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Abstract

We present a new method for counting self-avoiding walks (SAW’s),
called stochastic enumeration (SE), a stochastic replica of the naive (com-
putationally intractable) full enumeration method. Also presented is a
new approach, called OSLA-SPLIT, a combination of classic splitting with
importance sampling. The latter is based on the well-known method, one-
step-look-ahead (OSLA) method. Polynomial convergence is proved for
both SE and OSLA-SPLIT. Our simulation studies show that SE is able
to counts reasonable fast SAW’s of length up to 1,000, while the current
state of art is ~ 100.



Contents

1 Introduction 2
2 Counting SAW’s 3
2.1 Splitting Algorithm for SAW’s . . . . ... ... ... ... ... 4
2.2 OSLA-SPLIT Algorithm for SAW’s . . . .. ... ... ..... 7
2.3 Stochastic Enumeration Algorithm for SAW’s . . . . ... .. .. 10
3 Convergence 13
4 Numerical Results 15
4.1  Splitting Algorithm 2.1 . . . . . .. ... ... ... ....... 15
4.2 OSLA-SPLIT Algorithm 2.2 . . . . . ... . ... ... ...... 17
4.3 SE Algorithm 2.3 . . . . . . . ... Lo 17
5 Concluding Remarks and Further Research 19
6 Appendix 19
6.1 OSLA for Self-Avoiding Walk . . . . . ... ... .. .. ... ... 19
6.2 The Splitting Method . . . . . ... ... ... .. L. 20

1 Introduction

There are two well-known methods for rare-event simulation and counting.
They are called splitting and importance sampling (IS).

The splitting method dates back to Kahn and Harris [16]and Rosenbluth
and Rosenbluth [26]. Since then hundreds of insightful papers have been writ-
ten on that topic. We refer the reader to [4]-[19], and also to the excellent
papers by Glasserman et al. [13], Cerou et al. [6] and Melas [22], which contain
extensive valuable material as well as a detailed list of references. Recently,
the connection between splitting for Markovian processes and interacting par-
ticle methods based on the Feynman-Kac model with a rigorous framework for
mathematical analysis has been established in Del Morall’s [7]) monograph.

Importance sampling is subject of almost any standard book on Monte Carlo
simulation (see, for example, [30]). It is well known that a straight-forward ap-
plication of importance sampling typically yields very poor approximations of
the quantity of interest. It is shown in Gogate and Dechter [14], [15] that poorly
chosen importance sampling in graphical models and in particular for satisfiabil-
ity models generates many useless zero weight samples, which are often rejected
yielding an inefficient sampling process. To address this problem which is called
the problem of losing trajectories, the above authors propose a clever sample
search method, the so-called SampleSearch, which is integrated into the impor-
tance sampling framework. They also derive a lower bound for the unknown
counting quantity. Their empirical studies demonstrate the superiority of their
method over its competitors.



In this work we present two new algorithms for fast counting self-avoiding
walks (SAW’s). One, called stochastic enumeration (SE), is a stochastic replica
of the naive full enumeration. The other, called OSLA-SPLIT, is a combination
of classic splitting with importance sampling, which in turn is based on the well-
known one-step-look-ahead (OSLA) method (see Appendix).

A SAW of length n = 130 is given in Figure 1.

Figure 1: A SAW of length n = 130

We prove polynomial complexity of both SE and OSLA-SPLIT algorithms
and present supportive numerical studies. In particular we show that SE is
superior to OSLA-SPLIT and that it can handle problems of size n = 1,000,
while the current state of the art [21] is n & 100.

The rest of the paper is organized as follows. In Section 2, which is the
main one we present three algorithms; the splitting, OSLA-SPLIT and SE
ones. Section 3 deals with the convergence issues of OSLA-SPLIT and the
SE algorithms. In Section 4 we present supportive numerical results. Section 5
gives some conclusions and finally, in the Appendix we present some background
on the OSLA and cloning methods.

2 Counting SAW'’s

In this section we present the splitting, OSLA-SPLIT and SE algorithms. The
first two are similar to the cloning algorithm [28] (see Appendix) with a single
major difference: they do not rely on the time consuming MCMC method and

in particular on the Gibbs sampler. As in [28] we denote by N, p; and Nt(e) the
sample size, the adaptive rarity parameter and the number of elites at iteration
t, respectively. Note that the number of elites equals Nt(e) = [Nypt], where [-]
denotes rounding to the largest integer. At iteration ¢ we split each elite sample
N = {p; 1] times. By doing so we generate {p; th(e)—‘ ~ Ny new samples for the
next iteration t+1. The rationale is based on the fact that if all p; are not small,

say py > 0.01, we have enough elite samples Nt(e) to generate approximately Ny
new stationary samples for the next level.



The final estimator of the number of SAW’s, denoted by |X*| is [28]

T
[+ = x| [ @, (1)
t=1
where ©
NS
=t 2
Ct N, (2)
and |Xp| = 4".

2.1 Splitting Algorithm for SAW’s

The splitting algorithm for SAW’s, which is similar to [28], can be written as

Algorithm 2.1 (Splitting Algorithm for SAW) Given the initial param-
eter p1, say p1 € (0.01,0.25) and the initial sample size N execute the following
steps:

1. Generation of SAW’s Simulate randomly N; SAW’s starting at 00
until each of them stops, that is, until each of the N; processes becomes
non-SAW. Denote them by X1,..., X y,. Set a counter ¢t = 1.

2. Acceptance-Rejection Let 2?1 = {351, . ,XN(E)} be the largest subset
1

of the population {X1,..., X n,}, the elite samples for which S(X;) >
mq, where mq is the (1—p1) sample quantile of the ordered statistic values
of S(X1),...,5(Xn,) and S(X) denotes the length of a SAW. Take

(e)
E Z I{S(X = Nl (3)

as an unbiased estimator of cj.

3. Moving back Move all elites, including those which have reached level
my and higher, to m; — 1. This step is necessary for all elite walks to
become SAW and to start them from the same level mq — 1.

4. Splitting Let Xiq = {Xl, e ,/X/N@) } be the elite sample of SAW’s at
t—1
iteration (¢t — 1), that is the subset of the population {X1,..., Xn,_ 1} for

which S(X;) > my—1. Reproduce N—1 = [,ot J — 1 times each SAW Xk
of the elite sample {Xl, . XN(6> }, that is take 7,1 identical copies
t—1

of each vector X k. Denote the entire new population, that is the new
N 1Nt(e)1 splitting vectors plus the original elite sample { X1, ..., XN(@ 1,
t—1
by c = {(Xh . 7X1)7"'7 (X (e) 9+vey
Nt—l

SAW’s for each member of the population X. Denote by {X1,..., X n,}
the entire new population of SAW’s.

X n( )} Continue generating
t—1

(e)
5. Estimating ¢; Take ¢; = N]f,t (see (2)) as an estimator of ¢;.




6. Stopping rule If m; = n, go to step 7, otherwise set ¢t = t+ 1 and repeat
from step 2.

7. Final Estimator Deliver (1), that is

o T T N(e)
[ = 1% [[a = 1%l ] fvt (4)
t=1 t=1

as an estimator of |X*|.

Remark 2.1 To speed up Algorithm 2.1 we can define the levels m; based on

a small pilot run, denoted by Nt(p ) and such that Nt(p ) << N;. By doing so
Step 3 Moving back becomes redundant.

Remark 2.2 Instead of sampling uniformly N parallel processes from the ori-
gin 00, one can adopt the following policy

1. Choose a small number mg, say my = 4 and find via full enumeration all
different SAW’s starting from the origin 00 . Denote them by |A};, | and

select them as the elite samples, that is set N(ge) = |, |- For example,
for mp = 4 the number of elites Née) = |, | = 100.

2. Set the zero level to mg and proceed with Algorithm 2.1.

We now demonstrate Algorithm 2.1 for N = 4 and p = 1/2, using Figures
2 and 3 showing the first and second iterations, respectively.

1. First iteration Following Algorithm 2.1 we start at point (0,0) and gen-
erate N = 4 random trajectories. Assume that the results are 51 =
4,5, = 6,53 = 3,54 = 7, where S; denotes the length of the i-th SAW
including the last unsuccessful movement. This corresponds to part (a)
of Figure 2.

Figure 2: First Iteration of Algorithm 2.1
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Clearly, S1 = 4 and S3 = 3 must be discarded, while So = 6, and Sy =7
represent elite samples and must be kept. The first level reached is clearly
mi = 5 (not my = 6, because of the unsuccessful last movement). Part
(b) of Figure 2 represents exactly those remaining two trajectories Sy and
Sy, each truncated to length 5.

2. Second Iteration Following Algorithm 2.1 we generate N = 4 random
trajectories, proceeding from the trajectories Sy and Sy, each of which is
split by a factor of two. Note that for convenience the trajectories So and
Sy are sown again in part (a) of Figure 3. The resulting 4 trajectories with
length S; = 14,55 = 10,53 = 11,54 = 13 are shown in part (b). Clearly,
to start the third trajectory we should set the second level mo = 12.
This implies that we should retain trajectories S; = 14 and S; = 13 and
discard Sy and Sj3.

Figure 3: The Second Iteration of Algorithm 2.1
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Remark 2.3 As an alternative to the (deterministic) splitting step 4 in Algo-
rithm 2.1 one can consider the following random one:

At iteration t, t =1,...,T take a sample of size N — Nt(e) from the discrete
uniform random U(1, .. .,Nt(e)), t=1,...,T. Let R; be the number of times
for the subscript 7, j=1,... ,Nt(e). Split R; times each elite trajectory j.

Note that

N
S R;=N-N. (5)
j=1

Note also that this alternative assumes that Ny = N,Vi =1,...,T, that is
coincides with (1). We shall refer to the original splitting estimator (1) and the
one involving (5), as the systematic and random ones, respectively. If not stated
otherwise we assume systematic splitting, since we found numerically that it is
superior to the random one.

In part (b) of Figure 4 we present 4 trajectories for the second iteration of
the splitting algorithm with random splitting. In particular, we split the first
trajectory 3 times and the second only once. For convenience we reproduce



here (in part (a)) from Figure 3 the 4 trajectories corresponding to systematic
splitting.

Figure 4: 4 Trajectories for Second Iteration with Systematic Splitting (part
(a)) and Random Splitting (part (b))
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Note that if we set in (1) the number of levels equal to n (non-adaptive up-
dating) we obtain the famous Feynman-Kac splitting model extensively treated
in the works of Cerou, Del Moral, Doucet and others [4]-[8]. In their termi-
nology, the original acceptance-rejection Step 2 of Algorithm 2.1 is called the
selection step, while the modified splitting step 4 (based on (1) and (5)) is called
the mutation step. For nice surveys on the Feynman-Kac model, particle filters
and sequential Monte Carlo, see [3], [8] and [9].

Our numerical results below show that the systematic splitting Algorithm
2.1 is slightly faster and more accurate than its random counterpart.

Remark 2.4 An alternative splitting estimator for rare event estimation is
given in [6]. It is N

¢ =rcl, (6)
where ¢ = N©) /N, r is the proportion of trajectories (elites), which reached
the desired level n at iteration T+ 1, N denotes the number of samples which
are simulated, and N(©) denotes the number of elites that are kept from one
step to another. Note that

e The sample size N and the number of elites N(¢) (and thus ¢ = N(¢)/N)
are fixed in advance.

e The elites with length of trajectories exceeding the threshold m; are not
moved back to the level m; as in Algorithm 2.1, but are retained (as
competetors) for the next iteration corresponding to the level myy;.

2.2 OSLA-SPLIT Algorithm for SAW’s

To speed up the splitting Algorithm 2.1, we shall combine it with IS, and in
particular with the OSLA (one-step-look-ahead) Algorithm 6.1 given in Section



6.1 of the Appendix. We call such enhanced algorithm, the OSLA-SPLIT al-
gorithm. Note that the OSLA Algorithm 6.1 is able to handle (in manageable
time) problems of small sizes, say up to n = 100, while OSLA-SPLIT is capable
handles problems of n = 500.

Regarding OSLA-SPLIT the immediate temptation would be to replace the

(e)
original splitting estimator ¢; = N]\th (see (2)) by its OSLA counterpart

1 Nt(O) 1 Nt(oe)
&= —5 Z Isxzmpw(Xi) = — Z w(X;), (7)
Nt =1 Nt =1

while all other data remaining unchanged. Here Nt(oe) and Nt(o) denote the
respective number of elites and actual sample size in the OSLA estimator, and
w(X;) represents the weight factor associated with the i-th elite trajectory of
OSLA and is given in (26) in the Appendix. Note that superscripts (oe) and
(0) serve to distinguish the values from Nt(e) and Ny in the Algorithm 2.1.

Unfortunately, such an estimator of |X™*| (see (1)) with ¢ replaced by ¢
is bound to fail mainly because - unlike Algorithm 2.1, where all Nt(e) elite
trajectories are uniformly distributed in the corresponding subspace X; - the
Nt(oe) elites are no longer so.

To overcome this difficulty we suggest to run the original and the enhanced
versions in parallel. Both version must be synchronized in terms of the number
of elites and the level- crossing value m;. More specifically:

e We require that Nt(oe) = Nt(e) for all ¢t. This can be achieved by making
sure first that Nt(e) > Nt(oe) and then discarding randomly A; = Nt(e) -
Nt(oe) trajectories from Nt(e). We need not to assume, however, Nt(o) =
N;. In fact, we take Nt(o) > N

e We accept the estimator ¢; as per (7) with a single major difference: we
start each iteration ¢ in OSLA-SPLIT with Nt(f)l elites from Algorithm
2.1, rather than with Nt(fel) ones from OSLA. This is the same as to say
that at the end of each iteration we dispense with Nt(oe) elites replacing
them with Nt(e) ones to proceed to iteration ¢ + 1.

The OSLA-SPLIT, algorithm can be written as follows:

Algorithm 2.2 (OSLA-SPLIT Algorithm for SAW’s) Given the initial

parameter pi, say p1 € (0.01,0.25) and the sample size N = Nl(o)

following steps:

, execute the

1. Generation of SAW’s Using OSLA Algorithm 6.1, simulate a random
sample X1,..., Xy, of SAW’s starting at 00 until each of them stops

(stacked at some intermediate state), that is until each of the Nl(o) pro-
cesses becomes non-SAW. Set a counter ¢ = 1.



2. Acceptance-Rejection Let X, = {}1,...,}N(oe)} be the largest
1
subset of the population {X,..., X N<oe)}, the elite samples for which
1

S(X;) > my, where my is the (1 — p1) sample quantile of the ordered
statistics values of S(X1),...,S(X ) and S(X) denotes the length of
1

a SAW. Take
1 Nfo) N(OE)
= —= > Igx)>myw(Xi) (8)
Nl(o) ; {S(Xq)=ma} N(o) Z

as an unbiased estimator of ¢;. Here w(X;) (see (26)) is the weight factor
associated with the i-th elite trajectory, each of length m, — 2, that is

w(X;) = diy -+, d(m,—2)i - 9)

3. Moving back Move all elites, including the one which reached level my
and higher to m, — 2. This step is necessary for all elite walks to become
SAW and to start them from the same level mq — 2.

4. Splitting Remove the Nt(fel) elites from OSLA and replace them with
Nt(f)l ones from Algorithm 2.1 such that Nt(fl = Nt(fel). Note that the
elites Nt(f)l and Nt( 1) are synchronized for each level ;1. As in the
Splitting step of Algorithm 2.1, reproduce 7,1 = [p;_ﬂ — 1 times each
elite Nt(f)l trajectory. Continue generating SAW’s for each member of the

new 71 = [pt:lﬂ population using OSLA until all of them become non-
self-avoiding. Denote by {X,..., X N(o>} the entire new population of
t

SAW’s.

5. Estimation of ¢; Take ¢; in (7) as an unbiased estimator of ¢;. Note
again that w(X;) in (7) is the weight factor associated with the i-th elite
SAW trajectory, each of length m; — my;_1, that is

w(Xl) = dtia o 7d(1’/th—T'ﬁt,1),i . (10)

6. Stopping rule (the same as in Algorithm 2.1).

7. Final Estimator Deliver
- T
x| =]]e (11)
t=1

as an estimator of |X*|, where ¢; is as per (7).

Instead of the adaptive Algorithm 2.1 one can use a non-adaptive one, that
is, where the number of levels T' is fixed and equal to n. We found that the
adaptive algorithm is only a little faster than the non-adaptive one, mainly
because in the adaptive case at each iteration ¢ we have to move backward all
elite trajectories exceeding m; back to the level m;, while in the non-adaptive



we do not need to do so. Thus, there exists a trade-off in Algorithm 2.1 between
p and N. Clearly, if we set p ~ N~! then there is a single elite and there is no
need to move backward. But then we have to split the single elite IV times. We
found that good performance is obtained for 0.1 < p < 0.25.

Remark 2.5 Note that in contrast to the estimator |j\.’?] in (1) its counterpart
|X*| in (11) does not contain the term |Xy|. Note also that if we use fixed levels
my instead of adaptive ones, Step 3 (Moving Back) is redundant. As a result
we can use m in (9) instead of m; — 2 and, in general, m; instead of m; — 2.
The resulting w(X;) is thus

2.3 Stochastic Enumeration Algorithm for SAW’s

This method can be viewed as a dual to OSLA-SPLIT, in the sense that we
first derive the number of SAW elites Nt(f)l (at iteration t —1) and only then the
sample size N; for iteration ¢ and the corresponding SAW’s. This is done by full
enumeration between the ]\ft(e)1 elites that have reached the threshold level m;_1

and all possible candidates for the next level m; > m;_;. Typically one might
keep Nt(e) fixed, while N; is varied from iteration to iteration. It is crucial
to note that in contrast to the OSLA-SPLIT Algorithm 2.2 - the stochastic

enumeration (SE) below is not stacked at any intermediate state m; < n.
Algorithm 2.3 (Stochastic Enumeration for SAW’s)

1. Full Enumeration Select a small number m;, say m; = 4 (see Remark
2.2) and find via full enumeration all different SAW’s starting from the
origin 00. Denote the number of elites by Nl(e) and call them the elite
sample. For example, for m; = 4 the number of elites Nl(e) = 100. Set the
first level to my. Proceed with the Nl(e) elites from level my to the next
one mg = my + r, where r is a small integer (typically r = 1 or r = 2)
and find again all different SAW’s. Denote their number for mo by Ny
and call the associated SAW’s sample size. For example, for mo = 5 we
have N7 = 284 different SAW'’s.

2. Calculation of the First Weight Factor Calculate

. N
vy = (i) (13)
Nl

and call it the first weight factor.
3. Stochastic Enumeration Proceed with the Nt(f)l elites from the level

my—1 to the next one m; = my_1 + r and derive (via full enumeration) all
SAW’s for iteration ¢. Denote by Ny the resulting number of SAW’s.

10



4. Calculation of the t-th Weight Factor Select randomly Nt(e) SAW’s
from the set of IN; ones and calculate

D= 1t (14)

Call it the t-th weight factor.

5. Stopping Rule Proceed with steps 3-4 until convergence and deliver
o n
x| = N T 7 (15)
t=1

as an unbiased estimator of |X*|.

Remark 2.6 In analogy to OSLA-SPLIT, we can construct an OSLA-SE algo-
rithm, where the SE part plays a role similar to that of the splitting algorithm
in the parallel run.

Figures 5, 6 and 7 depict the following three steps: (i) full enumeration
starting from the origin 00, (ii) the first iteration, (iii) second iterations of
Algorithm 2.3 for N = 4.

1. Full Enumeration Following Algorithm 2.3 we set m; = 1 and find (via
full enumeration) all different SAW’s of length m; starting from the origin
00.

Figure 5: Full Enumeration Step of Algorithm 2.3

2. First Iteration We proceed by deriving from the above 4 SAW’s (again
via full enumeration) all SAW’s of length mgy = 2 (there are N3 = 12 of
Ny 12 _

them, see part (a)) and calculate the first Weight Factor 7; = eolnirie
1

3. Note that Nl(e) =4 (see part (b)).

11



Figure 6: First Iteration of Algorithm 2.3
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3. Second Iteration we proceed by deriving from the above 4 elites (via
full enumeration) all SAW’s of length mg = 3 (again there are Ny = 12 of
them, see part (a)) and calculate the second Weight Factor vy = % =

2

% = 3. Note that NQ(C) = 4 (see part (b)).

Figure 7: Second Iteration of Algorithm 2.3
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It is readily seen that the final estimator (15) of Algorithm 2.3 resembles the
final one (1) of Algorithm 2.1 in that in (15) 7; = ¢ * and Nl(e) stands instead
of |X0|

We call Algorithm 2.3 - stochastic enumeration because of its main step
3, where at each level m; we perform, full enumeration between the randomly
selected Nt(e) elites and all possible candidates for the next level m;1 = ms+7.

12



Note that the estimator |X'*| in (15) corresponds to a single run. Averaging
over M such independent runs, we obtain

1 o =
= > (16)
i=k
The sample variance of \j\’\*| is
M
S (X)) = 7| — | X)) (17)
and the relative error is -
5y SUAX*])
By = T2, (18)
X

It is not difficult to see that

e Explicitly the SE Algorithm 2.3 involves neither splitting nor OSLA. One
might surmise, however, that they are embodied in the algorithm and in
particular in Step 3.

e In contrast to splitting algorithm, the SE Algorithm is not stacked at any
intermediate level m; < n, and thus all generated walks are SAW’s.

e The advantage of the splitting Algorithm 2.1 over its SE counterpart is
that the former can be adaptive while the latter is not.

3 Convergence

We shall deal with the convergence properties of the splitting estimator ]//Y\*| in
(4), that is with

7| = IXo!H

for the splitting Algorithm 2.1. Convergence for OSLA-SPLIT and SE algo-
rithms can be derived similarly.
We write (4) as

x| = ||, (19)
where

(=1]a (20)
k=1

Since |Ap| is a constant we can proceed with the convergence of (to =
[15—; ck- We shall make the following two requirements.

1.
(i) Each ¢, k =1,...,n must represents an unbiased estimator of ¢, k =
1,...,n and each ¢ is not a rare event probability.

13



(ii) The variance of each ¢, k = 1,...,n must be bounded, that is Var {c;} <
Const, k=1,...,n.

We next justify all the assumptions.

(i) Each ¢y, k =1,...,n must represent an unbiased estimator of ¢, k =
1,...,n and each ci is not a rare event probability

This is straightforward. Unbiasedness follows directly from the definition of
¢ and the second requirement is assured by the fact that p < ¢, say ¢ > 1072,
(ii) The variance of each ¢k, k= 1,...,n must be bounded, that is

(e)
Var {c¢; = N¢} =02 < Const,Yk=1,...,n.
k

This is so since Vk = 1,...,n both sample sizes N lge) and Ny are finite.

With the above two assumptions there are several nice convergence proves
for splitting algorithms of type of Algorithm 2.1 (see for example [13], [18]).

Below we present a prove for a slightly modified version of Algorithm 2.1.
Namely, instead of dependent random variables ¢;, t = 1,...,n we modify Al-
gorithm 2.1 such that they become independent. The modification is straight-
forward: instead of a single sequence ¢, t = 1,...,n we run two independent
processes of ¢;’s in parallel denoting them by Egl) and 55/2), respectively. We
next mix them as follows:

/C<11)>/C<22)7-~-7/C\511_1a/0{712) (21)
and
), e ey (22)

and then estimate ¢ as R
0=1/2(0 + 1),

where 1) and () correspond to the mixed sequences (21) and (22), respec-
tively. It is readily seen that by doing so the dependence in either sequences
between the random variables ¢; and /.

With the above assumptions satisfied we can prove the polynomial in n
complexity of the estimator v by citing some results from pp 438-439 of [10].

Since ¢ = [15_; ¢k, is based on the product of n independent random vari-
ables ¢, each with bounded variance o2, the following result (formula (157) in
[10]) holds

n¢?/N <02 Var 1 < (1+C2/N)" —1, (23)

where
n

1
CeLXd

k=1 "k

[\

Moreover, using Chebyshev’s inequality we have (formula (159) in [10]) the
following relative accuracy criterion

P(Jl—¢<te)>1-6,0<e,b<1. (24)

14



This is valid

n(Q
>
~ In(1 + 6e?)

Therefore, for fixed ¢ and §, achieving (24) takes O(n?¢?) time as n — oco. It
is also shown in [10] that for independent Bernoulli random variables the time
bound O(n?¢?) becomes O[n?(n—1)], wheren = L S0, 2k and that the bound
(23) is tight.

VN

4 Numerical Results

In this Section we present numerical results with Algorithms 2.1, 2.2 and 2.3.

4.1  Splitting Algorithm 2.1

Table 1 presents the performance of the systematic splitting algorithm for
n = 70 with p = 0.25 and N = 10,000, where the exact cardinality |X*7| =
1580784678250571882017480243636 ~ 1.5808 E + 030.

Table 1: Performance of Algorithm 2.1 for n = 70 with p = 0.25 and N =
10,000

Run Ny | Iterations ‘ |z’?*\ ‘ RE of |/‘?*| ‘ CPU (sec.)
1 23 1.534E+30 0.030 11.02
2 23 1.578E+30 0.002 11.03
3 23 1.653E+30 0.046 11.13
4 23 1.570E+30 0.007 11.08
5 23 1.539E+30 0.026 11.13
6 23 1.546E+30 0.022 11.10
7 23 1.512E+30 0.043 11.02
8 23 1.595E+30 0.009 11.02
9 23 1.508E+30 0.046 11.08
10 23 1.555E+30 0.017 11.04

Average ‘ 23 1.559E+30 0.025 11.07

Table 2 presents data similar to Table 1 for n = 500 with p = 0.2 and
N = 50,000
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Table 2: Performance of Algorithm 2.1 for n = 500 with p = 0.2 and N =
50, 000

Run Ny | Iterations ‘ ¥ ‘ RE of |X*| ‘ CPU (sec.)
1 165 3.854E-+211 0.147 523.58
2 165 4.921E+211 0.089 523.01
3 165 4.680E+211 0.035 523.60
4 165 4.078E+211 0.098 524.11
) 165 5.027E+211 0.112 523.76
6 165 4.388E+211 0.029 524.40
7 165 5.343E+211 0.182 525.13
8 165 4.454E+211 0.015 523.43
9 165 4.769E+211 0.055 524.55
10 164 4.474E+211 0.010 521.15

Average ‘ 164.9 4.599E+211 0.077 523.67

Table 3 presents the dynamic of the systematic splitting algorithm for a run
of Table 1.

Table 3: Dynamics of a run of Algorithm 2.1 for SAW with n = 70

¢ lme | mi | 9] N | &
1 1 24 | 2711 | 10000 | 0.271
2 5 28 | 3312 | 10000 | 0.331
3 8 28 | 3142 | 10000 | 0.314
4
5

11 | 39 | 3089 | 10000 | 0.309
14 | 37 | 3037 | 10000 | 0.304
1 32 | 54 | 3005 | 10000 | 0.301
18 | 53 | 77 | 3014 | 10000 | 0.301
19 | 56 | 81 | 2845 | 10000 | 0.285
20 | 59 | 84 | 2830 | 10000 | 0.283
21| 62 | 89 | 2900 | 10000 | 0.290
22| 65 | 91 | 2938 | 10000 | 0.294

—_

Here we used the following notations

1. Nt(e) denotes the actual number of elites.

2. mf and m.; denote the upper and lower elite levels reached, respectively.

3. pr = Nt(e) /N; denotes the adaptive rarity parameter.
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4.2 OSLA-SPLIT Algorithm 2.2

We ran the OSLA part of Algorithm 2.2 using N = 10,000 and p = 0.1 in
parallel to its splitting part using N = 400 and p = 0.25. We found that
OSLA-SPLIT algorithm typically outperforms Algorithm 2.1 (by about 50%)
in terms of the relative error. We also found that the SE Algorithm 2.3 typically
outperforms OSLA-SPLIT.

4.3 SE Algorithm 2.3

Tables 4 and 5 present data similar to Tables 1 and 3 for the splitting algorithm
for n = 500 with r = 2, Ny = 284, and M = 20 (see (16)). We started our
simulation from the initial value n = 4. This corresponds to Nt(e) = 100 (see
also iteration ¢ = 0 in Table 5 with Née) = Ny = 100).

Table 4: Performance of SE Algorithm 2.3 for SAW with n = 500

Run Ny | Iterations ‘ |z’?*\ ‘ RE of |2?*‘ ‘ CPU (sec.)
1 248 [ 4.799E+211 0.060 130.55
2 248 | 4.731E+211 0.045 130.49
3 248 | 4.462E+211 0.014 132.36
4 248 | 4.302E+211 0.050 136.22
5 248 5.025E+211 0.110 132.19
6 248 5.032E+211 0.112 131.79
7 248 | 4.397E+211 0.029 132.18
8 248 [ 4.102E+211 0.094 131.60
9 248 | 4.820E+211 0.065 131.98
10 248 [ 4.258E+211 0.059 131.73

Average | 248 4.593E+211 0064 | 13211

Comparing the results of Tables 2 and 4 it follows that the SE Algorithm
2.3 is approximately 4 times faster than its counterpart splitting Algorithm 2.1.
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Table 5: Dynamics of a run of SE Algorithm 2.3 for SAW with n = 500

L [N N e | 1#
4 100 | 100 1 100
6 100 | 780 | 7.8 780

8 100 | 759 | 7.59 | 5.920E+03
10 | 100 | 746 | 7.46 | 4.416E+404
12 | 100 | 731 | 7.31 | 3.228E405
14 | 100 | 733 | 7.33 | 2.366E406
50 | 104 | 100 | 699 | 6.99 | 4.528E+44
100 | 204 | 100 | 695 | 6.95 | 7.347TE+86
150 | 304 | 100 | 699 | 6.99 | 1.266E+129
200 | 404 | 100 | 694 | 6.94 | 1.809E+171
244 1 492 | 100 | 693 | 6.93 | 2.027E4-208
245 |1 494 | 100 | 693 | 6.93 | 1.405E4-209
246 | 496 | 100 | 696 | 6.96 | 9.780E4-209
247 1 498 | 100 | 701 | 7.01 | 6.856E4-210
248 1 500 | 100 | 700 | 7 | 4.7T99E+211

QUi | W N~ O] o+

Table 6 present data similar to Table 4 for n = 1,000, with r = 2, M = 20
and N; = 780. The results are self explanatory.

Table 6: Performance of of the SE Algorithm 2.3 for SAW with n = 1,000

Run Ny | Iterations ‘ |/'i,’v*] ‘ RE of |/'i,’v*\ ‘ CPU (sec.)
1 497 ] 2.514E+422 0.042 4008
2 497 | 2.629E+422 0.089 3992
3 497 | 2.757TE+422 0.142 3980
4 497 | 2.354E+422 0.024 3975
5 497 | 2.200E+422 0.089 3991
6 497 | 2.113E+422 0.125 3991
7 497 | 2.081E+422 0.138 3970
8 497 | 2.281E+422 0.055 3983
9 497 | 2.504E+422 0.037 3982
10 497 | 2.552E+422 0.057 3975

Average | 497 | 2.399E+422 0.080 3985

We also ran the OSLA-SE algorithm and found that its performance is
similar to that of OSLA-SPLIT.

18



5 Concluding Remarks and Further Research

We presented a new method for counting self-avoiding walks (SAW’s), the so-
called stochastic enumeration (SE). We showed that SE is a stochastic replica
of the naive full enumeration method, which is computationally unfeasible since
the counting sets in SAW’s are huge. In SE this difficulty is obviated by us-
ing a manageable sample size. In addition we also derived a new method,
called OSLA-SPLIT, which is a combination of classic splitting with impor-
tance sampling, based on the well known method one-step-look-ahead (OSLA).
We discussed the convergence properties of both version with numerical studies
demonstrating their superiority over classic splitting.

As further research, we intend to apply the above ideas and methods to
a wide class of NP-hard counting problems, in particular to the satisfiability
problem.

6 Appendix
6.1 OSLA for Self-Avoiding Walk

The self-avoiding random walk, or simply self-avoiding walk ( SAW), is a basic
mathematical model for polymer chains. For simplicity we shall deal only with
the 2-dimensional case. Each SAW is represented by a path @ = (21,22, ..., ZTpn—1,Zn),
where x; represents the 2-dimensional position of the i—th molecule of the poly-
mer chain. The distance between adjacent molecules is fixed to 1, and the main
requirement is that the chain does not self-intersect. For simplicity we always
assume the walk starts at the origin.

One of the main questions regarding the SAW model is: How many SAWs
are there of length n? Let X* be the set of SAWs of length n. We wish to
estimate |X*| by employing a convenient IS pdf g(x). This pdf is defined by
the following one-step-look-ahead (OSLA) procedure:

Procedure (One-Step-Look-Ahead)
1. Let Xo = (0,0). Set t = 1.

2. Let d; be the number of neighbors of X;_; that have not yet been visited.
If d; > 0, choose X; with probability 1/d; from its neighbors. If d; = 0
stop generating the path.

3. Stop if t = n. Otherwise increase t by 1 and go to step 2.

Note that the procedure either generates a SAW x of fixed length n or the
path gets value zero. Let g(x) be the corresponding discrete pdf. Then, for any
SAW x, we have by the product rule,

11 1 1
= ) (25)

g(z) = dejdn w(x)

where
w(x)=dy...dy, . (26)
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The SAW counting algorithm now follows:
Algorithm 6.1 (Counting SAWs)
1. Generate independently N paths X1,..., X n via the OSLA procedure.

2. For each SAW X, compute the corresponding w(Xy) as in (26). For the
other parts (which do not reach the value n) set w(Xy) = 0.

3. Return
_ 1 N
)= > (X 27)
1=k

The efficiency of the simple one-step-look-ahead method deteriorates rapidly
as n becomes large. It becomes impractical to simulate walks of length more
than 200. This is due to the fact that if at any one step t the point z;_1 does
not have unoccupied neighbors (d; = 0) then the “weight” w(x) is zero and
contributes nothing to the final estimate of |X*|.

6.2 The Splitting Method

As mentioned this work deals with the sequential splitting method, for rare-
events, counting and optimization.

We present some background from [28] on the splitting method, also called
in [28], the cloning method. It is closely related to some other splitting methods,
in particular to these discussed in [2], [11], [12], [18], and also to what is often
called randomized algorithms [24, 25].

The main idea of a splitting method is to design a sequential sampling plan,
with a view to decomposing a “difficult” counting problem defined on some set
X* into a number of “easy” ones associated with a sequence of related sets
Xy, X1, ..., Xy, and such that &), = X*. Typically, splitting algorithms explore
the connection between counting and sampling problems and in particular the
reduction from approximate counting of a discrete set to approximate sampling
of elements of this set, where the sampling is performed by the classic MCMC
method [30].

A typical splitting algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality ||
of some set X'*.

2. Find a sequence of sets X = Xy, X1,..., X, such that Xy D X3 D --- D
X = X%, |Xn] = |X*] and |X| = |AD]| is known.

3. Write |X*| = |X,| as

| A
X = X% [[ o = 0%l 28
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where ¢ = [}, I /,Liit'l'. Note that £ is typically very small, like £ = 10109,

while each ratio
||

I

Ct (29)
should not be small, like ¢; = 1072 or bigger. Clearly, estimating ¢ directly
while sampling in |Xp| is meaningless, but estimating each ¢; separately
seems to be a good alternative.

| Xz |

4. Develop an efficient estimator ¢; = B for each ¢; = |X4|/|Xp—1].
t—1

5. Estimate |X*| by

m
[+ =1x| [ @, (30)
t=1
where |??t\, t =1,...,m is an estimator of |X;|, and similarly for the

rare-event probability /.

It is readily seen that in order to obtain a meaningful estimator of |X*|, we
have to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (28)
by making sure that Ay D X} D --- D X, = X* and each ¢ is not a
rare-event probability.

(ii) Obtain a low variance estimator ¢; of each ¢; = |X;|/|Xi—1].

To proceed note that ¢ can be also written as

C=Ef [I{sx)>m}] » (31)

where X ~ f(x), f(x) is a uniform distribution on the set of points of X,
and as before, m is a fixed parameter, like the total number of constraints in
an integer program, and S(X) is the sample performance, like the number of
feasible solution generated by the constraints of the integer program. It can be
also written (see(28)) as

T
t=1]e (32)
t=1
where
et = | |/| X1 = Egr | [I{s(x)>mi_1})- (33)
Here
91 =g (@, my_1) = my—1) " (@) L5 (@)>me_1 )} (34)

¢(my_1)~! is the normalization constant and similar to (28) the sequence my;, t =
0,1,...,T represents a fixed grid satisfying —oco < mg < my < --- < mp = m.
Note that in contrast to (28) we use in (32) a product of T' terms instead of m
terms. Note that T" might be a random variable. The later case is associated
with adaptive choice of the
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level sets {f;}1_, resulting in 7' < m. Since for counting problems the pdf
f(x) should be uniformly distributed on X, which we denote by U(X), it follows
from (34) that the pdf g*(x, m;—1) should be uniformly distributed on the set
Xy ={x: S(x) > my_1}, that is, g*(x, m;—1) must be equal to U(A}).

Although the pdf ¢g; | = U(X}) is typically not available analytically, it is
shown in [27, 28] that one can sample from it by using the MCMC method and
in particular the Gibbs sampler, and as the result to update the parameters
¢ and my adaptively. This is one of the most crucial issues of the splitting
method.

Once sampling from g; = U(X;) becomes available, the final estimator of
¢ (based on the estimators of ¢; = Eg:  [I{g(x)>m,_,}]s t = 0,...,T), can be

written as
T 1 T
EIH/C\t:WHNh (35)
t=1 t=1
where Ny
1 Ny
Ct = N ;I{S(Xi)thﬂ = Na (36)
1=

N *
Ne =3 it Iis(xi)>m, 1} Xi~gi_y and g2y = f.
We next show how to cast the problem of counting the number of feasible
solutions of the set of integer programming constraints into the framework (31)-

(34).

Example 6.1 Counting on the set of an integer programming con-
straints Consider the set X'* containing both equality and inequality con-
straints of an integer program, that is,

Dokt @Rk = by i =1, my,
ZZ:I QjpTp > bj, j=mi1+1,...,m + mao, (37)
x = (x1,...,oy) >0, xp is integer Yk =1,...,n.

Our goal is to count the number of feasible solutions (points) of the set (37). We

assume that each component x,, k = 1,...,m has d different values, labeled
1,...,d. Note that the SAT problem represents a particular case of (37) with
inequality constraints and where z1,...,z, are binary components. If not

stated otherwise we will bear in mind the counting problem on the set (37)
and in particular counting the number of true (valid) assignments in a SAT
problem.

It is shown in [28] that in order to count the number of points of the set
(37) one can associate it with the following rare-event probability problem

0 =Ef [I{s(x)=m}] = Ey [f{z:';l Ci(X)=m} | (38)
where the first m; terms C;(X)’s in (38) are

CZ(X) = I{Zzzl a;ik XK=bi}» t=1,...,my, (39)
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while the remaining ms ones are
Ci(X) =Ityr_ apxzbys 0=m1+ 1. ,m1+mo (40)

and S(X) = 7", C;(X). Thus, in order to count the number of feasible so-
lutions on the set (37) one can consider an associated rare-event probability
estimation problem (38) involving a sum of deﬁe\ndent Bernoulli random vari-
ables C; i = my + 1,...,m, and then apply |X*| = Z|X| In other words, in
order to count on X'* one needs to estimate efficiently the rare event probability
¢ in (38). A rare-event probability estimation framework similar to (38) can be
readily established for many NP-hard counting problems [28].

It follows from above that the proposed algorithm will generate an adaptive
sequence of tuples

{(m07 g*(a:, m—l))a (mla g*(x7 mO))v (m2> g*($7 ml))> SO (mT7 g*($> mT—l))}
(41)
Here as before g*(x,m_1) = f(x) = U(X), g"(x,my) = U(X;), and my is
obtained from the solution of the following non-linear equation

Eg:_ I{s(x)>m:} = Ps (42)

where p is called the rarity parameter [29]. Typically one sets 0.1 < p < 0.01.
Note that in contrast to the classic cross-entropy (CE) method [29], where
one generates a sequence of tuples

{(mo,’vo), (ml,vl),...,(mT,vT)}, (43)

and, where {v;, t = 1,..., T} is a sequence of parameters in the parametric fam-
ily of distributions f(z,v;), here in (41), {¢*(x,m4—1) =9¢;_;, t=0,1,...,T}
is a sequence of non-parametric IS distributions. Otherwise, the CE and the
splitting algorithm are very similar.

Note that the splitting algorithm is also suitable for optimization. Here we
also use the same sequence of tuples (41), but without involving the product of
the estimators ¢z, t=1,...,T.

Algorithm 6.2 (Basic Splitting Algorithm for Counting) Given the ini-
tial parameter pg, say pp € (0.01,0.25) and the sample size N, say N = nm,
execute the following steps:

1. Acceptance-Rejection Set a counter ¢ = 1. Generate a sample X1,..., X
uniformly on Xp. Let Ay = {Xq,... ,XN(E)} be the largest subset of
0

the population {X,..., X n}, the elite samples for which S(X;) > my,
where my is the (1 — pg) sample quantile of the ordered statistics values
of S(X1),...,5(Xn). Take

~ 1 N Née)
co = L(Mmo) = + ;I{S(xi»mo} =N (44)
as an unbiased estimator of c¢y. Note that 351, e ’/X/N(” ~ g*(x, mp),
0

where ¢g*(x,mg) is a uniform distribution on the set X} = {x : S(x) >
mo}-
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2. Splitting Let X, ; = {}1, e ,/X/N@) } be the elite sample at iteration
t—1

(t — 1), that is the subset of the population {X,..., Xy} for which

S(X;) > mu—1. Reproduce n_1 = [pt__ll] times each vector X =

(Xlk,...,)?nk) of the elite sample {Xl,...,XN<e> }, that is take g
t—1

identical copies of each vector /Xk Denote the entire new population

(nt,th(f)l cloned vectors plus the original elite sample {/X/l, s X @ 3]
t—1
by X ={(X1,..., X1),..., (X @ ,---»X e )}. Toeach of the cloned
N4y Ny

vectors of the population X,; apply the MCMC (and in particular the ran-
dom Gibbs sampler) for a single period (single burn-in). Denote the new
entire population by {X1,..., X ny}. Note that each vector in the sample
Xq,..., Xy is distributed g*(x,m¢—1), where g*(x,m;—1) has approxi-
mately a uniform distribution on the set X = {x : S(x) > mu_1}.

(e)

3. Estimating ¢; Take ¢, = NfT (see (36)) as an estimator of ¢; in (34). Note

again that each vector of X1,..., X N© of the elite sample is distributed
t

g*(x, my), where g*(a,m;) has approximately a uniform distribution on
the set X1 = {x: S(x) > my}.

4. Stopping rule If m; = m go to step 6, otherwise set ¢t = ¢t + 1 and repeat
from step 2.

5. Final Estimator Deliver ¢(m) given in (35) as an estimator of £(m) and
|X*| = ¢(m)|X| as an estimator of |X™|.
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