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Abstract

Reinforcement learning (RL) was originally
proposed as a framework to allow agents to
learn in an online fashion as they interact
with their environment. Existing RL algo-
rithms come short of achieving this goal be-
cause the amount of exploration required is
often too costly and/or too time consum-
ing for online learning. As a result, RL is
mostly used for offline learning in simulated
environments. We propose a new algorithm,
called BEETLE, for effective online learning
that is computationally efficient while mini-
mizing the amount of exploration. We take
a Bayesian model-based approach, framing
RL as a partially observable Markov decision
process. Our two main contributions are the
analytical derivation that the optimal value
function is the upper envelope of a set of mul-
tivariate polynomials, and an efficient point-
based value iteration algorithm that exploits
this simple parameterization.

1. Introduction

Over the years, reinforcement learning (RL) (Sutton
& Barto, 1998) has emerged as a dominant framework
for simultaneous planning and learning under uncer-
tainty. Many problems of sequential decision making
with unknown action effects can be solved by rein-
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forcement learning (e.g., elevator scheduling (Crites
& Barto, 1996), helicopter control (Ng et al., 2003),
backgammon playing (Tesauro, 1995)).

Interestingly, even though RL can, in theory, enable
an agent to plan and learn online, in practice, RL is
mostly used in simulation to learn offiine. Model-free
algorithms, which directly learn an optimal policy (or
value function), tend to have slow convergence, requir-
ing too many trials to be used for online learning. In
application domains where each state transition has a
cost or some state transitions may lead to severe losses
(e.g., helicopter crash, mobile robot collision), online
learning with model-free RL is not realistic. In con-
trast, model-based approaches can incorporate prior
knowledge to mitigate severe losses, speed up conver-
gence and reduce the number of trials. Model-based
approaches, especially Bayesian ones, can also opti-
mally tradeoff exploration and exploitation. However
model-based approaches tend to be much more com-
plicated and computationally intensive, making them
impractical for online learning.

In this paper, we derive an analytic solution to
Bayesian model-based RL. While it is well known that
Bayesian RL can be cast as a partially observable
Markov decision process (POMDP) (Duff, 2002), the
lack of a convenient parameterization for the optimal
value function is one of the causes of the poor scal-
ability of Bayesian RL algorithms. We show that for
discrete Bayesian RL, the optimal value function is pa-
rameterized by a set of multivariate polynomials. This
parameterization allows us to derive an efficient of-
fline approximate policy optimization technique. Even
though this optimization is done offline, learning is re-
ally done online as originally intended in the RL frame-
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work. Furthermore, online learning is not computa-
tionally intensive since it requires only belief monitor-
ing. This removes the main concern that practitioners
traditionally have with model-based approaches.

The paper is organized as follows. Sect. 2 reviews the
POMDP formulation of Bayesian RL and how to do
belief monitoring. Sect. 3 demonstrates that the op-
timal value function is the upper envelope of a set of
multivariate polynomials. Sect. 4 presents an efficient
algorithm called Beetle that exploits this parameter-
ization. Sect. b demonstrates empirically the Beetle
algorithm on a toy problem and a realistic assistive
technology task. Finally, Sect. 6 concludes.

2. POMDP formulation of Bayesian RL

A Markov decision process (MDP) can be formally
defined by a tuple (S, A,7,R), where S is the set
of states s, A is the set of actions a, T(s,a,s’) =
Pr(s’|s,a) encodes the probability that state s’ is
reached when action a is executed in state s, and
R(s,a,s’) encodes the reward earned when state s’ is
reached after executing action a in state s. A policy
m:S — Ais a mapping from states to actions.

The problem of reinforcement learning (RL) consists of
finding an optimal policy for an MDP with a partially
or completely unknown transition function. In this pa-
per, we analytically derive a simple parameterization
of the optimal value function for the Bayesian model-
based approach. Bayesian learning proceeds as fol-
lows. Pick a prior distribution encoding the learner’s
initial belief about the possible values of each unknown
parameter. Then, whenever a sampled realization of
the unknown parameter is observed, update the belief
to reflect the observed data. In the context of rein-
forcement learning, each unknown transition proba-
bility 7'(s’,a, s) is an unknown parameter 67 . Since
these are probabilities, the parameters 92’5/ take values
in the [0, 1]-interval.

We can then formulate Bayesian model-based RL
as a partially observable Markov decision process
(POMDP) (Duff, 2002), which is formally described
by a tuple (Sp, Ap,Op,Tp,Zp,Rp). Here Sp =
S x {055} is a hybrid set of states composed of the
cross product of the discrete MDP states s with the
unknown continuous parameters 655 . The action
space Ap = A is the same as the underlying MDP.
The observation space Op = S consists of the ob-
servable MDP state space. The transition function
Tp(s,0,a,s",0") = Pr(s',6']s,0,a) can be factored in
two conditional distributions for the MDP states (i.e.,
Pr(s'|s, 05 ,a) = 65%) and the unknown parame-

ters (i.e., Pr(0'|6) = 0¢(0’) where 09(0') is a Kro-
necker delta with value 1 when ¢ = 6 and value
0 otherwise). This Kronecker delta reflects the as-
sumption that unknown parameters are stationary
(i.e., 6 does not change). The observation function
Zp(s',0,a,0) = Pr(o|ls’,€,a) indicates the probabil-
ity of making an observation o when state s’,0’ is
reached after executing action a. Since the observa-
tions are the MDP states, then Pr(o|s’,8’,a) = d¢ (0).
The reward function Rp(s,0,a,s’,0') = R(s,a,s’) is
the same as the underlying MDP reward function since
it doesn’t depend on # nor 6.

Based on this POMDP formulation, we can learn the
transition model 8 by belief monitoring. At each time
step, the belief (or probability density) b(8) = Pr(6)
over all unknown parameters 9;>5/ is updated based on
the observed transition s, a, s’ using Bayes’ theorem:

bo¥ (0) = kb(0) Pr(s']0, s, a) (1)
= kb(0)0y" (2)

In practice, belief monitoring can be performed easily
when the prior and the posterior belong to the same
family of distributions. If the prior b is a product
of Dirichlets then the posterior bg’sl is also a prod-
uct of Dirichlets since Dirichlets are conjugate priors
of multinomials (DeGroot, 1970). A Dirichlet dis-
tribution D(p;n) = kl_[ip?i_l over a multinomial p
is parameterized by positive numbers n;, such that
n; — 1 can be interpreted as the number of times that
the p;-probability event has been observed. Since the
unknown transition model 6 is made up of one un-
known distribution 67 per s,a pair, let the prior be
b(0) =11 o D(02; ng) such that nf is a vector of hyper-
parameters ng’sl. The posterior obtained after transi-
tion 3, a, 8’ is:

k65 T o D(03;13) (3)
15,0 D(0g;me + 050,50 (s,a,s/)) (4)

DR

Here 0;,4.5/(s,a,5") is a Kronecker delta that returns
1 when s = 3, a = a, s = &, and 0 otherwise. In
practice, belief monitoring is as simple as increment-
ing the hyperparameter corresponding to the observed
transition.

3. Policy Optimization

We now explain how optimal policies and value func-
tions can be derived. Sect. 3.1 reviews Bellman’s equa-
tion for Bayesian RL. Sect. 3.2 explains how opti-
mal POMDP solutions naturally optimize the explo-
ration/exploitation tradeoff. Sect. 3.3 shows that the
optimal value function in Bayesian RL is parameter-
ized by a set of multivariate polynomials. This is a
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key result that will be the basis of the Beetle algo-
rithm proposed in Sect. 4.

3.1. Bellman’s Equation

In POMDPs, policies 7 are mappings from belief states
to actions (i.e., m(b) = a). The value V™ of a pol-
icy 7 is measured by the expected discounted sum
of the rewards earned while executing it: V7™(b) =
YooV R(be, w(be), big1). An optimal policy m* has
the highest value in all belief states (i.e., V™ (b) >
V7™ (b) Vrr,b) and its value function V*(b) satisfies Bell-
man’s equation:

V*(b) = maaxz Pr(o|b, a)[R(b, a,b) +yV*(b2)].  (5)

Smallwood and Sondik (1973) showed that the opti-
mal value function of POMDPs with discrete states is
piecewise linear and convex. More precisely, it corre-
sponds to the upper envelope of a (possibly infinite)
set of linear segments «(b) called a-vectors.

Recall that for Bayesian RL, states are partly discrete
and partly continuous, however following Duff (2002),
Bellman’s equation can be re-written

V7 (b) = max 3 Pr(ofs, b,a)[R(s, b, a, ', b2) + 7V (52)].

(6)
Using the fact that rewards do not depend on b nor
be and that observations correspond to the physical
states s’ in Bayesian RL, Bellman’s equation can be
simplified to

V> (b) = max Z Pr(s'|s, b, a)[R(s,a,s") +~Va (b‘;’s/)]. (7)

Here b is the current belief in 6 and b%* is the revised
belief state according to Eq. 4.

3.2. Exploration/Exploitation Tradeoff

The POMDP formulation of Bayesian RL allows one to
naturally optimize the exploration/exploitation trade-
off. Bellman’s equation helps to understand why this
is the case. Pure exploitation selects the action that
maximizes total rewards based on b only, disregarding
the fact that valuable information may be gained by
observing the outcome of the action chosen. More pre-
cisely, policy optimization by pure exploitation would
select actions according to the following equation,
which differs from Eq. 7 only by the use of b instead
of bg’sl in the right hand side:

V2 (b) = max Y Pr(s']s, b, a)[R(s,a,5") + VI ()] (8)

At run time, the agent would continually perform be-
lief monitoring to update the belief state, but the ac-
tion chosen at each step would simply take into ac-
count the current belief state since the outcome of
future actions hasn’t been observed yet. While this
may seem reasonable, it is suboptimal. Even though
the outcome of future actions cannot be observed yet,
we can hypothesize future action outcomes and take
them into account by conditional planning. This is pre-
cisely what Bellman’s equation (Eq. 7) achieves since
all possible updated belief states b5 are considered
with probabilities corresponding to the likelihood of
reaching s’. Hence, Bellman’s equation optimizes the
sum of the rewards that can be derived based on the
information available in b (e.g., exploitation) as well
as the information gained in the future by observing
the outcome of the actions selected (e.g., exploration).
Alternatively, we can also argue that an optimal policy
of the POMDP formulation of Bayesian RL optimizes
the exploration/exploitation tradeoff simply based on
the fact that such a policy maximizes the expected
total return.

3.3. Value Function Parameterization

Recall that the optimal value function of POMDPs
with discrete states is piecewise linear and con-
vex (Smallwood & Sondik, 1973). More precisely, it
corresponds to the upper envelope of a (possibly in-
finite) set I' of linear segments «(b) called a-vectors
(i.e., V*(b) = maxqer a(b)). In Bayesian RL, despite
the hybrid nature of the state space, the piecewise lin-
ear and convex property still holds as demonstrated by
Duff (2002) and Porta et al. (2005). The optimal value
function corresponds to the upper envelope of a set T’
of linear segments called a-functions due to the con-
tinuous nature of 6 (i.e., V.*(b) = maxyer as(b)). Here
a can be defined as a linear function of b subscripted
by s (i.e., as(b)) or as a function of 0 subscripted by s
(i-e., ag(#)) such that ag(b) = [, b(0)as(#)dd. Hence,
value functions in Bayesian RL can also be represented
by a set of a-functions, however it is unknown how to
parameterize a-functions in such a way that this pa-
rameterization be closed under Bellman backups. Due
to the lack of a convenient parameterization, practi-
tioners have had difficulty developing efficient and ac-
curate algorithms. To date, several approximate algo-
rithms based on confidence intervals (Kaelbling, 1993;
Meuleau & Bourgine, 1999), Normal-Gamma distri-
butions (Dearden et al., 1998), linear combinations of
hyperparameters (Duff, 2003) and sampling (Dearden
et al., 1999; Strens, 2000; Wang et al., 2005) have been
proposed, but they tend to be computationally inten-
sive at run time, preventing online learning or to make
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drastic approximations such as myopically optimizing
the policy.

In a recent paper, Porta et al. (2005) derived that
the parameterization of a-functions for continuous
POMDPs with Gaussian dynamics is a linear combina-
tion of Gaussian functions. Similarly, we analytically
derive that a-functions in Bayesian RL are multivari-
ate polynomials (Theorem 1). Based on this parame-
terization, we propose an efficient nonmyopic approx-
imate algorithm called Beetle in Sect. 4.

Before establishing our main theorem, let us first re-
view the Bellman backup operator and the updat-
ing of the a-functions (Duff, 2002). Suppose that
the optimal value function VF(b) for k steps-to-go
is composed of a set I'* of a-functions such that
VE(b) = max,crr as(h). Using Bellman’s equation,
we can compute by dynamic programming the best
set I'**1 representing the optimal value function V*+1
with k + 1 stages-to-go. First we rewrite Bellman’s
equation (Eq. 7) by substituting V* for the maximum
over the a-functions in I'*:

ng+1(b) _ maxZPr(s'|8, b,a)[R(s,a,s" )+ max Qs (b2 5')]

a€erk

Then we decompose Bellman’s equation in 3 steps.
The first step (Eq. 9) finds the maximal a-function
for each a and s’. The second step (Eq. 10) finds the
best action a. The third step (Eq. 11) performs the
actual Bellman backup using the maximal action and
a-functions.

= argmax o/ (bf;s’) 9)
a€Erk

ay = argmaxz Pr(s'|s,b,a)[R(s,a,s") +~vay, (bs s )] (10)

ZPr (s'|s,b,a3)]

s,s
Oéb,a

VI () R(s, ap, s )+v%a (b5 ) an)

We can further rewrite the third step (Eq. 11) by using
a-functions in terms of 6 (instead of b) and expanding

the belief state bZ’;/:
ST Pr(s'[s, b, a})[R(s, by ') + 4 /9 b (0)ay; (6)d6) (12)
-3 /9 b(0) Pr(s'|s,0,03) [R(s, a3, ) + yoy's; (0)d0] (13)
= [0 S Pr(s 15,0, R (s, )+ 0 (0] a0 (10

Since the expression in the outer square brackets is a
function of s and 6, let’s use it as the definition of an
a-function in T*F+1:

Oébs

ZPr Is,0,a3)[R (s,ai,s')—&—’ya;z/g(@)}. (15)

Hence for every b we can define such an a-function and
together they form the set T**1. Since each ay s was
defined by using the optimal action and a-functions
in T'*, then each ay s is necessarily optimal at b and
we can inroduce a max over all a-functions without
changing anything:

VA () / b(0) s (0)d0 (16)
]

s (B) (17)

= e, 0e) (18)

We are now ready to prove our main theorem:

Theorem 1 «-functions in Bayesian RL are multi-
variate polynomials.

Proof: We give a proof by induction. Initially, '’ con-
sists of a single a-function that assigns 0 to all belief
states. This a-function is a trivial multivariate poly-
nomial. Assuming a-functions in I'* are multivariate
polynomials, we show that ay s in Eq. 15 is also a mul-
tivariate polynomial.

In Eq. 15, we can substitute Pr(s'|s,6,a) by 5%
where for simplicity we use a to denote the opti-
Let oy (0) = Y, ¢i o pri s (0) where

Wi s (0) = Hg,a’gl(ejgl))\g‘:: is a monomial over the pa-
rameter space, with non-negative powers A (one for
each parameter). The indices s, a, s’ have a “hat”
to distinguish them from those used in the definition
of aps. The reward R(s,a,s’) can also be written as
a degenerate constant monomial cg i (9) such that

mal action aj.

¢y = R(s,a,8") and py(0) = Hy,0(65%)°. Eq. 15
then reads:
Oéb,s(e) Z 05 o Ca’;ufa + vy Z Ci,s' i, s’ (19)

s’

3 /. . .
We can absorb 62° into the monomials by increment-

ing the appropriate powers. If we write
1 (0) = Héyéyg/(eg,s’)o\g’s +84 0,50 (5,8,8")) (20)

then Equation 15 reads:

ab,s(a) = ch’us +’yzcl .s';uzs

which is again a multivariate polynomial. <«

(21)
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4. The Beetle Algorithm

Since multivariate polynomials form a closed represen-
tation for a-functions under Bellman backups, we pro-
pose a simple and efficient point-based value iteration
algorithm for Bayesian RL called Beetle (i.e., Bayesian
Exploration Exploitation Tradeoff in LEarning).

4.1. Point-based value iteration

The Beetle algorithm is an extension of the Perseus
algorithm (Spaan & Vlassis, 2005) for Bayesian RL.
First, a set of reachable s, b pairs is sampled by simu-
lating several runs of a default or random policy. Then
(approximate) value iteration is done by performing
point-based backups at those sampled s, b pairs based
on Eq. 9, 10 and 15. For a given s, b pair, the best a-
function for each a, s’ is computed according to Eq. 9.
Then, the optimal action is computed according to
Eq. 10. A new a-function is constructed according to
Eq. 15. This new a-function is represented very simply
by the non-negative powers A of its monomial terms.

As is, Beetle suffers from an important source of in-
tractability. At each backup, the number of terms of
the multivariate polynomial of the resulting a-function
grows significantly. More precisely, in Eq. 21, the num-
ber of monomials is multiplied by O(|S]), which yields
a number of monomials that grows exponentially with
the planning horizon.

4.2. a-function Projection

In order to mitigate the exponential growth in the
number of monomials, after each Bellman backup we
project each new a-function onto a multivariate poly-
nomial with a smaller number of monomials. Intu-
itively, finding a good projection can be cast as an
optimization problem where we would like to simul-
taneously minimize the error at each §. For instance,
when projecting an a-function onto a linear combi-
nation of monomial basis functions (i.e., >, c;$i(0)),
minimizing an L, norm yields:

min [ Ja(6) - S cubn(0)" (22)

If we use a Euclidean norm, the coefficients ¢; can be
found analytically by solving a linear system Az = d
where Ai,j = f@ ¢>1(0)¢J(0)d9, dz = fe ¢1(9)a(0)d9 and
x; = c¢j. Alternatively, since a-functions can be de-
fined with respect to 6 or b, we can also devise a projec-
tion scheme that minimizes error at some belief points
instead of all #’s. Using a Euclidean norm, we can min-
imize ), pla(b) — >, cigi(b)|™ by solving a similar
linear system Az = d where A;; = >, 5 ¢i(b)p;(b),
di =3 yep ¢i(b)a(b) and z; = ¢;.

Ideally, we would like to pick basis functions as close as
possible to the monomials of a-functions. When com-
paring the equations for belief monitoring (Eq. 4) and
backing up a-functions (Eq. 11) it is interesting to note
that in both cases, powers are incremented with each
s,a, s’ transition. Hence belief states and a-functions
are both made up of similar monomials. Hence we pro-
pose to use the set of reachable belief states generated
at the beginning of the Beetle algorithm as the set of
basis functions.

Note that a fixed basis set also allows us to pre-
compute several operations to reduce computation
during point-based backups. More precisely, for each
point-based backup, the a-functions of the previous
step are all defined with respect to the same com-
ponents (but different coefficients). Then the ac-
tual backup always transforms those components in
the same way by incrementing some hyperparame-
ters. Hence we can pre-compute the projection of each
backed-up component.

So we can represent a-functions in a very compact way
just by a column vector & corresponding to the coef-
ficients of the fixed basis functions. We can also pre-
compute a projected transition function T,j " in matrix
form for each s,a,s’. Similarly we can pre-compute
the projection of the reward function and store ba-
sis coefficients in column vectors RZ’S/ for each s,a,s’.
Altogether, point-based backups can be performed by
simple matrix operations. For instance, Eq. 15 be-
comes

e =Y T Ry 4y ). (23)

s/

4.3. Parameter Tying

In classic reinforcement learning, the entire transition
dynamics are unknown. With the above Bayesian RL
formulation, this leads to an unknown distribution 6;
for every state-action pair. When the number of states
and actions are large, the amount of computation and
the amount of interaction with the environment both
become prohibitive.

Fortunately, in practice, the transition dynamics are
rarely completely unknown. Sometimes, just a few
transition probabilities are unknown. In other sit-
uations, several unknown transition probabilities are
known to be the same (allowing parameter tying).
More generally, the transition dynamics may be jointly
expressed as a function of a small number of parame-
ters (e.g. factored models). In addition to being able
to encode the uncertainty with a small number of un-
knowns, the amount of interaction for online learning
may be significantly reduced by starting with informa-
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tive priors, that is prior distributions skewed towards
a small range of values.

Note that Beetle can be used directly when unknown
parameters are tied. We simply have one 6; per dif-
ferent unknown distribution. For factored transition
dynamics (i.e. dynamic Bayesian network representa-
tion) Beetle can again be used directly. In this case,
we have one 6; per unknown conditional distribution.
Note that the probability of transitioning to s’ from s
when executing a is now the product of several condi-
tional probabilities. Hence, for each observed transi-
tion s, a, s, we increment several powers, one per con-
ditional probability table, during belief monitoring as
well as point-based backups. In all cases, a-functions
remain multivariate polynomials.

4.4. Reward Function

So far we have assumed that the reward function is
known. We argue that this is not a restriction. The
Beetle algorithm can still learn reward functions with
a finite number of possible values. By considering a
factored model, we can treat the reward signal r as
a state variable. The reward function R(s,a,s’) =
r can then be encoded as a conditional probability
distribution Pr(r|s, a, s’) which can be learned like all
the other conditional probability distributions. In the
case of a continuous reward signal, a sufficiently fine
discretization should provide enough accuracy.

4.5. Discussion

Traditionally, Bayesian RL was considered too com-
plex and intractable to be of practical use. This paper
actually shows that the optimal value function has a
simple analytical form consisting of a set of multivari-
ate polynomials. This analytical form allows us to de-
rive an efficient point-based value iteration algorithm.
As a result, we can optimize a policy offline. This
optimization can be efficient as long as the number
of unknowns remains small. As argued in the previ-
ous section, the transition dynamics of many problems
can be encoded with few parameters by tying param-
eters together or using a factored model. Note that
for effective online learning, what really matters is the
computation time while executing the policy, not the
time for offline optimization. In many domains such as
robotics, elevator control and assistive technologies, it
is quite acceptable to have a computer in the lab spend
a few hours to optimize the policy by running Bee-
tle before downloading it into an agent for execution.
However, at run time, actions must often be selected
in a fraction of a second for realtime execution. Bee-
tle can easily achieve this since belief monitoring and

action selection are not computationally intensive.

While policy optimization is done offline, it is impor-
tant to realize that learning is really done online. The
policy computed consists of a mapping from state-
belief pairs to actions. Even though this mapping is
fixed throughout its execution, the belief states change
with each state transition. Recall that belief monitor-
ing is essentially the process by which the unknown
transition dynamics are learned. Hence, the policy
indirectly adapts with each belief update. The main
drawback of offline policy optimization is that the pre-
computed policy must cater to as many scenarios as
possible. In theory, it should prescribe an optimal
action for every belief state, but this is usually in-
tractable. Hence, we have to settle for a suboptimal
policy that is hopefully good at the belief states that
are more likely to be visited, and hopefully general-
izes well over the remaining belief states via the use
of a-functions. To that effect, point-based value it-
eration concentrates its effort on finding good actions
at a sample of reachable belief states. Note that this
idea is also used in classic RL approaches with value
function approximation.

5. Experiments

We consider two problems. The first is the toy “chain”
problem used in (Strens, 2000; Dearden et al., 1998),
while the second comes from a realistic assistive tech-
nology scenario (Boger et al., 2005). In both problems,
we experiment with varying degrees of parameter ty-
ing and we evaluate our methods by comparing them
to two heuristic methods:

EXPLOIT This is a strictly online method with no
offline optimization, which purely exploits its current
belief at each step. We simply monitor the belief state
online and pick the best action by solving the MDP
for the expected model (i.e., average belief). While this
method is simple, it tends to be slow at run time since
an MDP must be solved between each action executed
and it suffers from a lack of exploration.

DISCRETE_POMDP An alternative to Beetle is to
discretize the unknown distributions € in N values and
to build a discrete POMDP, which can be solved us-
ing Perseus (Spaan & Vlassis, 2005). The drawback of
this approach is the exponential explosion of the state
space, which consists of the cross product of the physi-
cal states with N discrete values for each unknown dis-
tribution (i.e, O(|S|N*) for k unknown distributions).
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Figure 1. (a) Chain problem showing the action, reward for
each transition (b) plansteps for the handwashing problem.

5.1. Problem Descriptions

Fig. 1(a) shows the “chain” problem from (Strens,
2000; Dearden et al., 1998), in which the agent has two
actions a,b which cause transitions between five states.
At each time step, the agent “slips” and performs the
opposite action with probability pg, = 0.2.

A more realistic problem domain is concerned with
assisting persons with cognitive disabilities complete
activities of daily living such as handwashing. We con-
sider a simplified version of the system developed by
Boger et al. (2005) that gives audio prompts to help
users wash their hands with minimal assistance from a
caregiver. Since the level of independence varies widely
depending on each user, a major issue is to learn user
characteristics that influence their ability to carry out
the task. Note that those characteristics can only be
learned online as the system interacts with each user.
Framed as a Bayesian RL problem, we want the system
to learn user types as quickly as possible since it can
be quite frustrating for users to be given inappropri-
ate prompts. The states of the handwashing problem
can be grouped into nine plansteps shown in Fig. 1(b).
The system has two actions available: to do nothing or
to issue an audio prompt corresponding to the current
planstep. A user will exhibit certain behaviors: doing
nothing, the best possible action at a planstep, the sec-
ond best action (if there are two choices), or regressing
(e.g. putting soap on their hands after they are clean
at planstep=g). Each user has some distribution over
these behaviors, which may depend on both the cur-
rent planstep, and the action of the system. Typically,
the system’s prompt will increase the probability that
the user will perform the best action for a planstep.

5.2. Results

Table 1 shows the results from the chain and hand-
washing problems. We experimented with 3 structural
priors referred as tied, semi and full. The full ver-
sion corresponds to the extreme (and perhaps rare)

case where the dynamics are completely unknown. In
navigation scenarios such as the chain problem, the
effects of each action are usually known up to some
noise term (i.e., the slip probability). Similarly, in as-
sistive scenarios such as handwashing, system effects
are usually known (or can be learned through simula-
tion) except for user behaviors. Hence, more realistic
encodings of the chain and handwashing problems as-
sume that the transition dynamics are known except
for the slip and behavior probabilities, which are state
and action independent in the tied version, while ac-
tion dependent in the semi-tied version.

We report the expected total return (averaged over
500 runs) with standard deviation for the first 1000
steps (without any discounting) for the exploit and
discrete POMDP heuristics, and Beetle. In all cases,
30 Bellman iterations were performed and 2000 be-
lief points were sampled for Beetle and the discrete
POMDP heuristic. The first 200 (linearly indepen-
dent) belief points were selected as basis functions for
Beetle. The initial belief state is a uniform Dirich-
let. For the discrete POMDP heuristic, the continuous
space of each unknown distribution 6 was discretized
into 100 grid points selected at random uniformly.

The optimal return given the true model is reported
as a (utopic) upper bound. Beetle found near op-
timal policies for the tied and semi-tied versions,
while doing poorly on the full version. Since the
dynamics are completely unknown in the full ver-
sion, Beetle has trouble pre-computing a policy that
is good for all possible models. Beetle found statis-
tically equivalent or better policies when compared
to the discrete POMDP heuristic, which found very
good policies for the tied and semi-tied versions, while
running out of memory for the full versions. This
confirms that discretizing is impractical for problems
with many free parameters. The exploit heuristic finds
provably optimal policies for the tied version since
there is no exploration required (i.e., the unknown dis-
tributions are tied across all actions). However, explo-
ration is required for the semi-tied and full ver-
sions, which explains the sub-optimal performance of
the exploit heuristic. For further comparison, Dearden
et al. (1998) and Strens (2000) report results for sev-
eral other Bayesian RL heuristics on the chain full
problem, the best of which, “Bayesian DP” (similar to
the exploit heuristic in that actions are selected greed-
ily with respect to a model sampled from the current
belief instead of the expected model) scored 3158 £+ 31.

The running times for our Matlab implementation of
Beetle are reported in the last two columns. We also
wrote a C implementation (which is almost complete



An Analytic Solution to Discrete Bayesian Reinforcement Learning

Table 1. Expected total reward for chain and handwashing problems. na-m indicates insufficient memory.

problem S| JA] free optimal discrete exploit Beetle Beetle time (minutes)
params | (utopic) POMDP precomputation  optimization

chain_tied 5 2 1 3677 3661 4+ 27 3642 1+ 43 3650 41 0.4 1.5
chain_semi 5 2 2 3677 3651 £32 3257+ 124 3648 41 1.3 1.3
chain_full 5 2 40 3677 na-m 3078 £+ 49 1754 4 42 14.8 18.0
handw_tied 9 2 4 1153 1149 + 12 1133 + 12 1146 + 12 2.6 11.8
handw_semi 9 2 8 1153 990 £ 8 991 £+ 31 1082 £+ 17 3.4 52.3
handw_full 9 6 270 1083 na-m 297 + 10 385+ 10 125.3 8.3

Table 2. Expected total reward for varying priors

prior 0 10 20 30
chain_f | 1754 +42 3453 £47 2034+£57 3656 &+ 32
hand-s | 1082+ 17 1056 +£18 1097 +17 1106 £ 16
hand_f | 385+10 540+ 10 1056 £12 1056 & 12

at the time of publication) that achieves running times
one to two orders of magnitude faster. The second last
column indicates the time used to precompute pro-
jected transition and reward functions by minimizing
error with respect to all 6’s (Eq. 22). The last column
reports the time to optimize the policy by Beetle with
the projected transition and reward functions. Recall
that precomputation and optimization times are borne
offline and therefore are in an acceptable range. Action
selection takes less than 0.3 seconds.

We also tested Beetle with informative priors in Ta-
ble 2. Instead of starting Beetle with a uniform prior
(i.e, counts set to 1), we tried more informative priors
by varying a parameter k from 0 to 30. That is, the
Dirichlet counts are set to 1 plus k times the probabil-
ities of the true model. As k increases, the confidence
in the true model increases. In scenarios where we
have some belief about the transition probabilities, but
we are not completely sure, we can reduce the model
uncertainty by using such an informative prior. On
the problems for which Beetle didn’t find a near op-
timal policy with a uniform prior, Table 2 shows that
increasingly informative priors generally improve Bee-
tle’s performance since it can focus on finding a good
policy for a smaller range of likely models.

6. Conclusion

In this paper, we have shown that optimal value
functions for Bayesian RL are parameterized by
sets of multivariate polynomials, and exploited this
parameterization to develop an effective algorithm
called Beetle. It naturally optimizes the explo-
ration/exploitation tradeoff. It allows practitioners to
easily encode prior knowledge, which permits Beetle
to focus only on the truly unknown parts of the dy-
namics, reducing the amount of exploration necessary.
Furthermore, online efficiency is achieved by precom-
puting offline a policy and doing only action selection
and belief monitoring at run time. Overall, this work

represents an important step towards the development
of effective online RL algorithms.

We plan to extend this work on Bayesian RL in sev-
eral directions, including continuous state, action and
observation spaces, partially observable domains and
multi-agent systems. We also plan to explore how to
handle and possibly learn non-stationary dynamics.
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