A Linear Programming Approach to Max-sum Problem: A Review

Tomáš Werner
Dept. of Cybernetics, Czech Technical University
Max-Sum Problem

\[
\max_{x \in X^T} \left[\sum_{t \in T} g_t(x_t) + \sum_{\{t,t'\} \in E} g_{tt'}(x_t, x_{t'}) \right]
\]

e.g. the MAP problem on MRFs
Formulation of the Problem

\[G = (T, E) \]

\(T \) is a set of objects, \(x_t \in X \) is a labeling on \(t \)

\[E \subseteq \binom{T}{2} \]

\[G' = (T \times X, E_x) \]

\(g_t = (t, x) \) \(g_{tt'} = \{(t, x), (t', x')\} \)
Commutative Semirings

\[(\bigoplus_{x \in X^{\left\{ t \right\}}} g_t(x_t) \otimes g_{tt'}(x_t, x'_t))\]

<table>
<thead>
<tr>
<th>((S, \oplus, \otimes))</th>
<th>task</th>
</tr>
</thead>
<tbody>
<tr>
<td>(({0, 1}, \lor, \land))</td>
<td>or-and problem, CSP</td>
</tr>
<tr>
<td>([-\infty, \infty), \min, \max)</td>
<td>min-max problem</td>
</tr>
<tr>
<td>([-\infty, \infty), \max, +)</td>
<td>max-sum problem</td>
</tr>
<tr>
<td>([0, \infty), +, \ast)</td>
<td>sum-product problem</td>
</tr>
</tbody>
</table>
Rings

\((S, \bullet, \circ)\)

\((Z, +, \ast)\)
Semirings
Semirings

CSP

Denote a problem by \((G,X,\bar{g})\) – Graph, Domain, Constraints
Let \(\bar{g}_t(x),\ \bar{g}_{tt'}(x,x') = \{0,1\}\) say if an assignment is allowed or forbidden

\[
\bar{L}_{G,X}(\bar{g}) = \left\{ x \in X^T \mid \bigwedge_t \bar{g}_t(x_t) \land \bigwedge_{\{t,t'\}} \bar{g}_{tt'}(x_t, x_{t'}) = 1 \right\}
\]
Arc consistency in CSP

\[\bar{g}_{tt'}(x, x') \in \{0, 1\} \]

\[\bigvee_{x'} \bar{g}_{tt'}(x, x') = \bar{g}_t(x), \quad \{t, t'\} \in E, \ x \in X \]

The kernel can be obtained by iteratively applying the following relations until no more 0 assignments are made (arc consistency algorithm)

\[\bar{g}_t(x) := \bar{g}_t(x) \land \bigvee_{x'} \bar{g}_{tt'}(x, x') , \]

\[\bar{g}_{tt'}(x, x') := \bar{g}_{tt'}(x, x') \land \bar{g}_t(x) \land \bar{g}_{t'}(x') \]
Semirings
Max-sum

Denote a problem by \((G, X, g)\) – Graph, Assignments, Weights

\[
F(x \mid g) = \sum_{t \in T} g_t(x_t) + \sum_{\{t, t'\} \in E} g_{tt'}(x_t, x_{t'})
\]

\[
L_{G,X}(g) = \arg\max_{x \in X^T} F(x \mid g)
\]
Equivalent Transformations

Also known as ERs (Wainwright)

A problem is called equivalent if \((G,X,g)\) and \((G,X,g')\) produce the same problem, denoted as \(g \sim g'\)

The simplest such transformation adds a number \(\phi_{tt'}(x)\) to \(g_t(x)\) while removing from \(g_{tt'}(x,x')\)

This formulation corresponds to potentials or messages from message passing

\[
g_{t}^\phi(x) = g_t(x) + \sum_{t' \in N_t} \phi_{tt'}(x),
\]

\[
g_{tt'}^\phi(x, x') = g_{tt'}(x, x') - \phi_{tt'}(x) - \phi_{t't}(x')
\]
Schlesinger’s Upper Bound

\[u_t = \max_x g_t(x), \quad u_{tt'} = \max_{x,x'} g_{tt'}(x, x') \]

\[U(g) = \sum_t u_t + \sum_{\{t,t'\}} u_{tt'} \]

\[U^*(g) = \min_{\varphi \in \mathbb{R}^p} \left[\sum_t \max_x g_{t}^\varphi(x) + \sum_{\{t,t'\}} \max_{x,x'} g_{tt'}^\varphi(x, x') \right] \]
Triviality

(t,x) is a maximal node if \(g_t(x) = u_t \)

\{ (t,x), (t',x') \} is a maximal edge if \(g_{tt'}(x,x') = u_{tt'} \)

\(\bar{g}_t(x) = [[g_t(x) = u_t]] \quad \bar{g}_{tt'}(x) = [[g_{tt'}(x,x') = u_{tt'}]] \)

A max-sum problem is **trivial** if a labeling can be formed of a subset of its maximal nodes and edges

Theorem 4. Let \(C \) be a class of equivalent max-sum problems. Let \(C \) contain a trivial problem. Then, any problem in \(C \) is trivial if and only if its height is minimal in \(C \).
Triviality

Theorem 4. Let C be a class of equivalent max-sum problems. Let C contain a trivial problem. Then, any problem in C is trivial if and only if its height is minimal in C.

1. minimize the problem height by equivalent transformations and
2. test the resulting problem for triviality.

Testing for triviality of a max-sum problem is correspondent to solving the CSP generated by its maximal nodes and edges

A CSP is a tight solution to all max-sum problems it can be equivalently transformed into
Equivalent Transformations

- eq. problems with min. height (CSPs)
- eq. problems with equal height
- eq. problems
- all max–sum problems
Linear Programming Relaxation

\[\alpha_{tt'}(x, x') = \alpha_t(x), \quad \{t, t'\} \in E, \ x \in X, \]

\[\sum_x \alpha_t(x) = 1, \quad t \in T, \]

\[\alpha \geq 0, \]

This gives the polytope \(\Lambda_{G,X} \) which has a set of optimal vertices given by

\[\Lambda_{G,X}(g) = \arg \max_{\alpha \in \Lambda_{G,X}} \langle g, \alpha \rangle \]

\[\langle g, \alpha \rangle = \sum_t \sum_x \alpha_t(x) g_t(x) + \sum_{\{t, t'\}} \sum_{x, x'} \alpha_{tt'}(x, x') g_{tt'}(x, x') \]
Duality of the Relaxations

\[
\begin{align*}
\langle g, \alpha \rangle & \rightarrow \max_{\alpha} \quad \sum_{t \in T} u_t + \sum_{\{t, t'\} \in E} u_{tt'} & \rightarrow \min_{\varphi, u} \\
\sum_{x' \in X} \alpha_{tt'}(x, x') &= \alpha_t(x) \quad \varphi_{tt'}(x) \in \mathbb{R}, \quad \{t, t'\} \in E, \; x \in X \\
\sum_{x \in X} \alpha_t(x) &= 1 \quad u_t \in \mathbb{R}, \quad t \in T \\
\sum_{x, x' \in X} \alpha_{tt'}(x, x') &= 1 \quad u_{tt'} \in \mathbb{R}, \quad \{t, t'\} \in E \\
\alpha_t(x) &\geq 0 \quad u_t - \sum_{t' \in N_t} \varphi_{tt'}(x) \geq g_t(x), \quad t \in T, \; x \in X \\
\alpha_{tt'}(x, x') &\geq 0 \quad u_{tt'} + \varphi_{tt'}(x) + \varphi_{t't}(x') \geq g_{tt'}(x, x'), \quad \{t, t'\} \in E, \; x, x' \in X
\end{align*}
\]

Theorem 5. The height of \((G, X, g)\) is minimal of all its equivalents if and only if \((G, X, g)\) is relaxed-satisfiable. If it is so, then \(\Lambda_{G,X}(g) = \tilde{\Lambda}_{G,X}(g)\).
More theorems fall out

Theorem 6. Let \((G, X, \bar{g}^*)\) be the kernel of a CSP \((G, X, g)\).
Then, \(\bar{\Lambda}_{G,X}(g) = \bar{\Lambda}_{G,X}(g^*)\).

Theorem 7. A nonempty kernel of \((G, X, g)\) is necessary for its relaxed satisfiability and, hence, for minimal height of \((G, X, g)\).

Finding the kernel does not guarantee finding a solution for the minimal upper bound
Obvious by approach from CSPs

For problems of boolean variables \(|X| = 2\)
finding the kernel is necessary and sufficient for finding the upper bound

\(\bar{g}\) satisfiable \(\Rightarrow\) \(\bar{g}\) relaxed-satisfiable
\(g\) trivial \(\Rightarrow\) height of \(g\) minimal \(\Rightarrow\) kernel of \(\bar{g}\) nonempty
(Super) Submodularity

Known that the (super) submodularity property produces max-sum problems with tractable solutions by conversion to max-flow/min-cut problems.

Has been suggested that supermodularity is the discrete counterpart of convexity. Lots of work shows that the LP relaxation for a supermodular max-sum problem is tight.

Supermodular max-sum problems will always form a **lattice CSP** with a tractable solution.
An application (not just theory!)