from which

there are edges leading into v in the graph. The joint probability of a full assignment

x1, . . . , xn to variables X1, . . . , Xn is the product of these conditional probabilities. In

other words,

Pr(X1 = x1, ..., Xn = xn) =
∏

v

Pr(Xv = xv | Pav = pav),
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where pav is the joint assignment {xi|Xi ∈ Pav} to the variables in Pav. From here

on, we will use the notation Pr(y|z) as an abbreviated form of Pr(Y = y|Z = z) for

any sets of variables Y and Z. For example, the joint probability could be rewritten as

Pr(X1, ..., Xn) =
∏

v Pr(Xv | Pav). Note also that we use capital letters for variable

names and lowercase letters to denote specific values taken by those variables. Sets

of variables are denoted by boldface capital letters, and assignments of values to the

variables in these sets are denoted by boldface lower case letters.

For haplotyping, we consider the Most Probable Explanation (MPE) problem for

Bayesian networks, (e.g., Dechter, 1996). That is, finding an assignment X = x0 such

that

Pr(X = x0, ε) = max
x

Pr(X = x, ε) = max
x

∏

v

Pr(Xv | Pav, ε)

where X = {X1, . . . , Xn} is the set of variables in the Bayesian network, and ε denotes a

particular assignment of values to some of the variables in X. The assignment ε is called

evidence. In the case of haplotyping, the evidence is a partial assignment ε of alleles at

some or all loci to people in the pedigree under study.

Another relevant problem for haplotyping is the Maximum Aposteriori Hypothesis

(MAP) problem (Dechter, 1996), of which MPE is a special case. The input to this

problem is the same as for the MPE problem, with the addition of a set of focus variables

A = {A1, . . . , Ak},A ⊆ X, for which the most probable assignment, given the evidence,

is desired. The MAP problem is to find an assignment a0 = (a1, . . . , ak), such that

Pr(A = a0, ε) = max
a

∑

Xj∈{X\A}

∏

v

Pr(Xv | Pav, ε)

Note that when A = X, MPE is identical to MAP. It has been shown that solving the

MAP problem is significantly harder than solving the MPE problem or computing the

probability of evidence (Park, 2002). Consequently, MPE is often solved instead of MAP,

and the most likely assignment of all variables is projected on the focus set of variables

A.
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3 METHODS

3.1 HAPLOTYPING IN SUPERLINK

Three types of random variables are used in the representation of pedigrees as Bayesian

networks in superlink: genetic loci variables which represent the genotypes of the

individuals in the pedigree (two genetic loci variables per individual per locus, one for the

paternal allele and one for the maternal allele), phenotype variables, and selector variables

which are auxiliary variables used to represent the gene flow in the pedigree. For example,

the paternal selector of individual i at locus j indicates whether the paternal allele of

individual i at locus j came from his father’s paternal haplotype or from his father’s

maternal haplotype. Figure 1 presents a fragment of a network that describes parents-

child interaction in a simple 3-loci analysis. The genetic loci variables of individual i

at locus j are denoted by Gi,jp and Gi,jm. Variables Pi,j , Si,jp, and Si,jm denote the

phenotype variable, the paternal selector variable and the maternal selector variable of

individual i at locus j, respectively. For more details on the structure of the Bayesian

network, consult (Fishelson and Geiger, 2002).

We use the following notation to refer to the different variables: S for the set of all

selector variables, F for the set of genetic loci variables of individuals with no parents in

the pedigree (founders), and N for the set of genetic loci variables of non-founders. For

haplotyping, phenotypes are unordered genotypes of typed individuals, and are included

in the evidence ε. The Bayesian network of superlink represents the joint distribution

Pr(S,F,N, ε) in factored form:

Pr(S,N,F, ε) = Pr(S, ε)Pr(F|ε)Pr(N|F,S, ε). (1)

A maximum-likelihood haplotype configuration of a pedigree is a maximum-likelihood

assignment to all the genetic loci variables, namely a joint assignment {N = n0,F = f0}

which satisfies:

Pr(N = n0,F = f0) = max
n,f

∑

s

Pr(s, f ,n, ε).
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Since we are interested in determining the most likely gene flow in addition to the most

likely assignment to all the haplotypes, we seek a joint maximum-likelihood assignment to

the selector variables and the genetic loci variables of founders, namely a joint assignment

{S = s0,F = f0} which satisfies:

Pr(S = s0,F = f0) = max
s,f

∑

n

Pr(s, f ,n, ε). (2)

The genetic loci variables of non-founders, N, are a function of the genetic loci variables

of founders and the selector variables, which, for every s, f , is zero for all values n except

one. Consequently, solving Eq. (2) is equivalent to:

Pr(S = s0,F = f0,N = n0) = max
s,f ,n

Pr(s, f ,n, ε), (3)

which is an MPE problem. Thus the MAP problem, defined by Eq. (2), is essentially an

MPE problem which can be solved more easily.

Our algorithm for solving Eq. (3) consists of several stages. The first stage is a prepro-

cessing step of value elimination on the graph representation of the pedigree (Fishelson

and Geiger, 2002). At this stage inconsistent values for each variable given the evi-

dence are removed, and the values of some of the genetic loci and selector variables

can be determined unambiguously from the evidence, namely all values except one are

removed. Mendelian inconsistencies are also discovered at this stage. The value elimina-

tion performed is based on the well-known observation that the possible genotypes of an

individual can be inferred from the genotypes of his relatives (e.g. Lange and Goradia,

1987). When the value of a selector variable is determined by value elimination it implies

that the parental origin of the corresponding allele is known, i.e., whether it came from

the paternal or maternal haplotype of the parent.

After value elimination, we perform allele recoding. In this stage the genotype lists

of untyped individuals are recoded, resulting in a reduction in the number of genotypes

that need to be summed over, and hence, in an acceleration of the computations. Our
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allele recoding algorithm, which is an adaptation of the ideas presented in (O’connell and

Weeks, 1995) to the task of haplotyping, is fully described in the next section.

Finally, haplotyping is done via performing the Elim-Max algorithm (Dechter, 1996)

on the Bayesian network to determine a maximum-likelihood assignment to the remaining

variables. The Elim-Max algorithm, described in the appendix, is a variable elimination

algorithm in which variables are eliminated one after another, each time computing the

effect of the eliminated variable on the rest of the problem. The order by which variables

are eliminated greatly affects both time and space requirements of the computations. In

many cases, the memory limitation does not allow solving the problem using variable

elimination alone, and hence, variable elimination is combined with conditioning. By

conditioning, one means to instantiate some of the variables, perform the rest of the

computations for each possible instantiation, and then merge the results. The order of

variable elimination and conditioning is determined by a new algorithm described below.

3.2 ALLELE RECODING

When performing likelihood computation or haplotyping, all possible genotype combi-

nations for the individuals in the pedigree need to be iterated over. When using highly

polymorphic markers, any person who is untyped at some locus will have a large num-

ber of possible genotypes. A possible way to accelerate these computations is to recode

alleles and thus reduce the number of possible genotypes that need to be iterated on.

Several different methods have been proposed. One method is lumping all alleles that

do not appear in the pedigree into a single allele whose population frequency is the sum

of frequencies of the lumped alleles (Lange et al., 1988; Schäffer, 1996). A more efficient

method, which recodes the paternal and maternal allele lists of each individual separately,

has been suggested by O’connell and Weeks (1995), and implemented in vitesse. The

allele recoding algorithm implemented in superlink is based on the ideas of set-recoding

and fuzzy inheritance defined in vitesse. These definitions are repeated here for com-

pleteness. Our contribution is the adaptation of this algorithm to the task of maximum
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likelihood haplotyping for general pedigrees.

The allele-recoding algorithm is based on the observations that alleles have two roles

in likelihood computations, and that valid recoding does not alter these roles:

1. Determine prior probabilities of founders’ genotypes. The genotype fre-

quency of a founder is computed using the population frequencies of the two alleles

that constitute the genotype, assuming Hardy-Weinberg equilibrium.

2. Determine recombination events. A recombination event is determined by

identifying the parental origin of the child’s alleles, that is whether the child’s

alleles came from the paternal or maternal haplotype of his parent. Note that the

allele identity does not matter here; only whether the allele matches the parent’s

paternal or maternal allele.

An allele is defined to be transmitted if the following two conditions are fulfilled: (i)

the allele appears in the ordered genotype list of a typed descendant D of P , as inherited

from; (ii) there is some path from P to D containing only untyped descendants in the

pedigree, namely, D is the nearest typed descendant of P on that path. The remaining

alleles are defined to be non-transmitted. In terms of determining recombination events,

a person’s non-transmitted alleles are indistinguishable from one another by data, and

can therefore be combined into a single representative allele.

The allele recoding algorithm (Figure 2) is executed after initial value elimination is

performed on the input pedigree as described in the previous section. At this stage, each

individual is associated with two allele lists at each locus, a paternal allele list and a

maternal allele list. In the first stage of the allele recoding algorithm, all the alleles of

typed individuals are marked as transmitted, and all the alleles of untyped individuals are

marked as non-transmitted. Next, the pedigree is traversed in a bottom-up manner where

each person is updated after his children have been updated. The update is performed

as follows: each allele of the father which appears as transmitted in the paternal allele

list of the child is marked as transmitted in the father as well. A similar update is done

for mothers. After a founder has been updated by all his children, a final processing
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is performed on the founder’s two lists of non-transmitted alleles. In this stage, only

the allele with the highest frequency in each of the two lists is kept. At the end of the

algorithm, each set of non-transmitted alleles forms a set (e.g., {A,B,C}), and each

transmitted allele A forms a set including only itself, i.e., {A}. Recall that if a parent

has the ordered genotype A|B and its child has allele C, then C is inherited from the

parent if A = C or B = C. After allele recoding, however, A, B, and C are now sets

of alleles, and hence C is inherited from the parent if A ⊆ C or B ⊆ C. This is termed

fuzzy inheritance in (O’connell and Weeks, 1995).

In the appendix, we prove that the probability of the assignment found for the regular

case (without allele recoding) is the same as the one found in the case of allele recoding.

This claim proves the correctness of the allele recoding algorithm for maximum likelihood

haplotyping. Note that there is often more than one maximum likelihood assignment,

but the algorithm described herein produces only one. To produce all possible maxi-

mum likelihood assignments, one needs to change the Elim-Max algorithm, described in

the appendix, to store all optimizing values of each variable Xv rather than storing a

single optimizing value. This addition increases the time and space complexity of the

computations.

3.3 COMPUTATION ORDER

The problem of determining a good combined order of variable elimination and condi-

tioning is important for both likelihood computations and haplotyping. This problem has

been addressed quite extensively in the context of genetic linkage analysis. The two main

approaches for performing likelihood computations on pedigrees are the Elston-Stewart

algorithm (Elston and Stewart, 1971) which peels one nuclear family after another, and

the Lander-Green algorithm (Lander and Green, 1987) which peels one locus after an-

other. These two approaches are both variants of variable elimination methods which use

different fixed elimination orders. Finding a good elimination order is also essential in a

variety of combinatorial problems, such as: constraint satisfaction, independent set, dom-
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inating set, graph K-colorability and Hamiltonian circuit (Arnborg, 1985; Dechter, 1996)

as well as in other applications of Bayesian networks.

The problem of determining a good combined order of variable elimination and condi-

tioning can be reduced to a graph-theoretic problem, namely, all elimination and condi-

tioning operations are performed on the undirected graph representation of the Bayesian

network. The undirected graph representation is obtained from the Bayesian network

by connecting each pair of vertices that have edges leading into a common vertex, and

removing the directionality of the edges (Pearl, 1988).

When a vertex is eliminated from the graph, its set of neighbors are connected to form

a clique. The cost of eliminating vertex v from graph Gi is cGi
(v) =

∏

u∈N̄Gi
(v) w(u),

where N̄Gi
(v) represents the set of neighbors of v including v itself, and w(v) is the

weight of v, namely, the number of possible values of variable Xv. In the case when

there is no memory limitation, we aim to find an elimination order X̂α which satisfies

X̂α = arg minα C(Xα), where

C(Xα) =
n

∑

i=1

cGi
(Xα(i)). (4)

and α denotes a permutation on {1, . . . , n}. In Eq. (4), Gi, i = 2, . . . , n denotes the

sequence of residual graphs obtained from a given graph G1 = G by eliminating its

vertices in the order Xα(1), . . . , Xα(i−1).

This cost function, which is often referred to as the total state space (Kjærulff, 1990), is

an approximated measure of the time and space complexity of the computations, provided

that the heaviest clique created fits into the RAM size of the working environment. If

this is not the case, then conditioning is needed and a more elaborate cost function,

described in (Fishelson and Geiger, 2003), is required. In this case we obtain a constrained

elimination order Xα,β =
(

(Xα(1), . . . , Xα(n)), β
)

which is a sequence of vertices along

with a binary vector β such that vertex Xα(i) is eliminated if βi = 0 and conditioned on

if βi = 1.

If we replace the summation in Eq. (4) with maximization, then the problem is reduced
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to finding the weighted treewidth of the graph. If, in addition, the weight of all vertices

is constant, then this problem is reduced to finding the treewidth of the graph, which is

NP-complete (Arnborg et al., 1987).

We devised a new algorithm for finding a combined order of variable elimination

and conditioning and applied it for both haplotyping and likelihood computations. The

algorithm is composed of two stages. First, a set of reduction rules are applied on the

graph as a preprocessing step. Second, several stochastic-greedy algorithms are applied

sequentially to determine an elimination order for the residual graph.

3.3.1 Preprocessing Rules

Eijkhof et al. (2002) present a set of safe reduction rules for the weighted treewidth prob-

lem. Application of these rules can significantly reduce the size of the graph, without

increasing the weighted treewidth of the graph. We tested these rules for our optimiza-

tion problem and found that two of these reduction rules, the simplicial and the almost

simplicial rules, are worthy to incorporate. The run time of these rules is negligible com-

pared to the total run time for finding an elimination order, and by reducing the size

of the graph, each iteration of the stochastic-greedy algorithms applied later is shorter.

Throughout the application of the reduction rules, a variable low which represents the

largest lower bound known for the weighted treewidth of the original graph is maintained.

We denote by nw(v) the product
∏

u∈N̄Gi
(v) w(u).

Simplicial rule. Let v be a simplicial vertex in Gi, namely its set of neighbors form

a clique. The simplicial rule removes v from the graph, and updates the variable low:

low = max(low, nw(v)).

Almost simplicial rule. A vertex v is called an almost simplicial vertex in Gi if all

its neighbors, except one u, form a clique. Vertex v is removed if low ≥ nw(v) and

w(v) ≥ w(u).
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3.3.2 Stochastic-Greedy Algorithms

Three Stochastic-Greedy algorithms for finding a combined order of variable elimination

and conditioning, all based on the same common procedure SG (Figure 3), have been

incorporated. The input to this procedure is a weighted undirected graph G(V,E,w)

resulting from the application of the reduction rules, a threshold T which represents the

memory limitation, and two cost functions, C1 and C2, that vary between the three algo-

rithms. The threshold T is determined dynamically according to the memory available

at run time. According to cost function C1 the next vertex to eliminate is chosen, and

according to C2 a vertex to condition on is chosen. In each iteration, three vertices with

a minimal cost (according to C1) are selected, and a coin, biased according to the costs

of the vertices, is flipped to choose between them. If in iteration i the weight of the

clique created by the elimination of each vertex is above the given threshold, a vertex

is chosen (according to C2) to condition on rather than eliminate. Procedure SG is run

many times, each time finding a new elimination order, and comparing it to the best

order found so far. If the cost of the new elimination order is smaller than that of the

best previously found order, then the new order and cost are recorded.

The stochastic-greedy algorithms used are: Min-Weight (Min-W), Min-Fill, and

Weighted Min-Fill (WMin-Fill). The first two algorithms are based on known cost func-

tions (Kjærulff, 1990), whereas the cost function of the Weighted Min-Fill algorithm is

new and shows superior performance in many cases, as demonstrated by Experiment B.

We now describe the different cost functions. The cost C1 of eliminating a vertex accord-

ing to the Min-Weight heuristic is the product of weights of its neighbors, whereas the

cost of eliminating a vertex according to the Min-Fill heuristic is the number of edges that

need to be added to the graph due to its elimination. The Weighted Min-Fill heuristic

is a novel modification of the Min-Fill heuristic to a weighted graph. If we define the

weight of an edge to be the product of weights of its constituent vertices, then the cost of

eliminating a vertex according to the Weighted Min-Fill heuristic is the sum of weights

of the edges that need to be added due to its elimination. The cost function C2 for the
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Min-Fill and Weighted Min-Fill algorithms, is the same as the first option described in

(Fishelson and Geiger, 2003), i.e.,

C2(X) =
√

|NGi
(X)|C1(X),

where NGi
(X) represents the set of neighbors of X in Gi. The cost function C2 for

the Min-Weight algorithm is the same as the second option described in (Fishelson and

Geiger, 2003), i.e.,

C2(X) =
√

|fGi
(X)|C1(X),

where fGi
(X) are the factors in Gi that include X.

The incorporation of these three algorithms and not others that were tried, such as

Maximum Cardinality Search MCS (Tarjan and Yannakakis, 1984) or a weighted version

of it (WMCS), is based on the fact that the other algorithms are superior in only a few

cases. Neither of the three algorithms that were incorporated is better than the others

in all cases, and therefore each of the algorithms is run a certain percentage of the total

optimization time (Figure 4). We denote by %MW, %MF, and %WMF the percentage of

iterations spent on running the Min-Weight, Min-Fill, and Weighted Min-Fill algorithms

respectively. These percentages have been determined experimentally based on the rel-

ative performance of each algorithm. The total number of iterations N is determined

according to the complexity of the problem at hand, which is estimated according to the

cost of the elimination order found by the deterministic-greedy Min-Weight algorithm

(Fishelson and Geiger, 2003). The only difference between the deterministic algorithm

and the stochastic algorithm is that in each iteration, the deterministic algorithm chooses

to eliminate a vertex with a minimal elimination cost according to the Min-Weight cost

function, rather than flip a coin. If the cost of the elimination order found by this deter-

ministic algorithm is lower than some threshold Cmin then no optimization is performed.

The superior performance of the Min-Fill algorithms, as observed from Experiment

B, may stem from the following observation. Assume there is a set of vertices that almost

forms a clique. Despite the fact that the elimination of one of these vertices would add
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only a few edges to the graph, this vertex would not be a preferred vertex to eliminate by

the Min-Weight heuristic if the clique that is created is heavy. Hence, the Min-Weight

Heuristic may complicate the given graph by choosing in some early iterations vertices

whose elimination creates light cliques but possibly adds many edges to the graph.
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4 RESULTS

We performed several experiments to test the new algorithms. The experiments can be

divided into two classes. The first class compares the performance of our haplotyping

algorithm to existing haplotyping algorithms. The second class is designed to test the

performance of the new optimization algorithm. In all experiments in which pedigree

data was simulated, the assumptions underlying the simulation were: Hardy-Weinberg

and linkage equilibrium, no mutation and no interference. All input files and results of

the experiments are readily available online.

4.1 Evaluation of the Haplotyping Algorithm

Experiment A (Simulation Study). We tested our haplotyping algorithm on a

complex pedigree of moderate size (Figure 2 in (Lin, 1996)). So far, only an approximate

haplotype analysis was possible for this pedigree. We simulated a random haplotype

configuration for this pedigree using the simulation guidelines described by Lin and Speed

(1997), and obtained a maximum likelihood haplotype configuration in several minutes

using superlink. This pedigree consists of 27 individuals and is highly inbred. All

individuals, except for those in the first two generations, were typed at 10 polymorphic

markers, each with 5 alleles of equal frequencies. The recombination fraction between

each pair of consecutive markers was set to 0.05. The progress made in resolving this

pedigree can be appreciated by citing Lin and Speed (1997):

This is a very complex though moderate sized pedigree, with 10 polymorphic

markers, and it does not seem to us to be possible to carry out a haplotype

analysis for it with existing non-simulation-based statistical methods.

We note that genehunter removes 12 individuals from the pedigree in order to perform

the computations. To the best of our knowledge, no previous exact algorithm can produce

the maximum likelihood haplotype configuration for this pedigree.

Experiment B (Testing Accuracy). Existing approximate methods for haplotyping

provide no guarantee on the accuracy of the output. Using our haplotyping algorithm,
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approximated haplotyping can be compared with the optimal solution on larger pedigrees

than was previously possible. This experiment tested the accuracy of a state of the art

program that uses MCMC, called simwalk2 (Sobel and Lange, 1996). We tested 75

random data sets consisting of 15 to 50 individuals and up to 10 markers. simwalk2

found a maximal likelihood assignment in 45 out of the 75 data sets. In the other 30 data

sets, the average difference in the log-likelihood of the assignment found by simwalk2

compared to the maximal likelihood assignment was merely 1%.

The mrh software (Qian and Beckmann, 2002) could not run on any of the data sets

used in this experiment. We also tested the Block-Extension option of pedphase (Li

and Jiang, 2003b), running it 200 times on each data set. Coherent output was obtained

in %37.64 of the runs. In those cases where coherent output was produced, superlink

produced haplotype configurations with less or equal number of recombination events

compared to pedphase. This is interesting to note because the goal of pedphase is to

minimize the number of recombination events while superink maximizes the likelihood

of data.

Experiment C (Published Disease Data). We analyzed two published data sets

from a study of the Krabbe disease by Oehlman et al. (1993), and from a study on

Episodic Ataxia (EA) by Litt et al. (1994). The first data set consists of 9 individuals

typed at 8 polymorphic markers. The second data set consists of 29 individuals, which

are all typed at 9 polymorphic markers except for the first two generation founders. For

the Krabbe data set, the most likely haplotype configuration obtained by superlink is

identical to the one obtained by MCMC via simwalk2 (Sobel et al., 1995; Sobel and

Lange, 1996), by Lin and Speed (1997), and by pedphase (Li and Jiang, 2003b).

For the Episodic Ataxia data set, the most probable configuration found by super-

link is configuration D in Figure 2 of Qian and Beckmann (2002), which differs from the

one obtained by simwalk2 (Sobel et al., 1995; Sobel and Lange, 1996) in the position of

one recombination event. The only difference is the genotype phase in the fourth marker

of individuals 1007 and 113. This configuration is also very similar to the one found by
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Lin and Speed (1997).

4.2 Evaluation of the Optimization Algorithm

Experiment D (Stochastic Algorithms). This experiment compared the perfor-

mance of different stochastic-greedy algorithms (Table 1). Each of the stochastic algo-

rithms is run for 1000 iterations, after the reduction rules have been applied. We used

graphs created from simulated pedigree data. Note that this experiment compares the

elimination costs found by the algorithms for the case where T = ∞, namely no condi-

tioning is performed. The results presented in Table 1 are a representative sample from

the experiment that was performed on 100 data sets. In 100 data sets, the distribution

of algorithms that found the lowest cost was as follows: Min-Weight - 4%, MCS - 9%,

WMCS - 7%, Min-Fill - 25%, and Weighted Min-Fill - 76 %. Note that these percent-

ages do not sum to 100% since, for some data sets, several algorithms found a minimal

cost elimination order. As can be seen, the Min-Fill and Weighted Min-Fill are superior

to the other heuristics. However, since the Min-Weight heuristic is the fastest and it

works well when conditioning is needed (results not shown), it is profitable to first run

it and then run the Min-Fill and Weighted Min-Fill heuristics. The MCS and Weighted-

MCS heuristics have been found to hardly contribute when applied after the Min-Weight

heuristic and are therefore not incorporated. To summarize, using an algorithm which

combines the three algorithms, Min-Weight, Min-Fill, and Weighted Min-Fill, is superior

to running only one of them, provided the optimization time is small enough compared

to the total run time, as is the case for sufficiently large pedigrees.

Experiment E (Total Run Time). This experiment compared the run time of like-

lihood computation with the new optimization algorithm for determining an elimination

order presented herein, to the run time with the previous optimization algorithm. The

total run time includes both optimization time and inference time. We demonstrate the

performance of the optimization algorithm using likelihood computations rather than

haplotyping, since haplotyping was not implemented in the previous version of super-
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link. We tested 50 randomly simulated data sets chosen so that the run time in the

new version is above 10 seconds and below 10 hours. The graph in Figure 5 shows that

timing was improved in 47 out of 50 data sets, often by an order of magnitude.

Experiment F (Benchmarks). This experiment (Table 2) tested the performance of

the three stochastic-greedy algorithms, on eight known benchmarks for Bayesian networks

inference. The stochastic algorithms are run after the reduction rules have been applied.

We present the best elimination cost found by the algorithms after 100 iterations and

after 1000 iterations. Also presented for each benchmark are the best known elimination

cost and the elimination cost found by hugin6.1 (Andersen et al., 1989; Hugin, 2002),

which is a leading software for Bayesian networks. As can be seen, in most cases, run-

ning a few iterations of the stochastic-greedy algorithms is superior to the algorithm

of hugin6.1. Another conclusion that can be drawn from this experiment is that

the results of the stochastic-greedy algorithms are comparable to simulated annealing

(Kjærulff, 1990) which is a very time consuming algorithm, and hence not a viable op-

tion for minimizing the total run time for genetic linkage analysis. As can seen from

Table 2, after 100 iterations the best known cost for the Water problem is matched, and

after 1000 iterations the best known cost for the Barley problem is also matched.

Experiment G (Reduction Rules). This experiment tested the gain due to the

reduction rules presented in Eijkhof et al. (2002). The data sets used are 20 graphs,

out of which 12 are created from simulated pedigree data and 8 are known benchmarks

for Bayesian networks inference. We have found that two of the reduction rules, the

simplicial rule and the almost simplicial rule, are worthy to apply in almost every problem.

Applying these rules usually eliminated between 50% and 60% of the vertices in the data

sets (Table 3). The other two reduction rules, the buddies rule and the cube rule, are more

time consuming, and applying them does not yield sufficient improvement; therefore we

do not use these rules.
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5 DISCUSSION

The use of Bayesian networks enables efficient maximum likelihood haplotyping for more

complex pedigrees than was previously possible. We adapted and combined several al-

gorithms, allele recoding, reduction rules, elimination algorithms, and the Elim-Max

inference algorithm, into a working system for haplotyping readily available for use by

geneticists. This advancement can also be utilized for checking approximate haplotyping

algorithms such as MCMC.

Several new features have been incorporated in the algorithm for optimizing the elim-

ination order presented herein. First, reduction rules are applied to speed the compu-

tations. Second, several greedy algorithms are run, rather than one. Their allocated

relative run time is based on experiments on many Bayesian networks. Third, among

the greedy algorithms that are applied, a new greedy algorithm is introduced (Weighted

Min-Fill). Fourth, the threshold which controls the time-space tradeoff is determined at

run time according to the memory of the computer, rather than fixed a priori. Our new

optimization algorithm is applied whenever the elimination cost found by a quick greedy

algorithm is above a certain threshold (log10 C ≥ 9 in the current implementation). The

result is an optimization algorithm which is superior in total run time to the algorithm

in (Fishelson and Geiger, 2003) in 47 of the 50 instances we tried, often by an order of

magnitude (Experiment D). The presented optimization algorithm is used in superlink

for likelihood computations as well as for haplotyping.
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Appendix A

Algorithm Elim-Max (Dechter, 1996)

Input: A Bayesian network 〈G,P 〉; an ordering d of the variables; evidence ε.

Output: The most probable assignment to the variables of the Bayesian network, and its

probability.

1. Initialize: Generate an ordered partition of the conditional probability tables {Pi}

into buckets, where bucket Bi contains all the probability tables and evidence whose

largest-index variable is Xi.

2. Backward phase (compilation phase):

For i = n to 1, process bucket Bi as follows:

Let h1, . . . , hk be all the probability tables (new and old) in Bi at the time it is

processed, and let S1, . . . , Sj be the subset of variables in Bi on which probability

tables (new and old) are defined.

• If Bi contains Xi = ai (Xi is observed), assign Xi = ai to each hl, and place it

in the bucket of the largest-index variable that appears in its scope.

• Else, Ui =
⋃k

j=1 Sj − {Xi}. Generate function hi = maxxi

∏k
l=1 hl, and place it

in the bucket of the largest-index variable in Ui. Store the optimizing value of

Xi for each tuple of Ui, X
opt
i (Ui) = arg maxxi

∏k
l=1 hl.

3. Store: the constant computed in B1. This is the probability of the most probable

assignment to the variables of the network.

4. Forward phase (process Xi after finding an assignment to X1, . . . , Xi−1):

For i = 1 to n, process bucket Bi as follows:

• Given the assignment Ui = ui, choose xi = X
opt
i (ui).

5. Return: the assignment selected for the variables of the network and its probability.
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Appendix B

Proposition: The probability of the haplotype configuration found using allele recoding is

the same as the probability of the haplotype configuration found without allele recoding.

Proof: Recall that a haplotype configuration is an assignment of values to all genetic loci

variables of individuals in the pedigree. For the proof, we use the word assignment rather

than haplotype configuration. We divide the set of all possible assignments to two sets:

A1 and A2. The set A1 consists of all assignments which fulfill the following conditions:

(i) at least one allele assigned to a founder belongs to the set of non-transmitted alleles

of this founder, and (ii) this allele is not the one with the highest frequency among the

set of non-transmitted alleles of this founder. The set A2 consists of all other consistent

assignments given the data, namely, all assignments which fulfill the following condition:

each allele assigned to a founder either belongs to the set of transmitted alleles of this

founder, or it is the allele of maximum frequency among the list of non-transmitted alleles

of this founder. The proof follows from the following two claims.

Claim 1: The maximum likelihood assignment is in the set A2.

Proof: Assume to the contrary of the claim that the maximum-likelihood assignment is in

the set A1 and denote it by a0. Suppose, without loss of generality, that for some founder

P in locus i, there are two non-transmitted alleles, N1 and N2. Assume that allele N1 is

chosen in assignment a0, and that Pr(N2) > Pr(N1). Since N1 is non-transmitted, no

typed descendant of P inherited this allele from P . Hence, we can replace allele N1 with

allele N2 in assignment a0 in all individuals that inherited this allele from P according to

a0, obtaining a consistent assignment denoted by a1. The only difference in the likelihood

of these two assignments is in the frequency of allele N2 compared to the frequency of

allele N1. Since Pr(N2) > Pr(N1), it follows that Pr(a1) > Pr(a0) in contrary to the

assumption that a0 is the maximum likelihood assignment.
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Claim 2: The probability of each assignment a ∈ A2 using allele-recoding is the same as

without using allele recoding.

Proof: There are three types of probability functions:

1. Pr(S, ε) - this function does not change under allele recoding because selector

variables do not change.

2. Pr(F, ε) - this function is the product of frequencies of all alleles in the genotypes

of founders determined by the given assignment. These functions do not change

under allele recoding.

3. Pr(N|F,S, ε) - this probability equals 1 if the assignment is consistent and 0 oth-

erwise. When using allele recoding, it is defined via fuzzy inheritance. If the

assignment is consistent without allele recoding, it is consistent also with allele-

recoding, since all founders’ alleles exist also after recoding by definition of the set

A2. In the case of non-founders, no allele is erased. The alleles are merely divided

into groups of transmitted and non-transmitted alleles.

To summarize, all probability functions, whose product constitutes the probability of an

assignment a ∈ A2, remain the same with allele recoding and without allele recoding,

and hence, the probability of assignment a is maintained under allele recoding.
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6 Electronic-Database Information

The superlink program is available as an executable for Linux, Windows and Unix oper-

ating systems, at http://bioinfo.cs.technion.ac.il/superlink/temp/V1.4.html, along with

user documentation. Also available are the input files and results of all the experiments

performed.
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Table 1: Comparing Different Stochastic-Greedy Algorithms.

]Locia ]Peopleb %Typedc Min-Wd MCSe WMCSf Min-Fillg WMin-Fillh

12 25 80 3.97 5.15 5.36 3.94 3.93
14 27 63 17.00 15.54 22.27 14.17 14.22
16 22 89 5.30 8.08 8.61 5.22 5.22
20 31 71 10.99 12.62 15.67 10.38 10.03
17 29 56 12.77 11.41 20.15 11.14 10.56
19 33 95 6.19 7.03 7.55 5.70 5.91
18 31 47 8.36 10.27 13.01 8.23 7.90
13 30 30 2.79 2.81 2.81 2.80 2.80
22 38 86 6.72 9.41 13.85 6.46 6.37
20 48 91 9.28 14.73 13.45 7.84 7.61

Note - The cost reported is the log10 of the sum of weights of cliques created during
elimination. Best results are in bold.

aNumber of loci being analyzed.
bNumber of people in the pedigree.
cPercentage of typed people in the pedigree.
dElimination cost obtained by the Min-Weight algorithm.
eElimination cost obtained by the Maximum Cardinality Search algorithm.
fElimination cost obtained by the Weighted Maximum Cardinality Search algorithm.
gElimination cost obtained by the Min-Fill algorithm.
hElimination cost obtained by the Weighted Min-Fill algorithm.

T
ec

hn
io

n 
- C

om
pu

te
r S

ci
en

ce
 D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
S-

20
04

-1
3 

- 2
00

4



32

Table 2: Testing some Stochastic-Greedy Algorithms on eight known benchmarks.

Problem Known Hugin Cost after 100 Iterations Cost after 1000 Iterations
Costa Costb Min-Wc Min-Filld WMin-Fille Min-W Min-Fill WMin-Fill

Barley 1.71 E07 1.73 E07 1.95 E07 1.73 E07 1.82 E07 No change 1.71 E07 1.8 E07
Diabetes 9.83 E06 1.04 E07 1.03 E07 1.56 E07 1.24 E07 1.01 E07 1.38 E07 1.21 E07

Link 2.4 E07 2.62 E07 4.31 E07 2.76 E07 3.78 E07 4.15 E07 2.66 E07 3.14 E07
Munin1 8.69 E07 1.88 E08 1.84 E08 1.54 E08 1.39 E08 No change 8.76 E07 No change
Munin2 2.05 E06 2.76 E06 4.05 E06 3.53 E06 4.36 E06 3.79 E06 No change 4.35 E06
Munin3 3.08 E06 3.24 E06 3.28 E06 3.26 E06 3.11 E06 3.27 E06 3.2 E06 3.11 E06
Munin4 9.84 E06 1.64 E07 1.72 E07 2.0 E07 1.37 E07 1.58 E07 No change 1.34 E07
Water 3.03 E06 8.04 E06 3.66 E06 3.03 E06 3.47 E06 3.62 E06 No change No change

aBest known elimination cost.
bElimination cost found by hugin6.1(Andersen et al., 1989; Hugin, 2002).
cElimination cost obtained by the Min-Weight algorithm.
dElimination cost obtained by the Min-Fill algorithm.
eElimination cost obtained by the Weighted Min-Fill algorithm.
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Table 3: Reduction Rules Experiments

]Vertices ]Edges Using Two Reduction Rules Using Four Reduction Rules

% of vertices run % of run % of vertices run % of run

eliminated timea timeb eliminated time time

48 126 39.6 0.00 0.00 39.6 0.00 0.00
413 819 19.6 0.00 0.00 19.6 0.01 4.76
724 1738 53.2 0.00 0.00 53.2 0.02 7.13
189 366 52.2 0.00 0.00 52.2 0.00 0.00
1003 1662 68.4 0.00 0.00 68.4 0.03 9.56
1044 1745 82.4 0.00 0.00 83.5 0.03 9.18
1041 1843 74.0 0.00 0.00 74.0 0.02 6.83
32 123 31.3 0.00 0.00 31.3 0.00 0.00

1676 2987 58.0 0.03 5.54 58.0 0.10 18.7
2449 4320 57.7 0.06 6.74 57.7 0.34 33.2
3224 5641 54.5 0.08 7.14 54.7 0.30 16.7
3254 5754 59.0 0.06 4.41 59.0 0.30 21.9
4720 8211 57.8 0.15 7.58 57.8 0.75 29.8
6242 10814 54.7 0.16 4.98 55.2 0.63 18.3
4859 8517 59.6 0.12 6.85 59.6 0.56 23.6
7040 12104 60.0 0.28 9.14 60.0 1.32 31.7
9276 15926 55.3 0.30 7.47 55.6 1.56 24.3
6372 11198 57.8 0.17 5.87 57.8 1.56 24.3
9292 16096 57.9 0.37 7.73 57.9 2.23 38.9
12278 21215 54.3 0.54 7.78 54.5 6.02 73.2

Note - Results in bold indicate problem instances where application of the four reduction
rules eliminated more vertices than application of only two rules.

aRun time is specified in seconds.
bThe percentage of time spent on reduction rules out of the time required for finding an elimination

order, when merely one iteration of the stochastic-greedy algorithm is performed.
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Figure 1: A fragment of a Bayesian network representation of parents-child interaction

in a 3-loci analysis. Adapted from Friedman et al. (2000).
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Algorithm Allele-Recoding

Input: A pedigree P of size n, where each individual is associated with a list of possible

paternal alleles and a list of possible maternal alleles at a given locus l.

Output: Each of the two allele lists of each individual is replaced by a list of sets of

alleles.

1. For i← 1 to n do {Initialize}

• If individual i is typed at locus l, then

Mark all the alleles in both his allele lists as transmitted.

Else

Mark all the alleles in both his allele lists as non-transmitted.

2. Traverse P in a bottom-up manner. Update individual i as follows: {Mark}

• For each child j of i do

If i is a male, then

Mark each allele of i which appears as transmitted in j’s paternal allele

list as transmitted in i as well.

Else

Mark each allele of i which appears as transmitted in j’s maternal allele

list as transmitted in i as well.

•If i is a founder, then {Only for haplotyping}

Let Ant be the set of non-transmitted alleles of i at locus l, and let

ak ∈ Ant be the allele with the highest population frequency in Ant.

Remove all alleles am ∈ Ant, am 6= ak.

3. For i← 1 to n do {Recode}

• Replace each transmitted allele T by the set {T}.

• Replace all non-transmitted paternal alleles by one set Pn, which consists

of these alleles.

• Replace all non-transmitted maternal alleles by one set Mn, which consists

of these alleles.

4. Return.

Figure 2: The allele recoding algorithm for the haplotyping problem. For likelihood

computations, the second stage of step 2 is removed.
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Procedure SG(G, T, C1, C2)

Input: A weighted undirected graph G(V,E,w), a threshold T, and two cost

functions (C1, C2).

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Initialize vector β of size n with zeroes.

2. i← 1

3. G← Gi

4. While Gi is not the empty graph do

• forall X ∈ Vi compute the cost C1(X)

• Pick 3 vertices Xk1
, Xk2

, Xk3
with a minimum cost C1.

• Flip a coin, biased according to the costs of the 3 vertices, to choose Xk.

• If CGi
(Xk) > T then {conditioning on Xk}

Pick Xk that optimizes C2 to condition on.

βi ← 1

Else {eliminating Xk}

Ei ← Ei

⋃

{(u, v)|u, v ∈ NGi
(Xk)} (connect all the neighbors of Xk)

• Remove Xk and its incident edges from Gi

• α(i)← k

• i← i + 1

5. Return Xα,β = ((Xα(1), . . . , Xα(n)), β)

Figure 3: Procedure SG
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Algorithm Find-Order(G, T ,Cmin)

Input: A weighted undirected graph G(V,E,w), a threshold T, and a

minimum cost Cmin.

Output: An elimination sequence Xα,β such that the elimination cost of each

vertex ≤ T.

1. Xα,β ← deterministic-greedy(G, T )

2. If C(Xα,β) < Cmin then return Xα,β

3. Set N (total ] of iterations) according to C(Xα,β)

• I[1]← b%MW ∗Nc

• I[2]← b%MF ∗Nc

• I[3]← b%WMF ∗Nc

4. For j ← 1 to 3 do

For i← 1 to I[j] do

• Find a candidate order:

X
temp
α,β ← SG(G, T, C

j
1 , C

j
2)

• Update the best order:

If C(X temp
α,β ) < C(Xα,β) then

Xα,β ← X
temp
α,β

5. Return Xα,β

Figure 4: Algorithm Find-Order.T
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Figure 5: Run time comparison of likelihood computation using the new optimization

algorithm versus the previous optimization algorithm. On each dataset, the old version

was run for up to a couple of hours, and the total run time was estimated according to

the percentage of the computation that was completed at that time. For those datasets

where the estimated run time of the old version was well over 300 hours, the run time

appears as 106 seconds.
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